Nils Diewald | 4f6521a | 2015-03-20 21:30:13 +0000 | [diff] [blame^] | 1 | ;(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);throw new Error("Cannot find module '"+o+"'")}var f=n[o]={exports:{}};t[o][0].call(f.exports,function(e){var n=t[o][1][e];return s(n?n:e)},f,f.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o<r.length;o++)s(r[o]);return s})({1:[function(require,module,exports){ |
| 2 | var global=self;/** |
| 3 | * @license |
| 4 | * Copyright (c) 2012-2013 Chris Pettitt |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | * of this software and associated documentation files (the "Software"), to deal |
| 8 | * in the Software without restriction, including without limitation the rights |
| 9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 10 | * copies of the Software, and to permit persons to whom the Software is |
| 11 | * furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included in |
| 14 | * all copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 22 | * THE SOFTWARE. |
| 23 | */ |
| 24 | global.dagreD3 = require('./index'); |
| 25 | |
| 26 | },{"./index":2}],2:[function(require,module,exports){ |
| 27 | /** |
| 28 | * @license |
| 29 | * Copyright (c) 2012-2013 Chris Pettitt |
| 30 | * |
| 31 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 32 | * of this software and associated documentation files (the "Software"), to deal |
| 33 | * in the Software without restriction, including without limitation the rights |
| 34 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 35 | * copies of the Software, and to permit persons to whom the Software is |
| 36 | * furnished to do so, subject to the following conditions: |
| 37 | * |
| 38 | * The above copyright notice and this permission notice shall be included in |
| 39 | * all copies or substantial portions of the Software. |
| 40 | * |
| 41 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 42 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 43 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 44 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 45 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 46 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 47 | * THE SOFTWARE. |
| 48 | */ |
| 49 | module.exports = { |
| 50 | Digraph: require('graphlib').Digraph, |
| 51 | Renderer: require('./lib/Renderer'), |
| 52 | json: require('graphlib').converter.json, |
| 53 | layout: require('dagre').layout, |
| 54 | version: require('./lib/version'), |
| 55 | debug: require('dagre').debug |
| 56 | }; |
| 57 | |
| 58 | },{"./lib/Renderer":3,"./lib/version":4,"dagre":11,"graphlib":28}],3:[function(require,module,exports){ |
| 59 | var layout = require('dagre').layout; |
| 60 | |
| 61 | var d3; |
| 62 | try { d3 = require('d3'); } catch (_) { d3 = window.d3; } |
| 63 | |
| 64 | module.exports = Renderer; |
| 65 | |
| 66 | function Renderer() { |
| 67 | // Set up defaults... |
| 68 | this._layout = layout(); |
| 69 | |
| 70 | this.drawNodes(defaultDrawNodes); |
| 71 | this.drawEdgeLabels(defaultDrawEdgeLabels); |
| 72 | this.drawEdgePaths(defaultDrawEdgePaths); |
| 73 | this.positionNodes(defaultPositionNodes); |
| 74 | this.positionEdgeLabels(defaultPositionEdgeLabels); |
| 75 | this.positionEdgePaths(defaultPositionEdgePaths); |
| 76 | this.zoomSetup(defaultZoomSetup); |
| 77 | this.zoom(defaultZoom); |
| 78 | this.transition(defaultTransition); |
| 79 | this.postLayout(defaultPostLayout); |
| 80 | this.postRender(defaultPostRender); |
| 81 | |
| 82 | this.edgeInterpolate('bundle'); |
| 83 | this.edgeTension(0.95); |
| 84 | } |
| 85 | |
| 86 | Renderer.prototype.layout = function(layout) { |
| 87 | if (!arguments.length) { return this._layout; } |
| 88 | this._layout = layout; |
| 89 | return this; |
| 90 | }; |
| 91 | |
| 92 | Renderer.prototype.drawNodes = function(drawNodes) { |
| 93 | if (!arguments.length) { return this._drawNodes; } |
| 94 | this._drawNodes = bind(drawNodes, this); |
| 95 | return this; |
| 96 | }; |
| 97 | |
| 98 | Renderer.prototype.drawEdgeLabels = function(drawEdgeLabels) { |
| 99 | if (!arguments.length) { return this._drawEdgeLabels; } |
| 100 | this._drawEdgeLabels = bind(drawEdgeLabels, this); |
| 101 | return this; |
| 102 | }; |
| 103 | |
| 104 | Renderer.prototype.drawEdgePaths = function(drawEdgePaths) { |
| 105 | if (!arguments.length) { return this._drawEdgePaths; } |
| 106 | this._drawEdgePaths = bind(drawEdgePaths, this); |
| 107 | return this; |
| 108 | }; |
| 109 | |
| 110 | Renderer.prototype.positionNodes = function(positionNodes) { |
| 111 | if (!arguments.length) { return this._positionNodes; } |
| 112 | this._positionNodes = bind(positionNodes, this); |
| 113 | return this; |
| 114 | }; |
| 115 | |
| 116 | Renderer.prototype.positionEdgeLabels = function(positionEdgeLabels) { |
| 117 | if (!arguments.length) { return this._positionEdgeLabels; } |
| 118 | this._positionEdgeLabels = bind(positionEdgeLabels, this); |
| 119 | return this; |
| 120 | }; |
| 121 | |
| 122 | Renderer.prototype.positionEdgePaths = function(positionEdgePaths) { |
| 123 | if (!arguments.length) { return this._positionEdgePaths; } |
| 124 | this._positionEdgePaths = bind(positionEdgePaths, this); |
| 125 | return this; |
| 126 | }; |
| 127 | |
| 128 | Renderer.prototype.transition = function(transition) { |
| 129 | if (!arguments.length) { return this._transition; } |
| 130 | this._transition = bind(transition, this); |
| 131 | return this; |
| 132 | }; |
| 133 | |
| 134 | Renderer.prototype.zoomSetup = function(zoomSetup) { |
| 135 | if (!arguments.length) { return this._zoomSetup; } |
