added spec_image, spec_hist, spec_boxplot and fixed some cran comments
diff --git a/DESCRIPTION b/DESCRIPTION
index ba3c629..6ff2b6f 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -46,7 +46,8 @@
     glue,
     tools,
     webshot,
-    digest
+    digest,
+    graphics
 Suggests:
     testthat,
     magick,
diff --git a/NAMESPACE b/NAMESPACE
index 59c7f51..eda523b 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -41,8 +41,11 @@
 export(save_kable)
 export(scroll_box)
 export(spec_angle)
+export(spec_boxplot)
 export(spec_color)
 export(spec_font_size)
+export(spec_hist)
+export(spec_image)
 export(spec_popover)
 export(spec_tooltip)
 export(text_spec)
@@ -53,6 +56,12 @@
 importFrom(digest,digest)
 importFrom(glue,glue)
 importFrom(grDevices,col2rgb)
+importFrom(grDevices,png)
+importFrom(grDevices,svg)
+importFrom(graphics,boxplot)
+importFrom(graphics,hist)
+importFrom(graphics,par)
+importFrom(graphics,text)
 importFrom(knitr,asis_output)
 importFrom(knitr,include_graphics)
 importFrom(knitr,kable)
@@ -69,6 +78,8 @@
 importFrom(rvest,html_table)
 importFrom(scales,rescale)
 importFrom(stats,ave)
+importFrom(stats,density)
+importFrom(stats,median)
 importFrom(stringr,fixed)
 importFrom(stringr,str_count)
 importFrom(stringr,str_detect)
diff --git a/R/column_spec.R b/R/column_spec.R
index fd33b4e..bdc8655 100644
--- a/R/column_spec.R
+++ b/R/column_spec.R
@@ -51,6 +51,7 @@
 #' to build a popover is through `spec_popover()`. If you only provide a text
 #' string, it will be used as content. Note that You have to enable this
 #' bootstrap module manually. Read the package vignette to see how.
+#' @param image Vector of image paths.
 #'
 #' @details Use `latex_column_spec` in a LaTeX table to change or
 #' customize the column specification.  Because of the way it is handled
@@ -70,7 +71,7 @@
                         extra_css = NULL, include_thead = FALSE,
                         latex_column_spec = NULL, latex_valign = 'p',
                         link = NULL, new_tab = TRUE,
-                        tooltip = NULL, popover = NULL) {
+                        tooltip = NULL, popover = NULL, image = NULL) {
   if (!is.numeric(column)) {
     stop("column must be numeric. ")
   }
@@ -89,7 +90,7 @@
                             border_left, border_right,
                             width_min, width_max,
                             extra_css, include_thead,
-                            link, new_tab, tooltip, popover))
+                            link, new_tab, tooltip, popover, image))
   }
   if (kable_format == "latex") {
     return(column_spec_latex(kable_input, column, width,
@@ -98,7 +99,7 @@
                              color, background,
                              border_left, border_right,
                              latex_column_spec, latex_valign, include_thead,
-                             link))
+                             link, image))
   }
 }
 
@@ -109,7 +110,7 @@
                              border_left, border_right,
                              width_min, width_max,
                              extra_css, include_thead,
-                             link, new_tab, tooltip, popover) {
+                             link, new_tab, tooltip, popover, image) {
   kable_attrs <- attributes(kable_input)
   kable_xml <- read_kable_as_xml(kable_input)
   kable_tbody <- xml_tpart(kable_xml, "tbody")
@@ -163,6 +164,7 @@
   new_tab <- ensure_len_html(new_tab, nrows, "new_tab")
   tooltip <- ensure_len_html(tooltip, nrows, "tooltip")
   popover <- ensure_len_html(popover, nrows, "popover")
+  image <- ensure_len_html(image, nrows, "image")
 
   for (i in all_contents_rows) {
     for (j in column) {
@@ -173,7 +175,7 @@
         color[i], background[i], border_left, border_right,
         border_l_css, border_r_css,
         extra_css,
-        link[i], new_tab[i], tooltip[i], popover[i]
+        link[i], new_tab[i], tooltip[i], popover[i], image[i]
       )
     }
   }
@@ -199,7 +201,7 @@
                                   border_left, border_right,
                                   border_l_css, border_r_css,
                                   extra_css,
-                                  link, new_tab, tooltip, popover) {
+                                  link, new_tab, tooltip, popover, image) {
   if (is.na(xml_attr(target_cell, "style"))) {
     xml_attr(target_cell, "style") <- ""
   }
@@ -259,6 +261,24 @@
                                              extra_css)
   }
 
+  if (!is.null(image)) {
+    image <- image[[1]]
+    if (class(image) == "kableExtraInlinePlots") {
+      if (!is.null(image$svg_text)) {
+        xml_add_child(target_cell, xml2::read_xml(image$svg_text))
+      } else {
+        img_text <- paste0('<img src="', image$path, '" width="',
+        image$width / image$res * 96, '" height="',
+        image$height / image$res * 96,
+        '"></img>')
+        xml_add_child(target_cell, xml2::read_html(img_text))
+      }
+    } else {
+      img_text <- paste0('<img src="', image, '"></img>')
+      xml_add_child(target_cell, xml2::read_html(img_text))
+    }
+  }
+
   # favor popover over tooltip
   if (!is.null(popover)) {
     if (class(popover) != "ke_popover") popover <- spec_popover(popover)
@@ -273,29 +293,6 @@
       xml_attr(target_cell, t) <- tooltip_list[t]
     }
   }
-  # if (!is.null(popover)) {
-  #   if (class(popover) != "ke_popover") popover <- spec_popover(popover)
-  #   popover_list <- attr(popover, 'list')
-  #   span_node <- xml2::read_xml(paste0(
-  #     '<span>', xml_text(target_cell), '</span>'
-  #   ))
-  #   for (p in names(popover_list)) {
-  #     xml_attr(span_node, p) <- popover_list[p]
-  #   }
-  #   xml_add_child(target_cell, span_node)
-  #   xml_text(target_cell) <- ""
-  # } else if (!is.null(tooltip)) {
-  #   if (class(tooltip) != "ke_tooltip") tooltip <- spec_tooltip(tooltip)
-  #   tooltip_list <- attr(tooltip, 'list')
-  #   span_node <- xml2::read_xml(paste0(
-  #     '<span>', xml_text(target_cell), '</span>'
-  #   ))
-  #   for (t in names(tooltip_list)) {
-  #     xml_attr(span_node, t) <- tooltip_list[t]
-  #   }
-  #   xml_add_child(target_cell, span_node)
-  #   xml_text(target_cell) <- ""
-  # }
 
   if (!is.null(link)) {
     href_node <- xml2::read_xml(paste0(
@@ -316,7 +313,7 @@
                               color, background,
                               border_left, border_right,
                               latex_column_spec, latex_valign, include_thead,
-                              link) {
+                              link, image) {
   table_info <- magic_mirror(kable_input)
   if (!is.null(table_info$collapse_rows)) {
     message("Usually it is recommended to use column_spec before collapse_rows,",
@@ -368,6 +365,7 @@
   background <- ensure_len_latex(background, nrows, off, include_thead, "white",
                               "background")
   link <- ensure_len_latex(link, nrows, off, include_thead, "#", "link")
+  image <- ensure_len_latex(image, nrows, off, include_thead, "", "image")
 
   if (include_thead) {
     rows <- seq(1, nrows)
@@ -380,7 +378,7 @@
     new_row <- latex_cell_builder(
       target_row, column, table_info,
       bold[i], italic[i], monospace[i], underline[i],
-      strikeout[i], color[i], background[i], link[i]
+      strikeout[i], color[i], background[i], link[i], image[i]
       # font_size, angle
       )
     temp_sub <- ifelse(i == 1 & (table_info$tabular == "longtable" |
@@ -494,7 +492,7 @@
 latex_cell_builder <- function(target_row, column, table_info,
                                bold, italic, monospace,
                                underline, strikeout,
-                               color, background, link
+                               color, background, link, image
                                # font_size, angle
                                ) {
   new_row <- latex_row_cells(target_row)[[1]]
@@ -538,6 +536,30 @@
                               new_row[column], "\\}")
   }
 
+  if (!is.null(image)) {
+    image <- image[[1]]
+    if (class(image) == "kableExtraInlinePlots") {
+      new_row[column] <- paste0(
+        new_row[column],
+        '\\\\includegraphics\\[width=',
+        # '\\\\raisebox\\{-\\\\totalheight\\}\\{\\\\includegraphics\\[width=',
+        round(image$width / image$res, 2), 'in, height=',
+        round(image$height / image$res, 2), 'in\\]\\{',
+        image$path,
+        '\\}'
+        # '\\}\\}'
+        )
+    } else {
+      if (!is.null(image) && !is.na(image) && image != "") {
+        new_row[column] <- paste0(
+          new_row[column],
+          '\\\\includegraphics\\{',
+          image, '\\}'
+        )
+      }
+    }
+  }
+
   new_row <- paste(new_row, collapse = " & ")
 
