Update to last reveal.js 4.2.1 (#148)
diff --git a/inst/reveal.js-4.2.1/examples/math.html b/inst/reveal.js-4.2.1/examples/math.html
new file mode 100644
index 0000000..bd2e75a
--- /dev/null
+++ b/inst/reveal.js-4.2.1/examples/math.html
@@ -0,0 +1,206 @@
+<!doctype html>
+<html lang="en">
+
+ <head>
+ <meta charset="utf-8">
+
+ <title>reveal.js - Math Plugin</title>
+
+ <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
+
+ <link rel="stylesheet" href="../dist/reveal.css">
+ <link rel="stylesheet" href="../dist/theme/night.css" id="theme">
+ </head>
+
+ <body>
+
+ <div class="reveal">
+
+ <div class="slides">
+
+ <section>
+ <h2>reveal.js Math Plugin</h2>
+ <p>Render math with KaTeX, MathJax 2 or MathJax 3</p>
+ </section>
+
+ <section>
+ <h3>The Lorenz Equations</h3>
+
+ \[\begin{aligned}
+ \dot{x} & = \sigma(y-x) \\
+ \dot{y} & = \rho x - y - xz \\
+ \dot{z} & = -\beta z + xy
+ \end{aligned} \]
+ </section>
+
+ <section>
+ <h3>The Cauchy-Schwarz Inequality</h3>
+
+ <script type="math/tex; mode=display">
+ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
+ </script>
+ </section>
+
+ <section>
+ <h3>A Cross Product Formula</h3>
+
+ \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
+ \mathbf{i} & \mathbf{j} & \mathbf{k} \\
+ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
+ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
+ \end{vmatrix} \]
+ </section>
+
+ <section>
+ <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
+
+ \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
+ </section>
+
+ <section>
+ <h3>An Identity of Ramanujan</h3>
+
+ \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
+ 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
+ {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
+ </section>
+
+ <section>
+ <h3>A Rogers-Ramanujan Identity</h3>
+
+ \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
+ \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
+ </section>
+
+ <section>
+ <h3>Maxwell’s Equations</h3>
+
+ \[ \begin{aligned}
+ \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
+ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
+ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
+ \]
+ </section>
+
+ <section>
+ <h3>TeX Macros</h3>
+
+ Here is a common vector space:
+ \[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 < +\infty}\]
+ used in functional analysis.
+ </section>
+
+ <section>
+ <section>
+ <h3>The Lorenz Equations</h3>
+
+ <div class="fragment">
+ \[\begin{aligned}
+ \dot{x} & = \sigma(y-x) \\
+ \dot{y} & = \rho x - y - xz \\
+ \dot{z} & = -\beta z + xy
+ \end{aligned} \]
+ </div>
+ </section>
+
+ <section>
+ <h3>The Cauchy-Schwarz Inequality</h3>
+
+ <div class="fragment">
+ \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
+ </div>
+ </section>
+
+ <section>
+ <h3>A Cross Product Formula</h3>
+
+ <div class="fragment">
+ \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
+ \mathbf{i} & \mathbf{j} & \mathbf{k} \\
+ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
+ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
+ \end{vmatrix} \]
+ </div>
+ </section>
+
+ <section>
+ <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
+
+ <div class="fragment">
+ \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
+ </div>
+ </section>
+
+ <section>
+ <h3>An Identity of Ramanujan</h3>
+
+ <div class="fragment">
+ \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
+ 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
+ {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
+ </div>
+ </section>
+
+ <section>
+ <h3>A Rogers-Ramanujan Identity</h3>
+
+ <div class="fragment">
+ \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
+ \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
+ </div>
+ </section>
+
+ <section>
+ <h3>Maxwell’s Equations</h3>
+
+ <div class="fragment">
+ \[ \begin{aligned}
+ \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
+ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
+ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
+ \]
+ </div>
+ </section>
+
+ <section>
+ <h3>TeX Macros</h3>
+
+ Here is a common vector space:
+ \[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 < +\infty}\]
+ used in functional analysis.
+ </section>
+ </section>
+
+ </div>
+
+ </div>
+
+ <script src="../dist/reveal.js"></script>
+ <script src="../plugin/math/math.js"></script>
+ <script>
+ Reveal.initialize({
+ history: true,
+ transition: 'linear',
+
+ mathjax2: {
+ config: 'TeX-AMS_HTML-full',
+ TeX: {
+ Macros: {
+ R: '\\mathbb{R}',
+ set: [ '\\left\\{#1 \\; ; \\; #2\\right\\}', 2 ]
+ }
+ }
+ },
+
+ // There are three typesetters available
+ // RevealMath.MathJax2 (default)
+ // RevealMath.MathJax3
+ // RevealMath.KaTeX
+ //
+ // More info at https://revealjs.com/math/
+ plugins: [ RevealMath.MathJax2 ]
+ });
+ </script>
+
+ </body>
+</html>