| 136 | this._zoomSetup = bind(zoomSetup, this); |
| 137 | return this; |
| 138 | }; |
| 139 | |
| 140 | Renderer.prototype.zoom = function(zoom) { |
| 141 | if (!arguments.length) { return this._zoom; } |
| 142 | if (zoom) { |
| 143 | this._zoom = bind(zoom, this); |
| 144 | } else { |
| 145 | delete this._zoom; |
| 146 | } |
| 147 | return this; |
| 148 | }; |
| 149 | |
| 150 | Renderer.prototype.postLayout = function(postLayout) { |
| 151 | if (!arguments.length) { return this._postLayout; } |
| 152 | this._postLayout = bind(postLayout, this); |
| 153 | return this; |
| 154 | }; |
| 155 | |
| 156 | Renderer.prototype.postRender = function(postRender) { |
| 157 | if (!arguments.length) { return this._postRender; } |
| 158 | this._postRender = bind(postRender, this); |
| 159 | return this; |
| 160 | }; |
| 161 | |
| 162 | Renderer.prototype.edgeInterpolate = function(edgeInterpolate) { |
| 163 | if (!arguments.length) { return this._edgeInterpolate; } |
| 164 | this._edgeInterpolate = edgeInterpolate; |
| 165 | return this; |
| 166 | }; |
| 167 | |
| 168 | Renderer.prototype.edgeTension = function(edgeTension) { |
| 169 | if (!arguments.length) { return this._edgeTension; } |
| 170 | this._edgeTension = edgeTension; |
| 171 | return this; |
| 172 | }; |
| 173 | |
| 174 | Renderer.prototype.run = function(graph, svg) { |
| 175 | // First copy the input graph so that it is not changed by the rendering |
| 176 | // process. |
| 177 | graph = copyAndInitGraph(graph); |
| 178 | |
| 179 | // Create zoom elements |
| 180 | svg = this._zoomSetup(graph, svg); |
| 181 | |
| 182 | // Create layers |
| 183 | svg |
| 184 | .selectAll('g.edgePaths, g.edgeLabels, g.nodes') |
| 185 | .data(['edgePaths', 'edgeLabels', 'nodes']) |
| 186 | .enter() |
| 187 | .append('g') |
| 188 | .attr('class', function(d) { return d; }); |
| 189 | |
| 190 | // Create node and edge roots, attach labels, and capture dimension |
| 191 | // information for use with layout. |
| 192 | var svgNodes = this._drawNodes(graph, svg.select('g.nodes')); |
| 193 | var svgEdgeLabels = this._drawEdgeLabels(graph, svg.select('g.edgeLabels')); |
| 194 | |
| 195 | svgNodes.each(function(u) { calculateDimensions(this, graph.node(u)); }); |
| 196 | svgEdgeLabels.each(function(e) { calculateDimensions(this, graph.edge(e)); }); |
| 197 | |
| 198 | // Now apply the layout function |
| 199 | var result = runLayout(graph, this._layout); |
| 200 | |
| 201 | // Run any user-specified post layout processing |
| 202 | this._postLayout(result, svg); |
| 203 | |
| 204 | var svgEdgePaths = this._drawEdgePaths(graph, svg.select('g.edgePaths')); |
| 205 | |
| 206 | // Apply the layout information to the graph |
| 207 | this._positionNodes(result, svgNodes); |
| 208 | this._positionEdgeLabels(result, svgEdgeLabels); |
| 209 | this._positionEdgePaths(result, svgEdgePaths); |
| 210 | |
| 211 | this._postRender(result, svg); |
| 212 | |
| 213 | return result; |
| 214 | }; |
| 215 | |
| 216 | function copyAndInitGraph(graph) { |
| 217 | var copy = graph.copy(); |
| 218 | |
| 219 | // Init labels if they were not present in the source graph |
| 220 | copy.nodes().forEach(function(u) { |
| 221 | var value = copy.node(u); |
| 222 | if (value === undefined) { |
| 223 | value = {}; |
| 224 | copy.node(u, value); |
| 225 | } |
| 226 | if (!('label' in value)) { value.label = ''; } |
| 227 | }); |
| 228 | |
| 229 | copy.edges().forEach(function(e) { |
| 230 | var value = copy.edge(e); |
| 231 | if (value === undefined) { |
| 232 | value = {}; |
| 233 | copy.edge(e, value); |
| 234 | } |
| 235 | if (!('label' in value)) { value.label = ''; } |
| 236 | }); |
| 237 | |
| 238 | return copy; |
| 239 | } |
| 240 | |
| 241 | function calculateDimensions(group, value) { |
| 242 | var bbox = group.getBBox(); |
| 243 | value.width = bbox.width; |
| 244 | value.height = bbox.height; |
| 245 | } |
| 246 | |
| 247 | function runLayout(graph, layout) { |
| 248 | var result = layout.run(graph); |
| 249 | |
| 250 | // Copy labels to the result graph |
| 251 | graph.eachNode(function(u, value) { result.node(u).label = value.label; }); |
| 252 | graph.eachEdge(function(e, u, v, value) { result.edge(e).label = value.label; }); |
| 253 | |
| 254 | return result; |
| 255 | } |
| 256 | |
| 257 | function defaultDrawNodes(g, root) { |
| 258 | var nodes = g.nodes().filter(function(u) { return !isComposite(g, u); }); |
| 259 | |
| 260 | var svgNodes = root |
| 261 | .selectAll('g.node') |
| 262 | .classed('enter', false) |
| 263 | .data(nodes, function(u) { return u; }); |
| 264 | |
| 265 | svgNodes.selectAll('*').remove(); |
| 266 | |
| 267 | svgNodes |
| 268 | .enter() |
| 269 | .append('g') |
| 270 | .style('opacity', 0) |
| 271 | .attr('class', 'node enter'); |
| 272 | |
| 273 | svgNodes.each(function(u) { addLabel(g.node(u), d3.select(this), 10, 10); }); |
| 274 | |
| 275 | this._transition(svgNodes.exit()) |
| 276 | .style('opacity', 0) |
| 277 | .remove(); |
| 278 | |
| 279 | return svgNodes; |
| 280 | } |
| 281 | |
| 282 | function defaultDrawEdgeLabels(g, root) { |
| 283 | var svgEdgeLabels = root |
| 284 | .selectAll('g.edgeLabel') |
| 285 | .classed('enter', false) |
| 286 | .data(g.edges(), function (e) { return e; }); |
| 287 | |
| 288 | svgEdgeLabels.selectAll('*').remove(); |
| 289 | |
| 290 | svgEdgeLabels |
| 291 | .enter() |
| 292 | .append('g') |
| 293 | .style('opacity', 0) |
| 294 | .attr('class', 'edgeLabel enter'); |
| 295 | |
| 296 | svgEdgeLabels.each(function(e) { addLabel(g.edge(e), d3.select(this), 0, 0); }); |
| 297 | |
| 298 | this._transition(svgEdgeLabels.exit()) |