   return(new_row)
diff --git a/R/kableExtra-package.R b/R/kableExtra-package.R
index 35617e1..415b5b0 100644
--- a/R/kableExtra-package.R
+++ b/R/kableExtra-package.R
@@ -68,13 +68,14 @@
 #' @importFrom utils read.csv head capture.output
 #' @importFrom scales rescale
 #' @importFrom viridisLite viridis
-#' @importFrom stats ave
-#' @importFrom grDevices col2rgb
+#' @importFrom stats ave density median
+#' @importFrom grDevices col2rgb svg png
 #' @importFrom rstudioapi isAvailable viewer
 #' @importFrom glue glue
 #' @importFrom tools file_ext file_path_sans_ext
 #' @importFrom webshot webshot
 #' @importFrom digest digest
+#' @importFrom graphics par text hist boxplot
 #' @import htmltools
 #' @name kableExtra-package
 #' @aliases kableExtra
diff --git a/R/light_themes.R b/R/light_themes.R
index e4ed2a3..a37e541 100644
--- a/R/light_themes.R
+++ b/R/light_themes.R
@@ -35,7 +35,7 @@
 #' @export
 kable_minimal <- function(
   kable_input, lightable_options = "basic",
-  html_font = '"Trebuchet MS", verdana, calibri, sans-serif', ...) {
+  html_font = '"Trebuchet MS", verdana, sans-serif', ...) {
   kable_light(kable_input, "lightable-minimal",
               lightable_options, html_font, ...)
 }
diff --git a/R/mini_plots.R b/R/mini_plots.R
new file mode 100644
index 0000000..f6ed31d
--- /dev/null
+++ b/R/mini_plots.R
@@ -0,0 +1,187 @@
+#' Helper functions to generate inline sparklines
+#'
+#' @description These functions helps you quickly generate sets of sparkline
+#' style plots using base R plotting system. Currently, we support histogram
+#' and boxplot. You can use them together with `column_spec` to
+#' generate inline plot in tables. By default, this function will save images
+#' in a folder called "kableExtra" and return the address of the file.
+#'
+#' @param x Vector of values or List of vectors of values.
+#' @param width The width of the plot in pixel
+#' @param height The height of the plot in pixel
+#' @param res The resolution of the plot. Default is 300.
+#' @param same_lim T/F. If x is a list of vectors, should all the plots be
+#' plotted in the same range? Default is True.
+#' @param lim Manually specify plotting range in the form of `c(0, 10)`.
+#' @param xaxt On/Off for xaxis text
+#' @param yaxt On/Off for yaxis text
+#' @param ann On/Off for annotations (titles and axis titles)
+#' @param col Color for the fill of the histogram bar/boxplot box.
+#' @param border Color for the border.
+#' @param dir Directory of where the images will be saved.
+#' @param file File name. If not provided, a random name will be used
+#' @param file_type Graphic device. Support `png` or `svg`. SVG is recommended
+#' for HTML output
+#' @param add_label For boxplot. T/F to add labels for min, mean and max.
+#' @param label_digits If T for add_label, rounding digits for the label.
+#' Default is 2.
+#' @param boxlty Boxplot - box boarder type
+#' @param medcol Boxplot - median line color
+#' @param medlwd Boxplot - median line width
+#'
+#' @inheritParams graphics::hist
+#' @inheritParams graphics::boxplot
+#' @export
+spec_hist <- function(x, width = 200, height = 50, res = 300,
+                      breaks = "Sturges",
+                      same_lim = TRUE, lim = NULL,
+                      xaxt = 'n', yaxt = 'n', ann = FALSE,
+                      col = "lightgray", border = NULL,
+                      dir = if (is_latex()) rmd_files_dir() else tempdir(),
+                      file = NULL,
+                      file_type = if (is_latex()) "png" else "svg", ...) {
+  if (is.list(x)) {
+    if (same_lim & is.null(lim)) {
+      lim <- base::range(unlist(x))
+    }
+    return(lapply(x, function(x_) {spec_hist(
+      x = x_, width = width, height = height,
+      breaks = breaks, same_lim = same_lim, lim = lim,
+      xaxt = xaxt, yaxt = yaxt, ann = ann, col = col, border = border,
+      dir = dir, file = file, file_type = file_type, ...
+    )}))
+  }
+
+  if (is.null(lim)) {
+    lim <- base::range(x)
+  }
+
+  file_type <- match.arg(file_type, c("svg", "png"))
+
+  if (!dir.exists(dir)) {
+    dir.create(dir)
+  }
+
+  if (is.null(file)) {
+    file <- tempfile("hist", dir, paste0('.', file_type))
+  }
+
+  if (file_type == "svg") {
+    grDevices::svg(filename = file, width = width / res, height = height / res,
+                   bg = 'transparent')
+  } else {
+    grDevices::png(filename = file, width = width, height = height, res = res,
+                   bg = 'transparent')
+  }
+
+  graphics::par(mar = c(0, 0, 0.2, 0), lwd=0.5)
+  graphics::hist(x, breaks = breaks, xlim = lim, border = border,
+                 xaxt = xaxt, yaxt = yaxt, ann = ann, col = col, ...)
+  grDevices::dev.off()
+
+  if (file_type == "svg") {
+    svg_xml <- xml2::read_xml(file)
+    svg_text <- as.character(svg_xml)
+    unlink(file)
+  } else {
+    svg_text <- NULL
+  }
+  out <- list(path = file, dev = file_type, type = "hist",
+              width = width, height = height, res = res,
+              svg_text = svg_text)
+
+  class(out) <- "kableExtraInlinePlots"
+  return(out)
+}
+
+#' @rdname spec_hist
+#' @export
+spec_boxplot <- function(x, width = 200, height = 50, res = 300,
+                         add_label = FALSE, label_digits = 2,
+                         same_lim = TRUE, lim = NULL,
+                         xaxt = 'n', yaxt = 'n', ann = FALSE,
+                         col = "lightgray", border = NULL,
+                         boxlty = 0, medcol = "red", medlwd = 1,
+                         dir = if (is_latex()) rmd_files_dir() else tempdir(),
+                         file = NULL,
+                         file_type = if (is_latex()) "png" else "svg", ...) {
+  if (is.list(x)) {
+    if (same_lim & is.null(lim)) {
+      lim <- base::range(unlist(x))
+    }
+    return(lapply(x, function(x_) {spec_boxplot(
+      x = x_, width = width, height = height,
+      add_label = add_label, same_lim = same_lim, lim = lim,
+      xaxt = xaxt, yaxt = yaxt, ann = ann,
+      col = col, border = border,
+      boxlty = boxlty, medcol = medcol, medlwd = medlwd,
+      dir = dir, file = file, file_type = file_type, ...
+    )}))
+  }
+
+  if (is.null(lim)) {
+    lim <- base::range(x)
+    lim[1] <- lim[1] - (lim[2] - lim[1]) / 10
+    lim[2] <- (lim[2] - lim[1]) / 10 + lim[2]
+  }
+
+  file_type <- match.arg(file_type, c("svg", "png"))
+
+  if (!dir.exists(dir)) {
+    dir.create(dir)
+  }
+
+  if (is.null(file)) {
+    file <- tempfile("hist", dir, paste0('.', file_type))
+  }
+
+  if (file_type == "svg") {
+    grDevices::svg(filename = file, width = width / res, height = height / res,
+                   bg = 'transparent')
+  } else {
+    grDevices::png(filename = file, width = width, height = height, res = res,
+                   bg = 'transparent')
+  }
+
+  graphics::par(mar = c(0, 0, 0, 0))
+
+  graphics::boxplot(x, horizontal = TRUE, ann = ann, frame = FALSE, bty = 'n', ylim = lim,
+          col = col, border = border,
+          boxlty = boxlty, medcol = medcol, medlwd = medlwd,
+          axes = FALSE, outcex = 0.2, whisklty = 1,
+          ...)
+  if (add_label) {
+    x_median <- round(median(x, na.rm = T), label_digits)
+    x_min <- round(min(x, na.rm = T), label_digits)
+    x_max <- round(max(x, na.rm = T), label_digits)
+    graphics::text(x_median, y = 1.4, labels = x_median, cex = 0.5)
+    graphics::text(x_min, y = 0.6, labels = x_min, cex = 0.5)
+    graphics::text(x_max, y = 0.6, labels = x_max, cex = 0.5)
+  }
+  grDevices::dev.off()
+
+  if (file_type == "svg") {
+    svg_xml <- xml2::read_xml(file)
+    svg_text <- as.character(svg_xml)
+    unlink(file)
+  } else {
+    svg_text <- NULL
+  }
+  out <- list(path = file, dev = file_type, type = "boxplot",
+              width = width, height = height, res = res,
+              svg_text = svg_text)
+  class(out) <- "kableExtraInlinePlots"
+  return(out)
+}
+
+is_latex <- knitr::is_latex_output
+
+rmd_files_dir <- function(create = TRUE) {
+  curr_file_name <- sub("\\.[^\\.]*$", "", knitr::current_input())
+  dir_name <- paste0(curr_file_name, "_files")
+  if (!dir.exists(dir_name) & create) dir.create(dir_name)
+  fig_dir_name <- file.path(dir_name, "figure-latex")
+  if (!dir.exists(fig_dir_name) & create) dir.create(fig_dir_name)
+  return(fig_dir_name)
+}
+
diff --git a/R/spec_tools.R b/R/spec_tools.R
index 350925b..4537ada 100644
--- a/R/spec_tools.R
+++ b/R/spec_tools.R
@@ -164,3 +164,36 @@
   attr(popover_options, 'list') <- popover_options_list
   return(popover_options)
 }
+
+#' Setup image path, size, etc
+#'
+#' @description Users can directly provide image file path to column spec.
+#' However, if you need to specify the size of the image, you will need this
+#' function.
+#'
+#' @param path file path(s)
+#' @param width image width in pixel
+#' @param height image height in pixel
+#' @param res image resolution.
+#' @param svg_text If you have the raw text for SVG. Put them here
+#'
+#' @export
+spec_image <- function(path, width, height, res = 300, svg_text = NULL) {
+  if (length(path) > 1) {
+    return(lapply(path, function(p) {
+      return(spec_image(p, width, height, res, svg_text))
+    }))
+  }
+  if (!is.null(svg_text)) {
+    out <- list(path = NULL, dev = NULL, type = "image",
+                width = NULL, height = NULL, res = NULL,
+                svg_text = svg_text)
+    class(out) <- "kableExtraInlinePlots"
+    return(out)
+  }
+  out <- list(path = path, dev = "external", type = "image",
+              width = width, height = height, res = res,
+              svg_text = svg_text)
+  class(out) <- "kableExtraInlinePlots"
+  return(out)
+}
diff --git a/README.md b/README.md
index b46a973..c4f5d31 100644
--- a/README.md
+++ b/README.md
@@ -73,4 +73,4 @@
 
 
 ## Acknowledgement
-I would like to thank colleagues at [Hebrew SeniorLife Institute for Aging Research](https://www.instituteforagingresearch.org/) and the [Boston Pepper Center](http://pepper.bwh.harvard.edu/) for their input. I also would like to appreciate the mentorship from Tom Travison ([@tgt75](https://twitter.com/tgt75)) and all the efforts from the open source community, which help this package keep getting better.
+I would like to thank colleagues at Hebrew SeniorLife [Marcus Institute for Aging Research](https://www.marcusinstituteforaging.org/) and the [Boston Pepper Center](https://pepper.bwh.harvard.edu/) for their input. I also would like to appreciate the mentorship from Tom Travison ([@tgt75](https://twitter.com/tgt75)) and all the efforts from the open source community, which help this package keep getting better.
diff --git a/docs/awesome_table_in_html.Rmd b/docs/awesome_table_in_html.Rmd
index 71a3331..bf9ea7d 100644
--- a/docs/awesome_table_in_html.Rmd
+++ b/docs/awesome_table_in_html.Rmd
@@ -22,7 +22,7 @@
 
 <img src="kableExtra_sm.png" align="right" alt="logo" width="80" height = "93" style = "border: none; float: right;">
 
-> Please see the package [documentation site](http://haozhu233.github.io/kableExtra/) for how to use this package in LaTeX.
+> Please see the package [documentation site](https://haozhu233.github.io/kableExtra/) for how to use this package in LaTeX.
 
 # Overview
 The goal of `kableExtra` is to help you build common complex tables and manipulate table styles. It imports the pipe `%>%` symbol from `magrittr` and verbalize all the functions, so basically you can add "layers" to a kable output in a way that is similar with `ggplot2` and `plotly`. 
@@ -44,7 +44,6 @@
 # Getting Started
 Here we are using the first few columns and rows from dataset `mtcars`
 ```{r}
-library(knitr)
 library(kableExtra)
 dt <- mtcars[1:5, 1:6]
 ```
@@ -119,7 +118,7 @@
 `kable_styling` offers a few other ways to customize the look of a HTML table. 
 
 ## Bootstrap table classes
-If you are familiar with twitter bootstrap, you probably have already known its predefined classes, including `striped`, `bordered`, `hover`, `condensed` and `responsive`. If you are not familiar, no worries, you can take a look at their [documentation site](http://getbootstrap.com/css/#tables) to get a sense of how they look like. All of these options are available here. 
+If you are familiar with twitter bootstrap, you probably have already known its predefined classes, including `striped`, `bordered`, `hover`, `condensed` and `responsive`. If you are not familiar, no worries, you can take a look at their [documentation site](https://getbootstrap.com/css/) to get a sense of how they look like. All of these options are available here. 
 
 For example, to add striped lines (alternative row colors) to your table and you want to highlight the hovered row, you can simply type:
 ```{r}
@@ -192,7 +191,7 @@
 )
 
 kbl(text_tbl) %>%
-  kable_styling(full_width = F) %>%
+  kable_paper(full_width = F) %>%
   column_spec(1, bold = T, border_right = T) %>%
   column_spec(2, width = "30em", background = "yellow")
 ```
@@ -212,12 +211,48 @@
 
 You can still use the `spec_***` helper functions to help you define color. See the documentation [below](#visualize-data-with-viridis-color). 
 