| 299 | .style('opacity', 0) |
| 300 | .remove(); |
| 301 | |
| 302 | return svgEdgeLabels; |
| 303 | } |
| 304 | |
| 305 | var defaultDrawEdgePaths = function(g, root) { |
| 306 | var svgEdgePaths = root |
| 307 | .selectAll('g.edgePath') |
| 308 | .classed('enter', false) |
| 309 | .data(g.edges(), function(e) { return e; }); |
| 310 | |
| 311 | svgEdgePaths |
| 312 | .enter() |
| 313 | .append('g') |
| 314 | .attr('class', 'edgePath enter') |
| 315 | .append('path') |
| 316 | .style('opacity', 0) |
| 317 | .attr('marker-end', 'url(#arrowhead)'); |
| 318 | |
| 319 | this._transition(svgEdgePaths.exit()) |
| 320 | .style('opacity', 0) |
| 321 | .remove(); |
| 322 | |
| 323 | return svgEdgePaths; |
| 324 | }; |
| 325 | |
| 326 | function defaultPositionNodes(g, svgNodes) { |
| 327 | function transform(u) { |
| 328 | var value = g.node(u); |
| 329 | return 'translate(' + value.x + ',' + value.y + ')'; |
| 330 | } |
| 331 | |
| 332 | // For entering nodes, position immediately without transition |
| 333 | svgNodes.filter('.enter').attr('transform', transform); |
| 334 | |
| 335 | this._transition(svgNodes) |
| 336 | .style('opacity', 1) |
| 337 | .attr('transform', transform); |
| 338 | } |
| 339 | |
| 340 | function defaultPositionEdgeLabels(g, svgEdgeLabels) { |
| 341 | function transform(e) { |
| 342 | var value = g.edge(e); |
| 343 | var point = findMidPoint(value.points); |
| 344 | return 'translate(' + point.x + ',' + point.y + ')'; |
| 345 | } |
| 346 | |
| 347 | // For entering edge labels, position immediately without transition |
| 348 | svgEdgeLabels.filter('.enter').attr('transform', transform); |
| 349 | |
| 350 | this._transition(svgEdgeLabels) |
| 351 | .style('opacity', 1) |
| 352 | .attr('transform', transform); |
| 353 | } |
| 354 | |
| 355 | function defaultPositionEdgePaths(g, svgEdgePaths) { |
| 356 | var interpolate = this._edgeInterpolate, |
| 357 | tension = this._edgeTension; |
| 358 | |
| 359 | function calcPoints(e) { |
| 360 | var value = g.edge(e); |
| 361 | var source = g.node(g.incidentNodes(e)[0]); |
| 362 | var target = g.node(g.incidentNodes(e)[1]); |
| 363 | var points = value.points.slice(); |
| 364 | |
| 365 | var p0 = points.length === 0 ? target : points[0]; |
| 366 | var p1 = points.length === 0 ? source : points[points.length - 1]; |
| 367 | |
| 368 | points.unshift(intersectRect(source, p0)); |
| 369 | // TODO: use bpodgursky's shortening algorithm here |
| 370 | points.push(intersectRect(target, p1)); |
| 371 | |
| 372 | return d3.svg.line() |
| 373 | .x(function(d) { return d.x; }) |
| 374 | .y(function(d) { return d.y; }) |
| 375 | .interpolate(interpolate) |
| 376 | .tension(tension) |
| 377 | (points); |
| 378 | } |
| 379 | |
| 380 | svgEdgePaths.filter('.enter').selectAll('path') |
| 381 | .attr('d', calcPoints); |
| 382 | |
| 383 | this._transition(svgEdgePaths.selectAll('path')) |
| 384 | .attr('d', calcPoints) |
| 385 | .style('opacity', 1); |
| 386 | } |
| 387 | |
| 388 | // By default we do not use transitions |
| 389 | function defaultTransition(selection) { |
| 390 | return selection; |
| 391 | } |
| 392 | |
| 393 | // Setup dom for zooming |
| 394 | function defaultZoomSetup(graph, svg) { |
| 395 | var root = svg.property('ownerSVGElement'); |
| 396 | // If the svg node is the root, we get null, so set to svg. |
| 397 | if (!root) { root = svg; } |
| 398 | root = d3.select(root); |
| 399 | |
| 400 | if (root.select('rect.overlay').empty()) { |
| 401 | // Create an overlay for capturing mouse events that don't touch foreground |
| 402 | root.append('rect') |
| 403 | .attr('class', 'overlay') |
| 404 | .attr('width', '100%') |
| 405 | .attr('height', '100%') |
| 406 | .style('fill', 'none'); |
| 407 | |
| 408 | // Capture the zoom behaviour from the svg |
| 409 | svg = svg.append('g') |
| 410 | .attr('class', 'zoom'); |
| 411 | |
| 412 | if (this._zoom) { |
| 413 | root.call(this._zoom(graph, svg)); |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | return svg; |
| 418 | } |
| 419 | |
| 420 | // By default allow pan and zoom |
| 421 | function defaultZoom(graph, svg) { |
| 422 | return d3.behavior.zoom().on('zoom', function() { |
| 423 | svg.attr('transform', 'translate(' + d3.event.translate + ')scale(' + d3.event.scale + ')'); |
| 424 | }); |
| 425 | } |
| 426 | |
| 427 | function defaultPostLayout() { |
| 428 | // Do nothing |
| 429 | } |
| 430 | |
| 431 | function defaultPostRender(graph, root) { |
| 432 | if (graph.isDirected() && root.select('#arrowhead').empty()) { |
| 433 | root |
| 434 | .append('svg:defs') |
| 435 | .append('svg:marker') |
| 436 | .attr('id', 'arrowhead') |
| 437 | .attr('viewBox', '0 0 10 10') |
| 438 | .attr('refX', 8) |
| 439 | .attr('refY', 5) |
| 440 | .attr('markerUnits', 'strokeWidth') |
| 441 | .attr('markerWidth', 8) |
| 442 | .attr('markerHeight', 5) |
| 443 | .attr('orient', 'auto') |
| 444 | .attr('style', 'fill: #333') |
| 445 | .append('svg:path') |
| 446 | .attr('d', 'M 0 0 L 10 5 L 0 10 z'); |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | function addLabel(node, root, marginX, marginY) { |
| 451 | // Add the rect first so that it appears behind the label |
| 452 | var label = node.label; |
| 453 | var rect = root.append('rect'); |
| 454 | var labelSvg = root.append('g'); |
| 455 | |
| 456 | if (label[0] === '<') { |
| 457 | addForeignObjectLabel(label, labelSvg); |
| 458 | // No margin for HTML elements |
| 459 | marginX = marginY = 0; |
| 460 | } else { |
| 461 | addTextLabel(label, |
| 462 | labelSvg, |
| 463 | Math.floor(node.labelCols), |
| 464 | node.labelCut); |
| 465 | } |
| 466 | |