+## Insert Images into Columns
+Technically, we are still talking about `column_spec` here. However, since this topic itself contains its own subtopics, we split it out as a separate section. Since `kableExtra` 1.2, we introduced the feature of adding images to columns of tables. Here is a quick example. 
+
+```{r}
+tbl_img <- data.frame(
+  name = c("kableExtra 1", "kableExtra 2"),
+  logo = ""
+)
+tbl_img %>%
+  kbl(booktabs = T) %>%
+  kable_paper(full_width = F) %>%
+  column_spec(2, image = "kableExtra_sm.png")
+```
+
+If you need to specify the size of the images, you need to do it through `spec_image`. 
+
+```{r}
+tbl_img %>%
+  kbl(booktabs = T) %>%
+  kable_paper(full_width = F) %>%
+  column_spec(2, image = spec_image(
+    c("kableExtra_sm.png", "kableExtra_sm.png"), 50, 50))
+```
+
+`kableExtra` also provides a few inline plotting tools. Right now, there are `spec_hist` and `spec_boxplot`. One key feature is that by default, the limits of every subplots are fixed so you can compare across rows. Note that in html, you can also use package `sparkline` to create some jquery based interactive sparklines. Check out the end of this guide for details. 
+
+```{r}
+mpg_list <- split(mtcars$mpg, mtcars$cyl)
+inline_plot <- data.frame(cyl = c(4, 6, 8), mpg_box = "", mpg_hist = "")
+inline_plot %>% 
+  kbl(booktabs = T) %>%
+  kable_paper(full_width = F) %>%
+  column_spec(2, image = spec_boxplot(mpg_list)) %>%
+  column_spec(3, image = spec_hist(mpg_list))
+```
+
 ## Row spec
 Similar with `column_spec`, you can define specifications for rows. Currently, you can either bold or italicize an entire row. Note that, similar with other row-related functions in `kableExtra`, for the position of the target row, you don't need to count in header rows or the group labeling rows.
 
 ```{r}
 kbl(dt) %>%
-  kable_styling("striped", full_width = F) %>%
+  kable_paper("striped", full_width = F) %>%
   column_spec(5:7, bold = T) %>%
   row_spec(3:5, bold = T, color = "white", background = "#D7261E")
 ```
@@ -228,7 +263,7 @@
 One special case of `row_spec` is that you can specify the format of the header row via `row_spec(row = 0, ...)`. 
 ```{r}
 kbl(dt) %>%
-  kable_styling("striped", full_width = F) %>%
+  kable_paper("striped", full_width = F) %>%
   row_spec(0, angle = -45)
 ```
 
@@ -271,7 +306,7 @@
 #   ) %>%
 #   select(car, mpg, cyl) %>%
 #   kbl(format = "html", escape = F) %>%
-#   kable_styling("striped", full_width = F)
+#   kable_paper("striped", full_width = F)
 ```
 
 ## Visualize data with Viridis Color
@@ -300,7 +335,7 @@
 #     background = spec_color(1:10, end = 0.9, option = "A", direction = -1)
 #   )) %>%
 #   kable(escape = F, align = "c") %>%
-#   kable_styling(c("striped", "condensed"), full_width = F)
+#   kable_paper(c("striped", "condensed"), full_width = F)
 ```
 
 ## Text Specification
@@ -363,11 +398,11 @@
     position = popover_dt$position
   ))
 kbl(popover_dt, escape = FALSE) %>%
-  kable_styling("striped", full_width = FALSE)
+  kable_paper("striped", full_width = FALSE)
 ```
 
 ## Links
-You can add links to text via `text_spec("Google", link = "https://google.com")`: `r text_spec("Google", link = "https://google.com")`. If you want your hover message to be more obvious, it might be a good idea to put a `#` (go back to the top of the page) or `javascript:void(0)` (literally do nothing) in the `link` option.
+You can add links to text via `text_spec("kableExtra", link = "https://haozhu233.github.io/kableExtra/")`: `r text_spec("kableExtra", link = "https://haozhu233.github.io/kableExtra/")`. If you want your hover message to be more obvious, it might be a good idea to put a `#` (go back to the top of the page) or `javascript:void(0)` (literally do nothing) in the `link` option.
 `text_spec("Hover on me", link = "javascript:void(0)", popover = "Hello")`:
 `r text_spec("Hover on me", link = "javascript:void(0)", popover = "Hello")`
 
@@ -390,7 +425,7 @@
 ft_dt <- ft_dt[c("car", "mpg", "cyl", "disp", "hp")]
 
 kbl(ft_dt, escape = F) %>%
-  kable_styling("hover", full_width = F) %>%
+  kable_paper("hover", full_width = F) %>%
   column_spec(5, width = "3cm") %>%
   add_header_above(c(" ", "Hello" = 2, "World" = 2))
 ```
@@ -417,7 +452,7 @@
 Sometimes we want a few rows of the table being grouped together. They might be items under the same topic (e.g., animals in one species) or just different data groups for a categorical variable (e.g., age < 40, age > 40). With the function `group_rows()`/`pack_rows()` in `kableExtra`, this kind of task can be completed in one line. Please see the example below. Note that when you count for the start/end rows of the group, you don't need to count for the header rows nor other group label rows. You only need to think about the row numbers in the "original R dataframe".
 ```{r}
 kbl(mtcars[1:10, 1:6], caption = "Group Rows") %>%
-  kable_styling("striped", full_width = F) %>%
+  kable_paper("striped", full_width = F) %>%
   pack_rows("Group 1", 4, 7) %>%
   pack_rows("Group 2", 8, 10)
 ```
@@ -426,14 +461,14 @@
 ```{r, eval = F}
 # Not evaluated. This example generates the same table as above.
 kbl(mtcars[1:10, 1:6], caption = "Group Rows") %>%
-  kable_styling("striped", full_width = F) %>%
+  kable_paper("striped", full_width = F) %>%
   pack_rows(index = c(" " = 3, "Group 1" = 4, "Group 2" = 3))
 ```
 
 For advanced users, you can even define your own css for the group labeling.
 ```{r}
 kbl(dt) %>%
-  kable_styling("striped", full_width = F) %>%
+  kable_paper("striped", full_width = F) %>%
   pack_rows("Group 1", 3, 5, label_row_css = "background-color: #666; color: #fff;")
 ```
 
@@ -460,7 +495,7 @@
 For advanced users, you can even define your own css for the group labeling.
 ```{r}
 kbl(dt) %>%
-  kable_styling("striped", full_width = F) %>%
+  kable_paper("striped", full_width = F) %>%
   add_indent(c(1, 3, 5))
 ```
 
@@ -473,7 +508,7 @@
                  C3 = 1:15,
                  C4 = sample(c(0,1), 15, replace = TRUE))
 kbl(collapse_rows_dt, align = "c") %>%
-  kable_styling(full_width = F) %>%
+  kable_paper(full_width = F) %>%
   column_spec(1, bold = T) %>%
   collapse_rows(columns = 1:2, valign = "top")
 ```
@@ -499,7 +534,7 @@
 
 ```{r}
 kbl(dt, align = "c") %>%
-  kable_styling(full_width = F) %>%
+  kable_paper(full_width = F) %>%
   footnote(general = "Here is a general comments of the table. ",
            number = c("Footnote 1; ", "Footnote 2; "),
            alphabet = c("Footnote A; ", "Footnote B; "),
@@ -521,7 +556,7 @@
 kbl(dt_footnote, align = "c", 
       # Remember this escape = F
       escape = F) %>%
-  kable_styling(full_width = F) %>%
+  kable_paper(full_width = F) %>%
   footnote(alphabet = "Footnote A; ",
            symbol = "Footnote Symbol 1; ",
            alphabet_title = "Type II: ", symbol_title = "Type III: ",
@@ -536,7 +571,7 @@
 
 ```{r}
 kbl(cbind(mtcars, mtcars)) %>%
-  kable_styling() %>%
+  kable_paper() %>%
   scroll_box(width = "500px", height = "200px")
 ```
 
@@ -547,7 +582,7 @@
 ```{r}
 kbl(cbind(mtcars, mtcars)) %>%
   add_header_above(c("a" = 5, "b" = 18)) %>%
-  kable_styling() %>%
+  kable_paper() %>%
   scroll_box(width = "100%", height = "200px")
 ```
 
@@ -557,7 +592,7 @@
 If you need to save those HTML tables but you don't want to generate them through rmarkdown, you can try to use the `save_kable()` function. You can choose whether to let those HTML files be self contained (default is yes). Self contained files packed CSS into the HTML file so they are quite large when there are many. 
 ```{r, eval=FALSE}
 kbl(mtcars) %>%
-  kable_styling() %>%
+  kable_paper() %>%
   save_kable(file = "table1.html", self_contained = T)
 ```
 
diff --git a/docs/awesome_table_in_html.html b/docs/awesome_table_in_html.html
index e091362..615b2a9 100644
--- a/docs/awesome_table_in_html.html
+++ b/docs/awesome_table_in_html.html
@@ -11,7 +11,7 @@
 
 <meta name="author" content="Hao Zhu" />
 
-<meta name="date" content="2020-08-20" />
+<meta name="date" content="2020-08-26" />
 
 <title>Create Awesome HTML Table with knitr::kable and kableExtra</title>
 
@@ -1731,7 +1731,7 @@
 
 <h1 class="title toc-ignore">Create Awesome HTML Table with knitr::kable and kableExtra</h1>
 <h4 class="author">Hao Zhu</h4>
-<h4 class="date">2020-08-20</h4>
+<h4 class="date">2020-08-26</h4>
 
 </div>
 
@@ -1743,7 +1743,7 @@
 </script>
 <p><img src="" align="right" alt="logo" width="80" height="93" style="border: none; float: right;"></p>
 <blockquote>
-<p>Please see the package <a href="http://haozhu233.github.io/kableExtra/">documentation site</a> for how to use this package in LaTeX.</p>
+<p>Please see the package <a href="https://haozhu233.github.io/kableExtra/">documentation site</a> for how to use this package in LaTeX.</p>
 </blockquote>
 <div id="overview" class="section level1">
 <h1>Overview</h1>
@@ -1763,8 +1763,7 @@
 <div id="getting-started" class="section level1">
 <h1>Getting Started</h1>
 <p>Here we are using the first few columns and rows from dataset <code>mtcars</code></p>
-<pre class="r"><code>library(knitr)
-library(kableExtra)
+<pre class="r"><code>library(kableExtra)
 dt &lt;- mtcars[1:5, 1:6]</code></pre>
 <blockquote>
 <p><strong>Key Update:</strong> In the latest version of this package (1.2+), we provide a wrapper funciton <code>kbl</code> to the original <code>kable</code> function with detailed documentation of all the hidden html/latex options. It also does auto-formatting check in every function call instead of relying on the global environement variable. As a result, it also solves an issue for multi-format R Markdown documents. I encourage you start to use the new <code>kbl</code> function for all its convenience but the support for the original <code>kable</code> function is still there. In this doc, we will use <code>kbl</code> instead of <code>kable</code>.</p>
@@ -2518,7 +2517,7 @@
 <pre class="r"><code>dt %&gt;%
   kbl() %&gt;%
   kable_minimal()</code></pre>
-<table class=" lightable-minimal" style="font-family: &quot;Trebuchet MS&quot;, verdana, calibri, sans-serif; margin-left: auto; margin-right: auto;">
+<table class=" lightable-minimal" style="font-family: &quot;Trebuchet MS&quot;, verdana, sans-serif; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
 <th style="text-align:left;">
@@ -2960,7 +2959,7 @@
 <p><code>kable_styling</code> offers a few other ways to customize the look of a HTML table.</p>
 <div id="bootstrap-table-classes" class="section level2">
 <h2>Bootstrap table classes</h2>
-<p>If you are familiar with twitter bootstrap, you probably have already known its predefined classes, including <code>striped</code>, <code>bordered</code>, <code>hover</code>, <code>condensed</code> and <code>responsive</code>. If you are not familiar, no worries, you can take a look at their <a href="http://getbootstrap.com/css/#tables">documentation site</a> to get a sense of how they look like. All of these options are available here.</p>
+<p>If you are familiar with twitter bootstrap, you probably have already known its predefined classes, including <code>striped</code>, <code>bordered</code>, <code>hover</code>, <code>condensed</code> and <code>responsive</code>. If you are not familiar, no worries, you can take a look at their <a href="https://getbootstrap.com/css/">documentation site</a> to get a sense of how they look like. All of these options are available here.</p>
 <p>For example, to add striped lines (alternative row colors) to your table and you want to highlight the hovered row, you can simply type:</p>
 <pre class="r"><code>kbl(dt) %&gt;%
   kable_styling(bootstrap_options = c(&quot;striped&quot;, &quot;hover&quot;))</code></pre>
@@ -4242,10 +4241,10 @@
 )
 
 kbl(text_tbl) %&gt;%
-  kable_styling(full_width = F) %&gt;%
+  kable_paper(full_width = F) %&gt;%
   column_spec(1, bold = T, border_right = T) %&gt;%
   column_spec(2, width = &quot;30em&quot;, background = &quot;yellow&quot;)</code></pre>
-<table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;">
+<table class=" lightable-paper" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
 <th style="text-align:left;">
@@ -4562,14 +4561,178 @@
 </table>
 <p>You can still use the <code>spec_***</code> helper functions to help you define color. See the documentation <a href="#visualize-data-with-viridis-color">below</a>.</p>
 </div>
+<div id="insert-images-into-columns" class="section level2">
+<h2>Insert Images into Columns</h2>
+<p>Technically, we are still talking about <code>column_spec</code> here. However, since this topic itself contains its own subtopics, we split it out as a separate section. Since <code>kableExtra</code> 1.2, we introduced the feature of adding images to columns of tables. Here is a quick example.</p>
+<pre class="r"><code>tbl_img &lt;- data.frame(
+  name = c(&quot;kableExtra 1&quot;, &quot;kableExtra 2&quot;),
+  logo = &quot;&quot;
+)
+tbl_img %&gt;%
+  kbl(booktabs = T) %&gt;%
+  kable_paper(full_width = F) %&gt;%
+  column_spec(2, image = &quot;kableExtra_sm.png&quot;)</code></pre>
+<table class=" lightable-paper" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
+<thead>
+<tr>
+<th style="text-align:left;">
+name
+</th>
+<th style="text-align:left;">
+logo
+</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td style="text-align:left;">
+kableExtra 1
+</td>
+<td style="text-align:left;">
+<html>
+<body>
+<img src="">
+</body>
+</html>
+</td>
+</tr>
+<tr>
+<td style="text-align:left;">
+kableExtra 2
+</td>
+<td style="text-align:left;">
+<html>
+<body>
+<img src="">
+</body>
+</html>
+</td>
+</tr>
+</tbody>
+</table>
+<p>If you need to specify the size of the images, you need to do it through <code>spec_image</code>.</p>
+<pre class="r"><code>tbl_img %&gt;%
+  kbl(booktabs = T) %&gt;%
+  kable_paper(full_width = F) %&gt;%
+  column_spec(2, image = spec_image(
+    c(&quot;kableExtra_sm.png&quot;, &quot;kableExtra_sm.png&quot;), 50, 50))</code></pre>
+<table class=" lightable-paper" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
+<thead>
+<tr>
+<th style="text-align:left;">
+name
+</th>
+<th style="text-align:left;">
+logo
+</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td style="text-align:left;">
+kableExtra 1
+</td>
+<td style="text-align:left;">
+<html>
+<body>
+<img src="" width="16" height="16">
+</body>
+</html>
+</td>
+</tr>
+<tr>
+<td style="text-align:left;">
+kableExtra 2
+</td>
+<td style="text-align:left;">
+<html>
+<body>
+<img src="" width="16" height="16">
+</body>
+</html>
+</td>
+</tr>
+</tbody>
+</table>
+<p><code>kableExtra</code> also provides a few inline plotting tools. Right now, there are <code>spec_hist</code> and <code>spec_boxplot</code>. One key feature is that by default, the limits of every subplots are fixed so you can compare across rows. Note that in html, you can also use package <code>sparkline</code> to create some jquery based interactive sparklines. Check out the end of this guide for details.</p>
+<pre class="r"><code>mpg_list &lt;- split(mtcars$mpg, mtcars$cyl)
+inline_plot &lt;- data.frame(cyl = c(4, 6, 8), mpg_box = &quot;&quot;, mpg_hist = &quot;&quot;)
+inline_plot %&gt;% 
+  kbl(booktabs = T) %&gt;%
+  kable_paper(full_width = F) %&gt;%
+  column_spec(2, image = spec_boxplot(mpg_list)) %&gt;%
+  column_spec(3, image = spec_hist(mpg_list))</code></pre>
+<table class=" lightable-paper" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
+<thead>
+<tr>
+<th style="text-align:right;">
+cyl
+</th>
+<th style="text-align:left;">
+mpg_box
+</th>
+<th style="text-align:left;">
+mpg_hist
+</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td style="text-align:right;">
+4
+</td>
+<td style="text-align:left;">
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="48pt" height="12pt" viewbox="0 0 48 12" version="1.1">
+<g id="surface1"><path style=" stroke:none;fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;" d="M 25.230469 8.222656 L 25.230469 3.777344 L 39.601562 3.777344 L 39.601562 8.222656 Z M 25.230469 8.222656 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(100%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 31.28125 8.222656 L 31.28125 3.777344 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 22.582031 6 L 25.230469 6 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 46.222656 6 L 39.601562 6 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 22.582031 7.109375 L 22.582031 4.890625 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 46.222656 7.109375 L 46.222656 4.890625 "></path></g>
+</svg>
+</td>
+<td style="text-align:left;">
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="48pt" height="12pt" viewBox="0 0 48 12" version="1.1">
+<g id="surface16"><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 19.933594 11.664062 L 23.714844 11.664062 L 23.714844 3.21875 L 19.933594 3.21875 Z M 19.933594 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 23.714844 11.664062 L 27.496094 11.664062 L 27.496094 3.21875 L 23.714844 3.21875 Z M 23.714844 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 27.5 11.664062 L 31.28125 11.664062 L 31.28125 3.21875 L 27.5 3.21875 Z M 27.5 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 31.28125 11.664062 L 35.0625 11.664062 L 35.0625 7.441406 L 31.28125 7.441406 Z M 31.28125 11.664062 "></path><path style="fill:none;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 35.0625 11.664062 L 38.84375 11.664062 Z M 35.0625 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 38.847656 11.664062 L 42.628906 11.664062 L 42.628906 3.21875 L 38.847656 3.21875 Z M 38.847656 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 42.628906 11.664062 L 46.410156 11.664062 L 46.410156 3.21875 L 42.628906 3.21875 Z M 42.628906 11.664062 "></path></g>
+</svg>
+</td>
+</tr>
+<tr>
+<td style="text-align:right;">
+6
+</td>
+<td style="text-align:left;">
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="48pt" height="12pt" viewbox="0 0 48 12" version="1.1">
+<g id="surface6"><path style=" stroke:none;fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;" d="M 17.378906 8.222656 L 17.378906 3.777344 L 21.824219 3.777344 L 21.824219 8.222656 Z M 17.378906 8.222656 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(100%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 19.367188 8.222656 L 19.367188 3.777344 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 15.773438 6 L 17.378906 6 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 22.582031 6 L 21.824219 6 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 15.773438 7.109375 L 15.773438 4.890625 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 22.582031 7.109375 L 22.582031 4.890625 "></path></g>
+</svg>
+</td>
+<td style="text-align:left;">
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="48pt" height="12pt" viewBox="0 0 48 12" version="1.1">
+<g id="surface21"><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 14.261719 11.664062 L 16.152344 11.664062 L 16.152344 7.441406 L 14.261719 7.441406 Z M 14.261719 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 16.152344 11.664062 L 18.042969 11.664062 L 18.042969 7.441406 L 16.152344 7.441406 Z M 16.152344 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 18.042969 11.664062 L 19.933594 11.664062 L 19.933594 3.21875 L 18.042969 3.21875 Z M 18.042969 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 19.933594 11.664062 L 21.824219 11.664062 L 21.824219 3.21875 L 19.933594 3.21875 Z M 19.933594 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 21.824219 11.664062 L 23.714844 11.664062 L 23.714844 7.441406 L 21.824219 7.441406 Z M 21.824219 11.664062 "></path></g>
+</svg>
+</td>
+</tr>
+<tr>
+<td style="text-align:right;">
+8
+</td>
+<td style="text-align:left;">
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="48pt" height="12pt" viewbox="0 0 48 12" version="1.1">
+<g id="surface11"><path style=" stroke:none;fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;" d="M 9.152344 8.222656 L 9.152344 3.777344 L 13.125 3.777344 L 13.125 8.222656 Z M 9.152344 8.222656 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(100%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 10.855469 8.222656 L 10.855469 3.777344 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.261719 6 L 9.152344 6 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 18.421875 6 L 13.125 6 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.261719 7.109375 L 7.261719 4.890625 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 18.421875 7.109375 L 18.421875 4.890625 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2.316406 6 C 2.316406 6.71875 1.238281 6.71875 1.238281 6 C 1.238281 5.28125 2.316406 5.28125 2.316406 6 "></path><path style="fill:none;stroke-width:0.75;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2.316406 6 C 2.316406 6.71875 1.238281 6.71875 1.238281 6 C 1.238281 5.28125 2.316406 5.28125 2.316406 6 "></path></g>
+</svg>
+</td>
+<td style="text-align:left;">
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="48pt" height="12pt" viewBox="0 0 48 12" version="1.1">
+<g id="surface26"><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1.019531 11.664062 L 4.800781 11.664062 L 4.800781 9.25 L 1.019531 9.25 Z M 1.019531 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 4.804688 11.664062 L 8.585938 11.664062 L 8.585938 10.457031 L 4.804688 10.457031 Z M 4.804688 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 8.585938 11.664062 L 12.367188 11.664062 L 12.367188 3.21875 L 8.585938 3.21875 Z M 8.585938 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 12.367188 11.664062 L 16.148438 11.664062 L 16.148438 9.25 L 12.367188 9.25 Z M 12.367188 11.664062 "></path><path style="fill-rule:nonzero;fill:rgb(82.745098%,82.745098%,82.745098%);fill-opacity:1;stroke-width:0.375;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 16.152344 11.664062 L 19.933594 11.664062 L 19.933594 9.25 L 16.152344 9.25 Z M 16.152344 11.664062 "></path></g>
+</svg>
+</td>
+</tr>
+</tbody>
+</table>
+</div>
 <div id="row-spec" class="section level2">
 <h2>Row spec</h2>
 <p>Similar with <code>column_spec</code>, you can define specifications for rows. Currently, you can either bold or italicize an entire row. Note that, similar with other row-related functions in <code>kableExtra</code>, for the position of the target row, you don’t need to count in header rows or the group labeling rows.</p>
 <pre class="r"><code>kbl(dt) %&gt;%
-  kable_styling(&quot;striped&quot;, full_width = F) %&gt;%
+  kable_paper(&quot;striped&quot;, full_width = F) %&gt;%
   column_spec(5:7, bold = T) %&gt;%
   row_spec(3:5, bold = T, color = &quot;white&quot;, background = &quot;#D7261E&quot;)</code></pre>
-<table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;">
+<table class=" lightable-paper lightable-striped" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
 <th style="text-align:left;">
@@ -4717,9 +4880,9 @@
 <h2>Header Rows</h2>
 <p>One special case of <code>row_spec</code> is that you can specify the format of the header row via <code>row_spec(row = 0, ...)</code>.</p>
 <pre class="r"><code>kbl(dt) %&gt;%
-  kable_styling(&quot;striped&quot;, full_width = F) %&gt;%
+  kable_paper(&quot;striped&quot;, full_width = F) %&gt;%
   row_spec(0, angle = -45)</code></pre>
-<table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;">
+<table class=" lightable-paper lightable-striped" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
 <th style="text-align:left;-webkit-transform: rotate(-45deg); -moz-transform: rotate(-45deg); -ms-transform: rotate(-45deg); -o-transform: rotate(-45deg); transform: rotate(-45deg);">
@@ -5027,7 +5190,7 @@
 #   ) %&gt;%
 #   select(car, mpg, cyl) %&gt;%
 #   kbl(format = &quot;html&quot;, escape = F) %&gt;%
-#   kable_styling(&quot;striped&quot;, full_width = F)</code></pre>
+#   kable_paper(&quot;striped&quot;, full_width = F)</code></pre>
 </div>
 <div id="visualize-data-with-viridis-color" class="section level2">
 <h2>Visualize data with Viridis Color</h2>
@@ -5247,7 +5410,7 @@
 #     background = spec_color(1:10, end = 0.9, option = &quot;A&quot;, direction = -1)
 #   )) %&gt;%
 #   kable(escape = F, align = &quot;c&quot;) %&gt;%
-#   kable_styling(c(&quot;striped&quot;, &quot;condensed&quot;), full_width = F)</code></pre>
+#   kable_paper(c(&quot;striped&quot;, &quot;condensed&quot;), full_width = F)</code></pre>
 </div>
 <div id="text-specification" class="section level2">
 <h2>Text Specification</h2>
@@ -5297,8 +5460,8 @@
     position = popover_dt$position
   ))
 kbl(popover_dt, escape = FALSE) %&gt;%
-  kable_styling(&quot;striped&quot;, full_width = FALSE)</code></pre>
-<table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;">
+  kable_paper(&quot;striped&quot;, full_width = FALSE)</code></pre>
+<table class=" lightable-paper lightable-striped" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
 <th style="text-align:left;">
@@ -5347,7 +5510,7 @@
 </div>
 <div id="links" class="section level2">
 <h2>Links</h2>
-<p>You can add links to text via <code>text_spec(&quot;Google&quot;, link = &quot;https://google.com&quot;)</code>: <a href="https://google.com" style="     ">Google</a>. If you want your hover message to be more obvious, it might be a good idea to put a <code>#</code> (go back to the top of the page) or <code>javascript:void(0)</code> (literally do nothing) in the <code>link</code> option. <code>text_spec(&quot;Hover on me&quot;, link = &quot;javascript:void(0)&quot;, popover = &quot;Hello&quot;)</code>: <a href="javascript:void(0)" style="     " data-toggle="popover" data-container="body" data-trigger="hover" data-placement="right" data-content="Hello">Hover on me</a></p>
+<p>You can add links to text via <code>text_spec(&quot;kableExtra&quot;, link = &quot;https://haozhu233.github.io/kableExtra/&quot;)</code>: <a href="https://haozhu233.github.io/kableExtra/" style="     ">kableExtra</a>. If you want your hover message to be more obvious, it might be a good idea to put a <code>#</code> (go back to the top of the page) or <code>javascript:void(0)</code> (literally do nothing) in the <code>link</code> option. <code>text_spec(&quot;Hover on me&quot;, link = &quot;javascript:void(0)&quot;, popover = &quot;Hello&quot;)</code>: <a href="javascript:void(0)" style="     " data-toggle="popover" data-container="body" data-trigger="hover" data-placement="right" data-content="Hello">Hover on me</a></p>
 </div>
 <div id="integration-with-formattable" class="section level2">
 <h2>Integration with <code>formattable</code></h2>
@@ -5368,21 +5531,21 @@
 ft_dt &lt;- ft_dt[c(&quot;car&quot;, &quot;mpg&quot;, &quot;cyl&quot;, &quot;disp&quot;, &quot;hp&quot;)]
 