| 467 | var bbox = root.node().getBBox(); |
| 468 | |
| 469 | labelSvg.attr('transform', |
| 470 | 'translate(' + (-bbox.width / 2) + ',' + (-bbox.height / 2) + ')'); |
| 471 | |
| 472 | rect |
| 473 | .attr('rx', 5) |
| 474 | .attr('ry', 5) |
| 475 | .attr('x', -(bbox.width / 2 + marginX)) |
| 476 | .attr('y', -(bbox.height / 2 + marginY)) |
| 477 | .attr('width', bbox.width + 2 * marginX) |
| 478 | .attr('height', bbox.height + 2 * marginY); |
| 479 | } |
| 480 | |
| 481 | function addForeignObjectLabel(label, root) { |
| 482 | var fo = root |
| 483 | .append('foreignObject') |
| 484 | .attr('width', '100000'); |
| 485 | |
| 486 | var w, h; |
| 487 | fo |
| 488 | .append('xhtml:div') |
| 489 | .style('float', 'left') |
| 490 | // TODO find a better way to get dimensions for foreignObjects... |
| 491 | .html(function() { return label; }) |
| 492 | .each(function() { |
| 493 | w = this.clientWidth; |
| 494 | h = this.clientHeight; |
| 495 | }); |
| 496 | |
| 497 | fo |
| 498 | .attr('width', w) |
| 499 | .attr('height', h); |
| 500 | } |
| 501 | |
| 502 | function addTextLabel(label, root, labelCols, labelCut) { |
| 503 | if (labelCut === undefined) labelCut = 'false'; |
| 504 | labelCut = (labelCut.toString().toLowerCase() === 'true'); |
| 505 | |
| 506 | var node = root |
| 507 | .append('text') |
| 508 | .attr('text-anchor', 'left'); |
| 509 | |
| 510 | label = label.replace(/\\n/g, '\n'); |
| 511 | |
| 512 | var arr = labelCols ? wordwrap(label, labelCols, labelCut) : label; |
| 513 | arr = arr.split('\n'); |
| 514 | for (var i = 0; i < arr.length; i++) { |
| 515 | node |
| 516 | .append('tspan') |
| 517 | .attr('dy', '1em') |
| 518 | .attr('x', '1') |
| 519 | .text(arr[i]); |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | // Thanks to |
| 524 | // http://james.padolsey.com/javascript/wordwrap-for-javascript/ |
| 525 | function wordwrap (str, width, cut, brk) { |
| 526 | brk = brk || '\n'; |
| 527 | width = width || 75; |
| 528 | cut = cut || false; |
| 529 | |
| 530 | if (!str) { return str; } |
| 531 | |
| 532 | var regex = '.{1,' +width+ '}(\\s|$)' + (cut ? '|.{' +width+ '}|.+$' : '|\\S+?(\\s|$)'); |
| 533 | |
| 534 | return str.match( new RegExp(regex, 'g') ).join( brk ); |
| 535 | } |
| 536 | |
| 537 | function findMidPoint(points) { |
| 538 | var midIdx = points.length / 2; |
| 539 | if (points.length % 2) { |
| 540 | return points[Math.floor(midIdx)]; |
| 541 | } else { |
| 542 | var p0 = points[midIdx - 1]; |
| 543 | var p1 = points[midIdx]; |
| 544 | return {x: (p0.x + p1.x) / 2, y: (p0.y + p1.y) / 2}; |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | function intersectRect(rect, point) { |
| 549 | var x = rect.x; |
| 550 | var y = rect.y; |
| 551 | |
| 552 | // For now we only support rectangles |
| 553 | |
| 554 | // Rectangle intersection algorithm from: |
| 555 | // http://math.stackexchange.com/questions/108113/find-edge-between-two-boxes |
| 556 | var dx = point.x - x; |
| 557 | var dy = point.y - y; |
| 558 | var w = rect.width / 2; |
| 559 | var h = rect.height / 2; |
| 560 | |
| 561 | var sx, sy; |
| 562 | if (Math.abs(dy) * w > Math.abs(dx) * h) { |
| 563 | // Intersection is top or bottom of rect. |
| 564 | if (dy < 0) { |
| 565 | h = -h; |
| 566 | } |
| 567 | sx = dy === 0 ? 0 : h * dx / dy; |
| 568 | sy = h; |
| 569 | } else { |
| 570 | // Intersection is left or right of rect. |
| 571 | if (dx < 0) { |
| 572 | w = -w; |
| 573 | } |
| 574 | sx = w; |
| 575 | sy = dx === 0 ? 0 : w * dy / dx; |
| 576 | } |
| 577 | |
| 578 | return {x: x + sx, y: y + sy}; |
| 579 | } |
| 580 | |
| 581 | function isComposite(g, u) { |
| 582 | return 'children' in g && g.children(u).length; |
| 583 | } |
| 584 | |
| 585 | function bind(func, thisArg) { |
| 586 | // For some reason PhantomJS occassionally fails when using the builtin bind, |
| 587 | // so we check if it is available and if not, use a degenerate polyfill. |
| 588 | if (func.bind) { |
| 589 | return func.bind(thisArg); |
| 590 | } |
| 591 | |
| 592 | return function() { |
| 593 | return func.apply(thisArg, arguments); |
| 594 | }; |
| 595 | } |
| 596 | |
| 597 | },{"d3":10,"dagre":11}],4:[function(require,module,exports){ |
| 598 | module.exports = '0.2.0'; |
| 599 | |
| 600 | },{}],5:[function(require,module,exports){ |
| 601 | exports.Set = require('./lib/Set'); |
| 602 | exports.PriorityQueue = require('./lib/PriorityQueue'); |
| 603 | exports.version = require('./lib/version'); |
| 604 | |
| 605 | },{"./lib/PriorityQueue":6,"./lib/Set":7,"./lib/version":9}],6:[function(require,module,exports){ |
| 606 | module.exports = PriorityQueue; |
| 607 | |
| 608 | /** |
| 609 | * A min-priority queue data structure. This algorithm is derived from Cormen, |
| 610 | * et al., "Introduction to Algorithms". The basic idea of a min-priority |
| 611 | * queue is that you can efficiently (in O(1) time) get the smallest key in |
| 612 | * the queue. Adding and removing elements takes O(log n) time. A key can |
| 613 | * have its priority decreased in O(log n) time. |
| 614 | */ |
| 615 | function PriorityQueue() { |
| 616 | this._arr = []; |
| 617 | this._keyIndices = {}; |
| 618 | } |
| 619 | |
| 620 | /** |
| 621 | * Returns the number of elements in the queue. Takes `O(1)` time. |
| 622 | */ |
| 623 | PriorityQueue.prototype.size = function() { |
| 624 | return this._arr.length; |
| 625 | }; |
| 626 | |
| 627 | /** |
| 628 | * Returns the keys that are in the queue. Takes `O(n)` time. |
| 629 | */ |
| 630 | PriorityQueue.prototype.keys = function() { |
| 631 | return this._arr.map(function(x) { return x.key; }); |
| 632 | }; |
| 633 | |
| 634 | /** |