 kbl(ft_dt, escape = F) %&gt;%
-  kable_styling(&quot;hover&quot;, full_width = F) %&gt;%
+  kable_paper(&quot;hover&quot;, full_width = F) %&gt;%
   column_spec(5, width = &quot;3cm&quot;) %&gt;%
   add_header_above(c(&quot; &quot;, &quot;Hello&quot; = 2, &quot;World&quot; = 2))</code></pre>
-<table class="table table-hover" style="width: auto !important; margin-left: auto; margin-right: auto;">
+<table class=" lightable-paper lightable-hover" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
-<th style="empty-cells: hide;border-bottom:hidden;" colspan="1">
+<th style="empty-cells: hide;" colspan="1">
 </th>
-<th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2">
-<div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">
+<th style="padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2">
+<div style="TRUE">
 Hello
 </div>
 </th>
-<th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2">
-<div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">
+<th style="padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2">
+<div style="TRUE">
 World
 </div>
 </th>
@@ -5861,10 +6024,10 @@
 <h2>Group rows via labeling</h2>
 <p>Sometimes we want a few rows of the table being grouped together. They might be items under the same topic (e.g., animals in one species) or just different data groups for a categorical variable (e.g., age &lt; 40, age &gt; 40). With the function <code>group_rows()</code>/<code>pack_rows()</code> in <code>kableExtra</code>, this kind of task can be completed in one line. Please see the example below. Note that when you count for the start/end rows of the group, you don’t need to count for the header rows nor other group label rows. You only need to think about the row numbers in the “original R dataframe”.</p>
 <pre class="r"><code>kbl(mtcars[1:10, 1:6], caption = &quot;Group Rows&quot;) %&gt;%
-  kable_styling(&quot;striped&quot;, full_width = F) %&gt;%
+  kable_paper(&quot;striped&quot;, full_width = F) %&gt;%
   pack_rows(&quot;Group 1&quot;, 4, 7) %&gt;%
   pack_rows(&quot;Group 2&quot;, 8, 10)</code></pre>
-<table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;">
+<table class=" lightable-paper lightable-striped" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
 <caption>
 Group Rows
 </caption>
@@ -6138,13 +6301,13 @@
 <p>Another way to use <code>pack_rows</code> is to provide an grouping index, similar with <code>add_header_above()</code>. This feature is only available in kableExtra &gt; 0.5.2.</p>
 <pre class="r"><code># Not evaluated. This example generates the same table as above.
 kbl(mtcars[1:10, 1:6], caption = &quot;Group Rows&quot;) %&gt;%
-  kable_styling(&quot;striped&quot;, full_width = F) %&gt;%
+  kable_paper(&quot;striped&quot;, full_width = F) %&gt;%
   pack_rows(index = c(&quot; &quot; = 3, &quot;Group 1&quot; = 4, &quot;Group 2&quot; = 3))</code></pre>
 <p>For advanced users, you can even define your own css for the group labeling.</p>
 <pre class="r"><code>kbl(dt) %&gt;%
-  kable_styling(&quot;striped&quot;, full_width = F) %&gt;%
+  kable_paper(&quot;striped&quot;, full_width = F) %&gt;%
   pack_rows(&quot;Group 1&quot;, 3, 5, label_row_css = &quot;background-color: #666; color: #fff;&quot;)</code></pre>
-<table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;">
+<table class=" lightable-paper lightable-striped" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
 <th style="text-align:left;">
@@ -6309,9 +6472,9 @@
 <h2>Row indentation</h2>
 <p>Unlike <code>pack_rows()</code>, which will insert a labeling row, sometimes we want to list a few sub groups under a total one. In that case, <code>add_indent()</code> is probably more apporiate. For advanced users, you can even define your own css for the group labeling.</p>
 <pre class="r"><code>kbl(dt) %&gt;%
-  kable_styling(&quot;striped&quot;, full_width = F) %&gt;%
+  kable_paper(&quot;striped&quot;, full_width = F) %&gt;%
   add_indent(c(1, 3, 5))</code></pre>
-<table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;">
+<table class=" lightable-paper lightable-striped" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
 <th style="text-align:left;">
@@ -6463,10 +6626,10 @@
                  C3 = 1:15,
                  C4 = sample(c(0,1), 15, replace = TRUE))
 kbl(collapse_rows_dt, align = &quot;c&quot;) %&gt;%
-  kable_styling(full_width = F) %&gt;%
+  kable_paper(full_width = F) %&gt;%
   column_spec(1, bold = T) %&gt;%
   collapse_rows(columns = 1:2, valign = &quot;top&quot;)</code></pre>
-<table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;">
+<table class=" lightable-paper" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
 <th style="text-align:center;">
@@ -6495,7 +6658,7 @@
 1
 </td>
 <td style="text-align:center;">
-0
+1
 </td>
 </tr>
 <tr>
@@ -6511,7 +6674,7 @@
 3
 </td>
 <td style="text-align:center;">
-0
+1
 </td>
 </tr>
 <tr>
@@ -6554,7 +6717,7 @@
 8
 </td>
 <td style="text-align:center;">
-0
+1
 </td>
 </tr>
 <tr>
@@ -6562,7 +6725,7 @@
 9
 </td>
 <td style="text-align:center;">
-1
+0
 </td>
 </tr>
 <tr>
@@ -6570,7 +6733,7 @@
 10
 </td>
 <td style="text-align:center;">
-1
+0
 </td>
 </tr>
 <tr>
@@ -6584,7 +6747,7 @@
 11
 </td>
 <td style="text-align:center;">
-1
+0
 </td>
 </tr>
 <tr>
@@ -6592,7 +6755,7 @@
 12
 </td>
 <td style="text-align:center;">
-0
+1
 </td>
 </tr>
 <tr>
@@ -6611,7 +6774,7 @@
 14
 </td>
 <td style="text-align:center;">
-0
+1
 </td>
 </tr>
 <tr>
@@ -6827,7 +6990,7 @@
 </table>
 <p>You can also specify title for each category by using the <code>***_title</code> arguments. Default value for <code>general_title</code> is “Note:” and &quot;&quot; for the rest three. You can also change the order using <code>footnote_order</code>. You can even display footnote as chunk texts (default is as a list) using <code>footnote_as_chunk</code>. The font format of the titles are controlled by <code>title_format</code> with options including “italic” (default), “bold” and “underline”.</p>
 <pre class="r"><code>kbl(dt, align = &quot;c&quot;) %&gt;%
-  kable_styling(full_width = F) %&gt;%
+  kable_paper(full_width = F) %&gt;%
   footnote(general = &quot;Here is a general comments of the table. &quot;,
            number = c(&quot;Footnote 1; &quot;, &quot;Footnote 2; &quot;),
            alphabet = c(&quot;Footnote A; &quot;, &quot;Footnote B; &quot;),
@@ -6836,7 +6999,7 @@
            alphabet_title = &quot;Type II: &quot;, symbol_title = &quot;Type III: &quot;,
            footnote_as_chunk = T, title_format = c(&quot;italic&quot;, &quot;underline&quot;)
            )</code></pre>
-<table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;">
+<table class=" lightable-paper" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
 <th style="text-align:left;">
@@ -7010,12 +7173,12 @@
 kbl(dt_footnote, align = &quot;c&quot;, 
       # Remember this escape = F
       escape = F) %&gt;%
-  kable_styling(full_width = F) %&gt;%
+  kable_paper(full_width = F) %&gt;%
   footnote(alphabet = &quot;Footnote A; &quot;,
            symbol = &quot;Footnote Symbol 1; &quot;,
            alphabet_title = &quot;Type II: &quot;, symbol_title = &quot;Type III: &quot;,
            footnote_as_chunk = T)</code></pre>
-<table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;">
+<table class=" lightable-paper" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
 <th style="text-align:left;">
@@ -7178,10 +7341,10 @@
 <p>If you have a huge table and you don’t want to reduce the font size to unreadable, you may want to put your HTML table in a scroll box, of which users can pick the part they like to read. Note that scroll box isn’t printer friendly, so be aware of that when you use this feature.</p>
 <p>When you use <code>scroll_box</code>, you can specify either <code>height</code> or <code>width</code>. When you specify <code>height</code>, you will get a vertically scrollable box and vice versa. If you specify both, you will get a two-way scrollable box.</p>
 <pre class="r"><code>kbl(cbind(mtcars, mtcars)) %&gt;%
-  kable_styling() %&gt;%
+  kable_paper() %&gt;%
   scroll_box(width = &quot;500px&quot;, height = &quot;200px&quot;)</code></pre>
 <div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:200px; overflow-x: scroll; width:500px; ">
-<table class="table" style="margin-left: auto; margin-right: auto;">
+<table class=" lightable-paper" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
 <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
@@ -9534,10 +9697,10 @@
 <p>You can also specify width using a percentage.</p>
 <pre class="r"><code>kbl(cbind(mtcars, mtcars)) %&gt;%
   add_header_above(c(&quot;a&quot; = 5, &quot;b&quot; = 18)) %&gt;%
-  kable_styling() %&gt;%
+  kable_paper() %&gt;%
   scroll_box(width = &quot;100%&quot;, height = &quot;200px&quot;)</code></pre>
 <div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:200px; overflow-x: scroll; width:100%; ">
-<table class="table" style="margin-left: auto; margin-right: auto;">
+<table class=" lightable-paper" style="font-family: &quot;Arial Narrow&quot;, arial, helvetica, sans-serif; margin-left: auto; margin-right: auto;">
 <thead>
 <tr>
 <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; position: sticky; top:0; background-color: #FFFFFF;" colspan="5">
@@ -11904,7 +12067,7 @@
 <h2>Save HTML table directly</h2>
 <p>If you need to save those HTML tables but you don’t want to generate them through rmarkdown, you can try to use the <code>save_kable()</code> function. You can choose whether to let those HTML files be self contained (default is yes). Self contained files packed CSS into the HTML file so they are quite large when there are many.</p>
 <pre class="r"><code>kbl(mtcars) %&gt;%
-  kable_styling() %&gt;%
+  kable_paper() %&gt;%
   save_kable(file = &quot;table1.html&quot;, self_contained = T)</code></pre>
 </div>
 <div id="use-it-with-sparkline" class="section level2">
diff --git a/docs/awesome_table_in_pdf.Rmd b/docs/awesome_table_in_pdf.Rmd
index 4a2a67f..4046d9e 100644
--- a/docs/awesome_table_in_pdf.Rmd
+++ b/docs/awesome_table_in_pdf.Rmd
@@ -20,6 +20,7 @@
   - \usepackage{threeparttablex}
   - \usepackage[normalem]{ulem}
   - \usepackage{makecell}
+  - \usepackage{xcolor}
 vignette: >
   %\VignetteIndexEntry{Create Awesome PDF Table with knitr::kable and kableExtra}
   %\VignetteEngine{knitr::rmarkdown}
@@ -238,6 +239,41 @@
 
 You can still use the `spec_***` helper functions to help you define color. See the documentation [below](#visualize-data-with-viridis-color). 
 
+## Insert Images into Columns
+Technically, we are still talking about `column_spec` here. However, since this topic itself contains its own subtopics, we split it out as a separate section. Since `kableExtra` 1.2, we introduced the feature of adding images to columns of tables. Here is a quick example. 
+
+```{r}
+tbl_img <- data.frame(
+  name = c("kableExtra 1", "kableExtra 2"),
+  logo = ""
+)
+tbl_img %>%
+  kbl(booktabs = T) %>%
+  kable_paper(full_width = F) %>%
+  column_spec(2, image = "kableExtra_sm.png")
+```
+
+If you need to specify the size of the images, you need to do it through `spec_image`. 
+
+```{r}
+tbl_img %>%
+  kbl(booktabs = T) %>%
+  kable_paper(full_width = F) %>%
+  column_spec(2, image = spec_image(
+    c("kableExtra_sm.png", "kableExtra_sm.png"), 50, 50))
+```
+
+`kableExtra` also provides a few inline plotting tools. Right now, there are `spec_hist` and `spec_boxplot`. One key feature is that by default, the limits of every subplots are fixed so you can compare across rows. 
+
+```{r}
+mpg_list <- split(mtcars$mpg, mtcars$cyl)
+inline_plot <- data.frame(cyl = c(4, 6, 8), mpg_box = "", mpg_hist = "")
+inline_plot %>% 
+  kbl(booktabs = T) %>%
+  kable_paper(full_width = F) %>%
+  column_spec(2, image = spec_boxplot(mpg_list)) %>%
+  column_spec(3, image = spec_hist(mpg_list))
+```
 
 ## Row spec
 Similar with `column_spec`, you can define specifications for rows. Currently, you can either bold or italicize an entire row. Note that, similar to other row-related functions in `kableExtra`, for the position of the target row, you don't need to count in header rows or the group labeling rows.
diff --git a/docs/awesome_table_in_pdf.pdf b/docs/awesome_table_in_pdf.pdf
index 1b60d92..a841c2a 100644
--- a/docs/awesome_table_in_pdf.pdf
+++ b/docs/awesome_table_in_pdf.pdf
Binary files differ
diff --git a/docs/awesome_table_in_pdf.toc b/docs/awesome_table_in_pdf.toc
index c3af8ce..682098c 100644
--- a/docs/awesome_table_in_pdf.toc
+++ b/docs/awesome_table_in_pdf.toc
@@ -1,37 +1,38 @@
-\contentsline {section}{Overview}{2}{section*.2}%
-\contentsline {section}{Installation}{2}{section*.3}%
-\contentsline {section}{Getting Started}{2}{section*.4}%
-\contentsline {subsection}{LaTeX packages used in this package}{3}{section*.5}%
-\contentsline {subsection}{Plain LaTeX}{3}{section*.6}%
-\contentsline {subsection}{LaTeX table with booktabs}{4}{section*.7}%
-\contentsline {section}{Table Styles}{4}{section*.8}%
-\contentsline {subsection}{LaTeX options}{4}{section*.9}%
-\contentsline {subsubsection}{Striped}{4}{section*.10}%
-\contentsline {subsubsection}{Hold position}{5}{section*.11}%
-\contentsline {subsubsection}{Scale down}{5}{section*.12}%
-\contentsline {subsubsection}{Repeat header in longtable}{6}{section*.13}%
-\contentsline {subsection}{Full width?}{8}{section*.14}%
-\contentsline {subsection}{Position}{8}{section*.15}%
-\contentsline {subsection}{Font Size}{9}{section*.16}%
-\contentsline {section}{Column / Row Specification}{9}{section*.17}%
-\contentsline {subsection}{Column spec}{9}{section*.18}%
-\contentsline {subsection}{Row spec}{10}{section*.19}%
-\contentsline {subsection}{Header Rows}{11}{section*.20}%
-\contentsline {section}{Cell/Text Specification}{11}{section*.21}%
-\contentsline {subsection}{Conditional logic}{11}{section*.22}%
-\contentsline {subsection}{Visualize data with Viridis Color}{12}{section*.23}%
-\contentsline {subsection}{Text Specification}{13}{section*.24}%
-\contentsline {section}{Grouped Columns / Rows}{14}{section*.25}%
-\contentsline {subsection}{Add header rows to group columns}{14}{section*.26}%
-\contentsline {subsection}{Group rows via labeling}{14}{section*.27}%
-\contentsline {subsection}{Row indentation}{16}{section*.28}%
-\contentsline {subsection}{Group rows via multi-row cell}{16}{section*.29}%
-\contentsline {section}{Table Footnote}{20}{section*.30}%
-\contentsline {section}{LaTeX Only Features}{23}{section*.31}%
-\contentsline {subsection}{Linebreak processor}{23}{section*.32}%
-\contentsline {subsection}{Table on a Landscape Page}{23}{section*.33}%
-\contentsline {subsection}{Decimal Alignment}{25}{section*.34}%
-\contentsline {subsection}{Use LaTeX table in HTML or Word}{25}{section*.35}%
-\contentsline {section}{From other packages}{25}{section*.36}%
-\contentsline {subsection}{\texttt {tables}}{25}{section*.37}%
-\contentsline {subsection}{\texttt {xtable}}{26}{section*.38}%
+\contentsline {section}{Overview}{3}{section*.2}%
+\contentsline {section}{Installation}{3}{section*.3}%
+\contentsline {section}{Getting Started}{3}{section*.4}%
+\contentsline {subsection}{LaTeX packages used in this package}{4}{section*.5}%
+\contentsline {subsection}{Plain LaTeX}{4}{section*.6}%
+\contentsline {subsection}{LaTeX table with booktabs}{5}{section*.7}%
+\contentsline {section}{Table Styles}{5}{section*.8}%
+\contentsline {subsection}{LaTeX options}{5}{section*.9}%
+\contentsline {subsubsection}{Striped}{5}{section*.10}%
+\contentsline {subsubsection}{Hold position}{6}{section*.11}%
+\contentsline {subsubsection}{Scale down}{6}{section*.12}%
+\contentsline {subsubsection}{Repeat header in longtable}{7}{section*.13}%
+\contentsline {subsection}{Full width?}{9}{section*.14}%
+\contentsline {subsection}{Position}{9}{section*.15}%
+\contentsline {subsection}{Font Size}{10}{section*.16}%
+\contentsline {section}{Column / Row Specification}{10}{section*.17}%
+\contentsline {subsection}{Column spec}{10}{section*.18}%
+\contentsline {subsection}{Insert Images into Columns}{11}{section*.19}%
+\contentsline {subsection}{Row spec}{13}{section*.20}%
+\contentsline {subsection}{Header Rows}{13}{section*.21}%
+\contentsline {section}{Cell/Text Specification}{13}{section*.22}%
+\contentsline {subsection}{Conditional logic}{14}{section*.23}%
+\contentsline {subsection}{Visualize data with Viridis Color}{14}{section*.24}%
+\contentsline {subsection}{Text Specification}{15}{section*.25}%
+\contentsline {section}{Grouped Columns / Rows}{16}{section*.26}%
+\contentsline {subsection}{Add header rows to group columns}{16}{section*.27}%
+\contentsline {subsection}{Group rows via labeling}{17}{section*.28}%
+\contentsline {subsection}{Row indentation}{18}{section*.29}%
+\contentsline {subsection}{Group rows via multi-row cell}{18}{section*.30}%
+\contentsline {section}{Table Footnote}{22}{section*.31}%
+\contentsline {section}{LaTeX Only Features}{25}{section*.32}%
+\contentsline {subsection}{Linebreak processor}{25}{section*.33}%
+\contentsline {subsection}{Table on a Landscape Page}{25}{section*.34}%
+\contentsline {subsection}{Decimal Alignment}{27}{section*.35}%
+\contentsline {subsection}{Use LaTeX table in HTML or Word}{27}{section*.36}%
+\contentsline {section}{From other packages}{27}{section*.37}%
+\contentsline {subsection}{\texttt {tables}}{27}{section*.38}%
+\contentsline {subsection}{\texttt {xtable}}{28}{section*.39}%
diff --git a/docs/experimental/mini_plots.R b/docs/experimental/mini_plots.R
deleted file mode 100644
index 400746d..0000000
--- a/docs/experimental/mini_plots.R
+++ /dev/null
@@ -1,19 +0,0 @@
-mini_hist <- function(x, width = 60, height = 20,
-                      dir = "kableExtra", file = NULL,
-                      xaxt = 'n', yaxt = 'n', ann = FALSE, col = "gray",
-                      ...) {
-  if (!dir.exists(dir)) {
-    dir.create(dir)
-  }
-
-  if (is.null(file)) {
-    file <- tempfile("hist", dir, ".png")
-  }
-
-  grDevices::png(filename = file, width = width, height = height,
-                 bg = 'transparent')
-  graphics::par(mar = c(0, 0, 0, 0))
-  graphics::hist(x, xaxt = xaxt, yaxt = yaxt, ann = ann, col = col, ...)
-  grDevices::dev.off()
-  return(file)
-}
diff --git a/inst/NEWS.md b/inst/NEWS.md
index b3d9fb2..c786df1 100644
--- a/inst/NEWS.md
+++ b/inst/NEWS.md
@@ -10,7 +10,9 @@
 * Added a few alternative HTML table themes. See https://haozhu233.github.io/kableExtra/awesome_table_in_html.html#Alternative_themes. (#451)
 