| 635 | * Returns `true` if **key** is in the queue and `false` if not. |
| 636 | */ |
| 637 | PriorityQueue.prototype.has = function(key) { |
| 638 | return key in this._keyIndices; |
| 639 | }; |
| 640 | |
| 641 | /** |
| 642 | * Returns the priority for **key**. If **key** is not present in the queue |
| 643 | * then this function returns `undefined`. Takes `O(1)` time. |
| 644 | * |
| 645 | * @param {Object} key |
| 646 | */ |
| 647 | PriorityQueue.prototype.priority = function(key) { |
| 648 | var index = this._keyIndices[key]; |
| 649 | if (index !== undefined) { |
| 650 | return this._arr[index].priority; |
| 651 | } |
| 652 | }; |
| 653 | |
| 654 | /** |
| 655 | * Returns the key for the minimum element in this queue. If the queue is |
| 656 | * empty this function throws an Error. Takes `O(1)` time. |
| 657 | */ |
| 658 | PriorityQueue.prototype.min = function() { |
| 659 | if (this.size() === 0) { |
| 660 | throw new Error("Queue underflow"); |
| 661 | } |
| 662 | return this._arr[0].key; |
| 663 | }; |
| 664 | |
| 665 | /** |
| 666 | * Inserts a new key into the priority queue. If the key already exists in |
| 667 | * the queue this function returns `false`; otherwise it will return `true`. |
| 668 | * Takes `O(n)` time. |
| 669 | * |
| 670 | * @param {Object} key the key to add |
| 671 | * @param {Number} priority the initial priority for the key |
| 672 | */ |
| 673 | PriorityQueue.prototype.add = function(key, priority) { |
| 674 | var keyIndices = this._keyIndices; |
| 675 | if (!(key in keyIndices)) { |
| 676 | var arr = this._arr; |
| 677 | var index = arr.length; |
| 678 | keyIndices[key] = index; |
| 679 | arr.push({key: key, priority: priority}); |
| 680 | this._decrease(index); |
| 681 | return true; |
| 682 | } |
| 683 | return false; |
| 684 | }; |
| 685 | |
| 686 | /** |
| 687 | * Removes and returns the smallest key in the queue. Takes `O(log n)` time. |
| 688 | */ |
| 689 | PriorityQueue.prototype.removeMin = function() { |
| 690 | this._swap(0, this._arr.length - 1); |
| 691 | var min = this._arr.pop(); |
| 692 | delete this._keyIndices[min.key]; |
| 693 | this._heapify(0); |
| 694 | return min.key; |
| 695 | }; |
| 696 | |
| 697 | /** |
| 698 | * Decreases the priority for **key** to **priority**. If the new priority is |
| 699 | * greater than the previous priority, this function will throw an Error. |
| 700 | * |
| 701 | * @param {Object} key the key for which to raise priority |
| 702 | * @param {Number} priority the new priority for the key |
| 703 | */ |
| 704 | PriorityQueue.prototype.decrease = function(key, priority) { |
| 705 | var index = this._keyIndices[key]; |
| 706 | if (priority > this._arr[index].priority) { |
| 707 | throw new Error("New priority is greater than current priority. " + |
| 708 | "Key: " + key + " Old: " + this._arr[index].priority + " New: " + priority); |
| 709 | } |
| 710 | this._arr[index].priority = priority; |
| 711 | this._decrease(index); |
| 712 | }; |
| 713 | |
| 714 | PriorityQueue.prototype._heapify = function(i) { |
| 715 | var arr = this._arr; |
| 716 | var l = 2 * i, |
| 717 | r = l + 1, |
| 718 | largest = i; |
| 719 | if (l < arr.length) { |
| 720 | largest = arr[l].priority < arr[largest].priority ? l : largest; |
| 721 | if (r < arr.length) { |
| 722 | largest = arr[r].priority < arr[largest].priority ? r : largest; |
| 723 | } |
| 724 | if (largest !== i) { |
| 725 | this._swap(i, largest); |
| 726 | this._heapify(largest); |
| 727 | } |
| 728 | } |
| 729 | }; |
| 730 | |
| 731 | PriorityQueue.prototype._decrease = function(index) { |
| 732 | var arr = this._arr; |
| 733 | var priority = arr[index].priority; |
| 734 | var parent; |
| 735 | while (index !== 0) { |
| 736 | parent = index >> 1; |
| 737 | if (arr[parent].priority < priority) { |
| 738 | break; |
| 739 | } |
| 740 | this._swap(index, parent); |
| 741 | index = parent; |
| 742 | } |
| 743 | }; |
| 744 | |
| 745 | PriorityQueue.prototype._swap = function(i, j) { |
| 746 | var arr = this._arr; |
| 747 | var keyIndices = this._keyIndices; |
| 748 | var origArrI = arr[i]; |
| 749 | var origArrJ = arr[j]; |
| 750 | arr[i] = origArrJ; |
| 751 | arr[j] = origArrI; |
| 752 | keyIndices[origArrJ.key] = i; |
| 753 | keyIndices[origArrI.key] = j; |
| 754 | }; |
| 755 | |
| 756 | },{}],7:[function(require,module,exports){ |
| 757 | var util = require('./util'); |
| 758 | |
| 759 | module.exports = Set; |
| 760 | |
| 761 | /** |
| 762 | * Constructs a new Set with an optional set of `initialKeys`. |
| 763 | * |
| 764 | * It is important to note that keys are coerced to String for most purposes |
| 765 | * with this object, similar to the behavior of JavaScript's Object. For |
| 766 | * example, the following will add only one key: |
| 767 | * |
| 768 | * var s = new Set(); |
| 769 | * s.add(1); |
| 770 | * s.add("1"); |
| 771 | * |
| 772 | * However, the type of the key is preserved internally so that `keys` returns |
| 773 | * the original key set uncoerced. For the above example, `keys` would return |
| 774 | * `[1]`. |
| 775 | */ |
| 776 | function Set(initialKeys) { |
| 777 | this._size = 0; |
| 778 | this._keys = {}; |
| 779 | |
| 780 | if (initialKeys) { |
| 781 | for (var i = 0, il = initialKeys.length; i < il; ++i) { |
| 782 | this.add(initialKeys[i]); |
| 783 | } |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | /** |
| 788 | * Returns a new Set that represents the set intersection of the array of given |
| 789 | * sets. |
| 790 | */ |
| 791 | Set.intersect = function(sets) { |
| 792 | if (sets.length === 0) { |
| 793 | return new Set(); |
| 794 | } |
| 795 | |
| 796 | var result = new Set(!util.isArray(sets[0]) ? sets[0].keys() : sets[0]); |
| 797 | for (var i = 1, il = sets.length; i < il; ++i) { |
| 798 | var resultKeys = result.keys(), |
| 799 | other = !util.isArray(sets[i]) ? sets[i] : new Set(sets[i]); |
| 800 | for (var j = 0, jl = resultKeys.length; j < jl; ++j) { |
| 801 | var key = resultKeys[j]; |
| 802 | if (!other.has(key)) { |
| 803 | result.remove(key); |
| 804 | } |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | return result; |
| 809 | }; |
| 810 | |
| 811 | /** |
| 812 | * Returns a new Set that represents the set union of the array of given sets. |
| 813 | */ |
| 814 | Set.union = function(sets) { |
| 815 | var totalElems = util.reduce(sets, function(lhs, rhs) { |
| 816 | return lhs + (rhs.size ? rhs.size() : rhs.length); |
| 817 | }, 0); |
| 818 | var arr = new Array(totalElems); |
| 819 | |
| 820 | var k = 0; |
| 821 | for (var i = 0, il = sets.length; i < il; ++i) { |
| 822 | var cur = sets[i], |
| 823 | keys = !util.isArray(cur) ? cur.keys() : cur; |
| 824 | for (var j = 0, jl = keys.length; j < jl; ++j) { |
| 825 | arr[k++] = keys[j]; |
| 826 | } |
| 827 | } |
| 828 | |
| 829 | return new Set(arr); |
| 830 | }; |
| 831 | |
| 832 | /** |
| 833 | * Returns the size of this set in `O(1)` time. |
| 834 | */ |
| 835 | Set.prototype.size = function() { |
| 836 | return this._size; |
| 837 | }; |
| 838 | |
| 839 | /** |
| 840 | * Returns the keys in this set. Takes `O(n)` time. |
| 841 | */ |
| 842 | Set.prototype.keys = function() { |
| 843 | return values(this._keys); |
| 844 | }; |
| 845 | |
| 846 | /** |
| 847 | * Tests if a key is present in this Set. Returns `true` if it is and `false` |
| 848 | * if not. Takes `O(1)` time. |
| 849 | */ |
| 850 | Set.prototype.has = function(key) { |
| 851 | return key in this._keys; |
| 852 | }; |
| 853 | |
| 854 | /** |
| 855 | * Adds a new key to this Set if it is not already present. Returns `true` if |
| 856 | * the key was added and `false` if it was already present. Takes `O(1)` time. |
| 857 | */ |
| 858 | Set.prototype.add = function(key) { |
| 859 | if (!(key in this._keys)) { |
| 860 | this._keys[key] = key; |
| 861 | ++this._size; |
| 862 | return true; |
| 863 | } |
| 864 | return false; |
| 865 | }; |
| 866 | |
| 867 | /** |
| 868 | * Removes a key from this Set. If the key was removed this function returns |
| 869 | * `true`. If not, it returns `false`. Takes `O(1)` time. |
| 870 | */ |
| 871 | Set.prototype.remove = function(key) { |
| 872 | if (key in this._keys) { |
| 873 | delete this._keys[key]; |
| 874 | --this._size; |
| 875 | return true; |
| 876 | } |
| 877 | return false; |
| 878 | }; |
| 879 | |
| 880 | /* |
| 881 | * Returns an array of all values for properties of **o**. |
| 882 | */ |
| 883 | function values(o) { |
| 884 | var ks = Object.keys(o), |
| 885 | len = ks.length, |
| 886 | result = new Array(len), |
| 887 | i; |
| 888 | for (i = 0; i < len; ++i) { |
| 889 | result[i] = o[ks[i]]; |
| 890 | } |
| 891 | return result; |
| 892 | } |
| 893 | |
| 894 | },{"./util":8}],8:[function(require,module,exports){ |
| 895 | /* |
| 896 | * This polyfill comes from |
| 897 | * https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/isArray |
| 898 | */ |
| 899 | if(!Array.isArray) { |
| 900 | exports.isArray = function (vArg) { |
| 901 | return Object.prototype.toString.call(vArg) === '[object Array]'; |
| 902 | }; |
| 903 | } else { |
| 904 | exports.isArray = Array.isArray; |
| 905 | } |
| 906 | |
| 907 | /* |
| 908 | * Slightly adapted polyfill from |
| 909 | * https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce |
| 910 | */ |
| 911 | if ('function' !== typeof Array.prototype.reduce) { |
| 912 | exports.reduce = function(array, callback, opt_initialValue) { |
| 913 | 'use strict'; |
| 914 | if (null === array || 'undefined' === typeof array) { |
| 915 | // At the moment all modern browsers, that support strict mode, have |
| 916 | // native implementation of Array.prototype.reduce. For instance, IE8 |
| 917 | // does not support strict mode, so this check is actually useless. |
| 918 | throw new TypeError( |
| 919 | 'Array.prototype.reduce called on null or undefined'); |
| 920 | } |
| 921 | if ('function' !== typeof callback) { |
| 922 | throw new TypeError(callback + ' is not a function'); |
| 923 | } |
| 924 | var index, value, |
| 925 | length = array.length >>> 0, |
| 926 | isValueSet = false; |
| 927 | if (1 < arguments.length) { |
| 928 | value = opt_initialValue; |
| 929 | isValueSet = true; |
| 930 | } |
| 931 | for (index = 0; length > index; ++index) { |
| 932 | if (array.hasOwnProperty(index)) { |
| 933 | if (isValueSet) { |
| 934 | value = callback(value, array[index], index, array); |
| 935 | } |
| 936 | else { |
| 937 | value = array[index]; |
| 938 | isValueSet = true; |
| 939 | } |
| 940 | } |
| 941 | } |
| 942 | if (!isValueSet) { |
| 943 | throw new TypeError('Reduce of empty array with no initial value'); |
| 944 | } |
| 945 | return value; |
| 946 | }; |
| 947 | } else { |
| 948 | exports.reduce = function(array, callback, opt_initialValue) { |
| 949 | return array.reduce(callback, opt_initialValue); |
| 950 | }; |
| 951 | } |
| 952 | |
| 953 | },{}],9:[function(require,module,exports){ |
| 954 | module.exports = '1.1.3'; |
| 955 | |
| 956 | },{}],10:[function(require,module,exports){ |
| 957 | require("./d3"); |
| 958 | module.exports = d3; |
| 959 | (function () { delete this.d3; })(); // unset global |
| 960 | |
| 961 | },{}],11:[function(require,module,exports){ |
| 962 | /* |
| 963 | Copyright (c) 2012-2013 Chris Pettitt |
| 964 | |