 * `column_spec` now takes vectorized input so it's easier to do conditional 
-formatting without using `cell_spec`
+formatting without using `cell_spec`.
+
+* Added tools to include images and inline plots in `column_spec`. 
 
 # Minor Change
 
diff --git a/man/column_spec.Rd b/man/column_spec.Rd
index aeff8ec..8d19fc7 100644
--- a/man/column_spec.Rd
+++ b/man/column_spec.Rd
@@ -26,7 +26,8 @@
   link = NULL,
   new_tab = TRUE,
   tooltip = NULL,
-  popover = NULL
+  popover = NULL,
+  image = NULL
 )
 }
 \arguments{
@@ -99,6 +100,8 @@
 to build a popover is through \code{spec_popover()}. If you only provide a text
 string, it will be used as content. Note that You have to enable this
 bootstrap module manually. Read the package vignette to see how.}
+
+\item{image}{Vector of image paths.}
 }
 \description{
 This function allows users to select a column and then specify
diff --git a/man/kable_classic.Rd b/man/kable_classic.Rd
index 7192342..1883eb9 100644
--- a/man/kable_classic.Rd
+++ b/man/kable_classic.Rd
@@ -26,7 +26,7 @@
 kable_minimal(
   kable_input,
   lightable_options = "basic",
-  html_font = "\\"Trebuchet MS\\", verdana, calibri, sans-serif",
+  html_font = "\\"Trebuchet MS\\", verdana, sans-serif",
   ...
 )
 
diff --git a/man/spec_hist.Rd b/man/spec_hist.Rd
new file mode 100644
index 0000000..9deb046
--- /dev/null
+++ b/man/spec_hist.Rd
@@ -0,0 +1,119 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/mini_plots.R
+\name{spec_hist}
+\alias{spec_hist}
+\alias{spec_boxplot}
+\title{Helper functions to generate inline sparklines}
+\usage{
+spec_hist(
+  x,
+  width = 200,
+  height = 50,
+  res = 300,
+  breaks = "Sturges",
+  same_lim = TRUE,
+  lim = NULL,
+  xaxt = "n",
+  yaxt = "n",
+  ann = FALSE,
+  col = "lightgray",
+  border = NULL,
+  dir = if (is_latex()) rmd_files_dir() else tempdir(),
+  file = NULL,
+  file_type = if (is_latex()) "png" else "svg",
+  ...
+)
+
+spec_boxplot(
+  x,
+  width = 200,
+  height = 50,
+  res = 300,
+  add_label = FALSE,
+  label_digits = 2,
+  same_lim = TRUE,
+  lim = NULL,
+  xaxt = "n",
+  yaxt = "n",
+  ann = FALSE,
+  col = "lightgray",
+  border = NULL,
+  boxlty = 0,
+  medcol = "red",
+  medlwd = 1,
+  dir = if (is_latex()) rmd_files_dir() else tempdir(),
+  file = NULL,
+  file_type = if (is_latex()) "png" else "svg",
+  ...
+)
+}
+\arguments{
+\item{x}{Vector of values or List of vectors of values.}
+
+\item{width}{The width of the plot in pixel}
+
+\item{height}{The height of the plot in pixel}
+
+\item{res}{The resolution of the plot. Default is 300.}
+
+\item{breaks}{one of:
+    \itemize{
+      \item a vector giving the breakpoints between histogram cells,
+      \item a function to compute the vector of breakpoints,
+      \item a single number giving the number of cells for the histogram,
+      \item a character string naming an algorithm to compute the
+      number of cells (see \sQuote{Details}),
+      \item a function to compute the number of cells.
+    }
+    In the last three cases the number is a suggestion only; as the
+    breakpoints will be set to \code{\link{pretty}} values, the number
+    is limited to \code{1e6} (with a warning if it was larger).  If
+    \code{breaks} is a function, the \code{x} vector is supplied to it
+    as the only argument (and the number of breaks is only limited by
+    the amount of available memory).
+  }
+
+\item{same_lim}{T/F. If x is a list of vectors, should all the plots be
+plotted in the same range? Default is True.}
+
+\item{lim}{Manually specify plotting range in the form of \code{c(0, 10)}.}
+
+\item{xaxt}{On/Off for xaxis text}
+
+\item{yaxt}{On/Off for yaxis text}
+
+\item{ann}{On/Off for annotations (titles and axis titles)}
+
+\item{col}{Color for the fill of the histogram bar/boxplot box.}
+
+\item{border}{Color for the border.}
+
+\item{dir}{Directory of where the images will be saved.}
+
+\item{file}{File name. If not provided, a random name will be used}
+
+\item{file_type}{Graphic device. Support \code{png} or \code{svg}. SVG is recommended
+for HTML output}
+
+\item{...}{further arguments and \link[graphics]{graphical parameters} passed to
+    \code{\link[graphics]{plot.histogram}} and thence to \code{\link[graphics]{title}} and
+    \code{\link[graphics]{axis}} (if \code{plot = TRUE}).}
+
+\item{add_label}{For boxplot. T/F to add labels for min, mean and max.}
+
+\item{label_digits}{If T for add_label, rounding digits for the label.
+Default is 2.}
+
+\item{boxlty}{Boxplot - box boarder type}
+
+\item{medcol}{Boxplot - median line color}
+
+\item{medlwd}{Boxplot - median line width}
+}
+\description{
+These functions helps you quickly generate sets of sparkline
+style plots using base R plotting system. Currently, we support histogram
+and boxplot. You can use them together with \code{column_spec} to
+generate inline plot in tables. By default, this function will save images
+in a folder called "kableExtra" and return the address of the file.
+}
diff --git a/man/spec_image.Rd b/man/spec_image.Rd
new file mode 100644
index 0000000..a4638e5
--- /dev/null
+++ b/man/spec_image.Rd
@@ -0,0 +1,24 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/spec_tools.R
+\name{spec_image}
+\alias{spec_image}
+\title{Setup image path, size, etc}
+\usage{
+spec_image(path, width, height, res = 300, svg_text = NULL)
+}
+\arguments{
+\item{path}{file path(s)}
+
+\item{width}{image width in pixel}
+
+\item{height}{image height in pixel}
+
+\item{res}{image resolution.}
+
+\item{svg_text}{If you have the raw text for SVG. Put them here}
+}
+\description{
+Users can directly provide image file path to column spec.
+However, if you need to specify the size of the image, you will need this
+function.
+}
diff --git a/vignettes/awesome_table_in_html.Rmd b/vignettes/awesome_table_in_html.Rmd
index 71a3331..bf9ea7d 100644
--- a/vignettes/awesome_table_in_html.Rmd
+++ b/vignettes/awesome_table_in_html.Rmd
@@ -22,7 +22,7 @@
 
 <img src="kableExtra_sm.png" align="right" alt="logo" width="80" height = "93" style = "border: none; float: right;">
 
-> Please see the package [documentation site](http://haozhu233.github.io/kableExtra/) for how to use this package in LaTeX.
+> Please see the package [documentation site](https://haozhu233.github.io/kableExtra/) for how to use this package in LaTeX.
 
 # Overview
 The goal of `kableExtra` is to help you build common complex tables and manipulate table styles. It imports the pipe `%>%` symbol from `magrittr` and verbalize all the functions, so basically you can add "layers" to a kable output in a way that is similar with `ggplot2` and `plotly`. 
@@ -44,7 +44,6 @@
 # Getting Started
 Here we are using the first few columns and rows from dataset `mtcars`
 ```{r}
-library(knitr)
 library(kableExtra)
 dt <- mtcars[1:5, 1:6]
 ```
@@ -119,7 +118,7 @@
 `kable_styling` offers a few other ways to customize the look of a HTML table. 
 
 ## Bootstrap table classes
-If you are familiar with twitter bootstrap, you probably have already known its predefined classes, including `striped`, `bordered`, `hover`, `condensed` and `responsive`. If you are not familiar, no worries, you can take a look at their [documentation site](http://getbootstrap.com/css/#tables) to get a sense of how they look like. All of these options are available here. 
+If you are familiar with twitter bootstrap, you probably have already known its predefined classes, including `striped`, `bordered`, `hover`, `condensed` and `responsive`. If you are not familiar, no worries, you can take a look at their [documentation site](https://getbootstrap.com/css/) to get a sense of how they look like. All of these options are available here. 
 
 For example, to add striped lines (alternative row colors) to your table and you want to highlight the hovered row, you can simply type:
 ```{r}
@@ -192,7 +191,7 @@
 )
 
 kbl(text_tbl) %>%
-  kable_styling(full_width = F) %>%
+  kable_paper(full_width = F) %>%
   column_spec(1, bold = T, border_right = T) %>%
   column_spec(2, width = "30em", background = "yellow")
 ```
@@ -212,12 +211,48 @@
 
 You can still use the `spec_***` helper functions to help you define color. See the documentation [below](#visualize-data-with-viridis-color). 
 