| 965 | Permission is hereby granted, free of charge, to any person obtaining a copy |
| 966 | of this software and associated documentation files (the "Software"), to deal |
| 967 | in the Software without restriction, including without limitation the rights |
| 968 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 969 | copies of the Software, and to permit persons to whom the Software is |
| 970 | furnished to do so, subject to the following conditions: |
| 971 | |
| 972 | The above copyright notice and this permission notice shall be included in |
| 973 | all copies or substantial portions of the Software. |
| 974 | |
| 975 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 976 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 977 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 978 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 979 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 980 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 981 | THE SOFTWARE. |
| 982 | */ |
| 983 | exports.Digraph = require("graphlib").Digraph; |
| 984 | exports.Graph = require("graphlib").Graph; |
| 985 | exports.layout = require("./lib/layout"); |
| 986 | exports.version = require("./lib/version"); |
| 987 | |
| 988 | },{"./lib/layout":12,"./lib/version":27,"graphlib":28}],12:[function(require,module,exports){ |
| 989 | var util = require('./util'), |
| 990 | rank = require('./rank'), |
| 991 | order = require('./order'), |
| 992 | CGraph = require('graphlib').CGraph, |
| 993 | CDigraph = require('graphlib').CDigraph; |
| 994 | |
| 995 | module.exports = function() { |
| 996 | // External configuration |
| 997 | var config = { |
| 998 | // How much debug information to include? |
| 999 | debugLevel: 0, |
| 1000 | // Max number of sweeps to perform in order phase |
| 1001 | orderMaxSweeps: order.DEFAULT_MAX_SWEEPS, |
| 1002 | // Use network simplex algorithm in ranking |
| 1003 | rankSimplex: false, |
| 1004 | // Rank direction. Valid values are (TB, LR) |
| 1005 | rankDir: 'TB' |
| 1006 | }; |
| 1007 | |
| 1008 | // Phase functions |
| 1009 | var position = require('./position')(); |
| 1010 | |
| 1011 | // This layout object |
| 1012 | var self = {}; |
| 1013 | |
| 1014 | self.orderIters = util.propertyAccessor(self, config, 'orderMaxSweeps'); |
| 1015 | |
| 1016 | self.rankSimplex = util.propertyAccessor(self, config, 'rankSimplex'); |
| 1017 | |
| 1018 | self.nodeSep = delegateProperty(position.nodeSep); |
| 1019 | self.edgeSep = delegateProperty(position.edgeSep); |
| 1020 | self.universalSep = delegateProperty(position.universalSep); |
| 1021 | self.rankSep = delegateProperty(position.rankSep); |
| 1022 | self.rankDir = util.propertyAccessor(self, config, 'rankDir'); |
| 1023 | self.debugAlignment = delegateProperty(position.debugAlignment); |
| 1024 | |
| 1025 | self.debugLevel = util.propertyAccessor(self, config, 'debugLevel', function(x) { |
| 1026 | util.log.level = x; |
| 1027 | position.debugLevel(x); |
| 1028 | }); |
| 1029 | |
| 1030 | self.run = util.time('Total layout', run); |
| 1031 | |
| 1032 | self._normalize = normalize; |
| 1033 | |
| 1034 | return self; |
| 1035 | |
| 1036 | /* |
| 1037 | * Constructs an adjacency graph using the nodes and edges specified through |
| 1038 | * config. For each node and edge we add a property `dagre` that contains an |
| 1039 | * object that will hold intermediate and final layout information. Some of |
| 1040 | * the contents include: |
| 1041 | * |
| 1042 | * 1) A generated ID that uniquely identifies the object. |
| 1043 | * 2) Dimension information for nodes (copied from the source node). |
| 1044 | * 3) Optional dimension information for edges. |
| 1045 | * |
| 1046 | * After the adjacency graph is constructed the code no longer needs to use |
| 1047 | * the original nodes and edges passed in via config. |
| 1048 | */ |
| 1049 | function initLayoutGraph(inputGraph) { |
| 1050 | var g = new CDigraph(); |
| 1051 | |
| 1052 | inputGraph.eachNode(function(u, value) { |
| 1053 | if (value === undefined) value = {}; |
| 1054 | g.addNode(u, { |
| 1055 | width: value.width, |
| 1056 | height: value.height |
| 1057 | }); |
| 1058 | if (value.hasOwnProperty('rank')) { |
| 1059 | g.node(u).prefRank = value.rank; |
| 1060 | } |
| 1061 | }); |
| 1062 | |
| 1063 | // Set up subgraphs |
| 1064 | if (inputGraph.parent) { |
| 1065 | inputGraph.nodes().forEach(function(u) { |
| 1066 | g.parent(u, inputGraph.parent(u)); |
| 1067 | }); |
| 1068 | } |
| 1069 | |
| 1070 | inputGraph.eachEdge(function(e, u, v, value) { |
| 1071 | if (value === undefined) value = {}; |
| 1072 | var newValue = { |
| 1073 | e: e, |
| 1074 | minLen: value.minLen || 1, |
| 1075 | width: value.width || 0, |
| 1076 | height: value.height || 0, |
| 1077 | points: [] |
| 1078 | }; |
| 1079 | |
| 1080 | g.addEdge(null, u, v, newValue); |
| 1081 | }); |
| 1082 | |
| 1083 | // Initial graph attributes |
| 1084 | var graphValue = inputGraph.graph() || {}; |
| 1085 | g.graph({ |
| 1086 | rankDir: graphValue.rankDir || config.rankDir, |
| 1087 | orderRestarts: graphValue.orderRestarts |
| 1088 | }); |
| 1089 | |
| 1090 | return g; |
| 1091 | } |
| 1092 | |
| 1093 | function run(inputGraph) { |
| 1094 | var rankSep = self.rankSep(); |
| 1095 | var g; |
| 1096 | try { |
| 1097 | // Build internal graph |
| 1098 | g = util.time('initLayoutGraph', initLayoutGraph)(inputGraph); |
| 1099 | |
| 1100 | if (g.order() === 0) { |
| 1101 | return g; |
| 1102 | } |
| 1103 | |
| 1104 | // Make space for edge labels |
| 1105 | g.eachEdge(function(e, s, t, a) { |
| 1106 | a.minLen *= 2; |
| 1107 | }); |