+## Insert Images into Columns
+Technically, we are still talking about `column_spec` here. However, since this topic itself contains its own subtopics, we split it out as a separate section. Since `kableExtra` 1.2, we introduced the feature of adding images to columns of tables. Here is a quick example. 
+
+```{r}
+tbl_img <- data.frame(
+  name = c("kableExtra 1", "kableExtra 2"),
+  logo = ""
+)
+tbl_img %>%
+  kbl(booktabs = T) %>%
+  kable_paper(full_width = F) %>%
+  column_spec(2, image = "kableExtra_sm.png")
+```
+
+If you need to specify the size of the images, you need to do it through `spec_image`. 
+
+```{r}
+tbl_img %>%
+  kbl(booktabs = T) %>%
+  kable_paper(full_width = F) %>%
+  column_spec(2, image = spec_image(
+    c("kableExtra_sm.png", "kableExtra_sm.png"), 50, 50))
+```
+
+`kableExtra` also provides a few inline plotting tools. Right now, there are `spec_hist` and `spec_boxplot`. One key feature is that by default, the limits of every subplots are fixed so you can compare across rows. Note that in html, you can also use package `sparkline` to create some jquery based interactive sparklines. Check out the end of this guide for details. 
+
+```{r}
+mpg_list <- split(mtcars$mpg, mtcars$cyl)
+inline_plot <- data.frame(cyl = c(4, 6, 8), mpg_box = "", mpg_hist = "")
+inline_plot %>% 
+  kbl(booktabs = T) %>%
+  kable_paper(full_width = F) %>%
+  column_spec(2, image = spec_boxplot(mpg_list)) %>%
+  column_spec(3, image = spec_hist(mpg_list))
+```
+
 ## Row spec
 Similar with `column_spec`, you can define specifications for rows. Currently, you can either bold or italicize an entire row. Note that, similar with other row-related functions in `kableExtra`, for the position of the target row, you don't need to count in header rows or the group labeling rows.
 
 ```{r}
 kbl(dt) %>%
-  kable_styling("striped", full_width = F) %>%
+  kable_paper("striped", full_width = F) %>%
   column_spec(5:7, bold = T) %>%
   row_spec(3:5, bold = T, color = "white", background = "#D7261E")
 ```
@@ -228,7 +263,7 @@
 One special case of `row_spec` is that you can specify the format of the header row via `row_spec(row = 0, ...)`. 
 ```{r}
 kbl(dt) %>%
-  kable_styling("striped", full_width = F) %>%
+  kable_paper("striped", full_width = F) %>%
   row_spec(0, angle = -45)
 ```
 
@@ -271,7 +306,7 @@
 #   ) %>%
 #   select(car, mpg, cyl) %>%
 #   kbl(format = "html", escape = F) %>%
-#   kable_styling("striped", full_width = F)
+#   kable_paper("striped", full_width = F)
 ```
 
 ## Visualize data with Viridis Color
@@ -300,7 +335,7 @@
 #     background = spec_color(1:10, end = 0.9, option = "A", direction = -1)
 #   )) %>%
 #   kable(escape = F, align = "c") %>%
-#   kable_styling(c("striped", "condensed"), full_width = F)
+#   kable_paper(c("striped", "condensed"), full_width = F)
 ```
 
 ## Text Specification
@@ -363,11 +398,11 @@
     position = popover_dt$position
   ))
 kbl(popover_dt, escape = FALSE) %>%
-  kable_styling("striped", full_width = FALSE)
+  kable_paper("striped", full_width = FALSE)
 ```
 
 ## Links
-You can add links to text via `text_spec("Google", link = "https://google.com")`: `r text_spec("Google", link = "https://google.com")`. If you want your hover message to be more obvious, it might be a good idea to put a `#` (go back to the top of the page) or `javascript:void(0)` (literally do nothing) in the `link` option.
+You can add links to text via `text_spec("kableExtra", link = "https://haozhu233.github.io/kableExtra/")`: `r text_spec("kableExtra", link = "https://haozhu233.github.io/kableExtra/")`. If you want your hover message to be more obvious, it might be a good idea to put a `#` (go back to the top of the page) or `javascript:void(0)` (literally do nothing) in the `link` option.
 `text_spec("Hover on me", link = "javascript:void(0)", popover = "Hello")`:
 `r text_spec("Hover on me", link = "javascript:void(0)", popover = "Hello")`
 
@@ -390,7 +425,7 @@
 ft_dt <- ft_dt[c("car", "mpg", "cyl", "disp", "hp")]
 
 kbl(ft_dt, escape = F) %>%
-  kable_styling("hover", full_width = F) %>%
+  kable_paper("hover", full_width = F) %>%
   column_spec(5, width = "3cm") %>%
   add_header_above(c(" ", "Hello" = 2, "World" = 2))
 ```
@@ -417,7 +452,7 @@
 Sometimes we want a few rows of the table being grouped together. They might be items under the same topic (e.g., animals in one species) or just different data groups for a categorical variable (e.g., age < 40, age > 40). With the function `group_rows()`/`pack_rows()` in `kableExtra`, this kind of task can be completed in one line. Please see the example below. Note that when you count for the start/end rows of the group, you don't need to count for the header rows nor other group label rows. You only need to think about the row numbers in the "original R dataframe".
 ```{r}
 kbl(mtcars[1:10, 1:6], caption = "Group Rows") %>%
-  kable_styling("striped", full_width = F) %>%
+  kable_paper("striped", full_width = F) %>%
   pack_rows("Group 1", 4, 7) %>%
   pack_rows("Group 2", 8, 10)
 ```
@@ -426,14 +461,14 @@
 ```{r, eval = F}
 # Not evaluated. This example generates the same table as above.
 kbl(mtcars[1:10, 1:6], caption = "Group Rows") %>%
-  kable_styling("striped", full_width = F) %>%
+  kable_paper("striped", full_width = F) %>%
   pack_rows(index = c(" " = 3, "Group 1" = 4, "Group 2" = 3))
 ```
 
 For advanced users, you can even define your own css for the group labeling.
 ```{r}
 kbl(dt) %>%
-  kable_styling("striped", full_width = F) %>%
+  kable_paper("striped", full_width = F) %>%
   pack_rows("Group 1", 3, 5, label_row_css = "background-color: #666; color: #fff;")
 ```
 
@@ -460,7 +495,7 @@
 For advanced users, you can even define your own css for the group labeling.
 ```{r}
 kbl(dt) %>%
-  kable_styling("striped", full_width = F) %>%
+  kable_paper("striped", full_width = F) %>%
   add_indent(c(1, 3, 5))
 ```
 
@@ -473,7 +508,7 @@
                  C3 = 1:15,
                  C4 = sample(c(0,1), 15, replace = TRUE))
 kbl(collapse_rows_dt, align = "c") %>%
-  kable_styling(full_width = F) %>%
+  kable_paper(full_width = F) %>%
   column_spec(1, bold = T) %>%
   collapse_rows(columns = 1:2, valign = "top")
 ```
@@ -499,7 +534,7 @@
 
 ```{r}
 kbl(dt, align = "c") %>%
-  kable_styling(full_width = F) %>%
+  kable_paper(full_width = F) %>%
   footnote(general = "Here is a general comments of the table. ",
            number = c("Footnote 1; ", "Footnote 2; "),
            alphabet = c("Footnote A; ", "Footnote B; "),
@@ -521,7 +556,7 @@
 kbl(dt_footnote, align = "c", 
       # Remember this escape = F
       escape = F) %>%
-  kable_styling(full_width = F) %>%
+  kable_paper(full_width = F) %>%
   footnote(alphabet = "Footnote A; ",
            symbol = "Footnote Symbol 1; ",
            alphabet_title = "Type II: ", symbol_title = "Type III: ",
@@ -536,7 +571,7 @@
 
 ```{r}
 kbl(cbind(mtcars, mtcars)) %>%
-  kable_styling() %>%
+  kable_paper() %>%
   scroll_box(width = "500px", height = "200px")
 ```
 
@@ -547,7 +582,7 @@
 ```{r}
 kbl(cbind(mtcars, mtcars)) %>%
   add_header_above(c("a" = 5, "b" = 18)) %>%
-  kable_styling() %>%
+  kable_paper() %>%
   scroll_box(width = "100%", height = "200px")
 ```
 
@@ -557,7 +592,7 @@
 If you need to save those HTML tables but you don't want to generate them through rmarkdown, you can try to use the `save_kable()` function. You can choose whether to let those HTML files be self contained (default is yes). Self contained files packed CSS into the HTML file so they are quite large when there are many. 
 ```{r, eval=FALSE}
 kbl(mtcars) %>%
-  kable_styling() %>%
+  kable_paper() %>%
   save_kable(file = "table1.html", self_contained = T)
 ```
 
diff --git a/vignettes/awesome_table_in_pdf.Rmd b/vignettes/awesome_table_in_pdf.Rmd
index 4a2a67f..4046d9e 100644
--- a/vignettes/awesome_table_in_pdf.Rmd
+++ b/vignettes/awesome_table_in_pdf.Rmd
@@ -20,6 +20,7 @@
   - \usepackage{threeparttablex}
   - \usepackage[normalem]{ulem}
   - \usepackage{makecell}
+  - \usepackage{xcolor}
 vignette: >
   %\VignetteIndexEntry{Create Awesome PDF Table with knitr::kable and kableExtra}
   %\VignetteEngine{knitr::rmarkdown}
@@ -238,6 +239,41 @@
 
 You can still use the `spec_***` helper functions to help you define color. See the documentation [below](#visualize-data-with-viridis-color). 
 
+## Insert Images into Columns
+Technically, we are still talking about `column_spec` here. However, since this topic itself contains its own subtopics, we split it out as a separate section. Since `kableExtra` 1.2, we introduced the feature of adding images to columns of tables. Here is a quick example. 
+
+```{r}
+tbl_img <- data.frame(
+  name = c("kableExtra 1", "kableExtra 2"),
+  logo = ""
+)
+tbl_img %>%
+  kbl(booktabs = T) %>%
+  kable_paper(full_width = F) %>%
+  column_spec(2, image = "kableExtra_sm.png")
+```
+
+If you need to specify the size of the images, you need to do it through `spec_image`. 
+
+```{r}
+tbl_img %>%
+  kbl(booktabs = T) %>%
+  kable_paper(full_width = F) %>%
+  column_spec(2, image = spec_image(
+    c("kableExtra_sm.png", "kableExtra_sm.png"), 50, 50))
+```
+
+`kableExtra` also provides a few inline plotting tools. Right now, there are `spec_hist` and `spec_boxplot`. One key feature is that by default, the limits of every subplots are fixed so you can compare across rows. 
+
+```{r}
+mpg_list <- split(mtcars$mpg, mtcars$cyl)
+inline_plot <- data.frame(cyl = c(4, 6, 8), mpg_box = "", mpg_hist = "")
+inline_plot %>% 
+  kbl(booktabs = T) %>%
+  kable_paper(full_width = F) %>%
+  column_spec(2, image = spec_boxplot(mpg_list)) %>%
+  column_spec(3, image = spec_hist(mpg_list))
+```
 
 ## Row spec
 Similar with `column_spec`, you can define specifications for rows. Currently, you can either bold or italicize an entire row. Note that, similar to other row-related functions in `kableExtra`, for the position of the target row, you don't need to count in header rows or the group labeling rows.