| 1108 | self.rankSep(rankSep / 2); |
| 1109 | |
| 1110 | // Determine the rank for each node. Nodes with a lower rank will appear |
| 1111 | // above nodes of higher rank. |
| 1112 | util.time('rank.run', rank.run)(g, config.rankSimplex); |
| 1113 | |
| 1114 | // Normalize the graph by ensuring that every edge is proper (each edge has |
| 1115 | // a length of 1). We achieve this by adding dummy nodes to long edges, |
| 1116 | // thus shortening them. |
| 1117 | util.time('normalize', normalize)(g); |
| 1118 | |
| 1119 | // Order the nodes so that edge crossings are minimized. |
| 1120 | util.time('order', order)(g, config.orderMaxSweeps); |
| 1121 | |
| 1122 | // Find the x and y coordinates for every node in the graph. |
| 1123 | util.time('position', position.run)(g); |
| 1124 | |
| 1125 | // De-normalize the graph by removing dummy nodes and augmenting the |
| 1126 | // original long edges with coordinate information. |
| 1127 | util.time('undoNormalize', undoNormalize)(g); |
| 1128 | |
| 1129 | // Reverses points for edges that are in a reversed state. |
| 1130 | util.time('fixupEdgePoints', fixupEdgePoints)(g); |
| 1131 | |
| 1132 | // Restore delete edges and reverse edges that were reversed in the rank |
| 1133 | // phase. |
| 1134 | util.time('rank.restoreEdges', rank.restoreEdges)(g); |
| 1135 | |
| 1136 | // Construct final result graph and return it |
| 1137 | return util.time('createFinalGraph', createFinalGraph)(g, inputGraph.isDirected()); |
| 1138 | } finally { |
| 1139 | self.rankSep(rankSep); |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | /* |
| 1144 | * This function is responsible for 'normalizing' the graph. The process of |
| 1145 | * normalization ensures that no edge in the graph has spans more than one |
| 1146 | * rank. To do this it inserts dummy nodes as needed and links them by adding |
| 1147 | * dummy edges. This function keeps enough information in the dummy nodes and |
| 1148 | * edges to ensure that the original graph can be reconstructed later. |
| 1149 | * |
| 1150 | * This method assumes that the input graph is cycle free. |
| 1151 | */ |
| 1152 | function normalize(g) { |
| 1153 | var dummyCount = 0; |
| 1154 | g.eachEdge(function(e, s, t, a) { |
| 1155 | var sourceRank = g.node(s).rank; |
| 1156 | var targetRank = g.node(t).rank; |
| 1157 | if (sourceRank + 1 < targetRank) { |
| 1158 | for (var u = s, rank = sourceRank + 1, i = 0; rank < targetRank; ++rank, ++i) { |
| 1159 | var v = '_D' + (++dummyCount); |
| 1160 | var node = { |
| 1161 | width: a.width, |
| 1162 | height: a.height, |
| 1163 | edge: { id: e, source: s, target: t, attrs: a }, |
| 1164 | rank: rank, |
| 1165 | dummy: true |
| 1166 | }; |
| 1167 | |
| 1168 | // If this node represents a bend then we will use it as a control |
| 1169 | // point. For edges with 2 segments this will be the center dummy |
| 1170 | // node. For edges with more than two segments, this will be the |
| 1171 | // first and last dummy node. |
| 1172 | if (i === 0) node.index = 0; |
| 1173 | else if (rank + 1 === targetRank) node.index = 1; |
| 1174 | |
| 1175 | g.addNode(v, node); |
| 1176 | g.addEdge(null, u, v, {}); |
| 1177 | u = v; |
| 1178 | } |
| 1179 | g.addEdge(null, u, t, {}); |
| 1180 | g.delEdge(e); |
| 1181 | } |
| 1182 | }); |
| 1183 | } |
| 1184 | |
| 1185 | /* |
| 1186 | * Reconstructs the graph as it was before normalization. The positions of |
| 1187 | * dummy nodes are used to build an array of points for the original 'long' |
| 1188 | * edge. Dummy nodes and edges are removed. |
| 1189 | */ |
| 1190 | function undoNormalize(g) { |
| 1191 | g.eachNode(function(u, a) { |
| 1192 | if (a.dummy) { |
| 1193 | if ('index' in a) { |
| 1194 | var edge = a.edge; |
| 1195 | if (!g.hasEdge(edge.id)) { |
| 1196 | g.addEdge(edge.id, edge.source, edge.target, edge.attrs); |
| 1197 | } |
| 1198 | var points = g.edge(edge.id).points; |
| 1199 | points[a.index] = { x: a.x, y: a.y, ul: a.ul, ur: a.ur, dl: a.dl, dr: a.dr }; |
| 1200 | } |
| 1201 | g.delNode(u); |
| 1202 | } |
| 1203 | }); |
| 1204 | } |
| 1205 | |
| 1206 | /* |
| 1207 | * For each edge that was reversed during the `acyclic` step, reverse its |
| 1208 | * array of points. |
| 1209 | */ |
| 1210 | function fixupEdgePoints(g) { |
| 1211 | g.eachEdge(function(e, s, t, a) { if (a.reversed) a.points.reverse(); }); |
| 1212 | } |
| 1213 | |
| 1214 | function createFinalGraph(g, isDirected) { |
| 1215 | var out = isDirected ? new CDigraph() : new CGraph(); |
| 1216 | out.graph(g.graph()); |
| 1217 | g.eachNode(function(u, value) { out.addNode(u, value); }); |
| 1218 | g.eachNode(function(u) { out.parent(u, g.parent(u)); }); |
| 1219 | g.eachEdge(function(e, u, v, value) { |
| 1220 | out.addEdge(value.e, u, v, value); |
| 1221 | }); |
| 1222 | |
| 1223 | // Attach bounding box information |
| 1224 | var maxX = 0, maxY = 0; |
| 1225 | g.eachNode(function(u, value) { |
| 1226 | if (!g.children(u).length) { |
| 1227 | maxX = Math.max(maxX, value.x + value.width / 2); |
| 1228 | maxY = Math.max(maxY, value.y + value.height / 2); |
| 1229 | } |
| 1230 | }); |
| 1231 | g.eachEdge(function(e, u, v, value) { |
| 1232 | var maxXPoints = Math.max.apply(Math, value.points.map(function(p) { return p.x; })); |
| 1233 | var maxYPoints = Math.max.apply(Math, value.points.map(function(p) { return p.y; })); |
| 1234 | maxX = Math.max(maxX, maxXPoints + value.width / 2); |
| 1235 | maxY = Math.max(maxY, maxYPoints + value.height / 2); |
| 1236 | }); |
| 1237 | out.graph().width = maxX; |
| 1238 | out.graph().height = maxY; |
| 1239 | |
| 1240 | return out; |
| 1241 | } |
| 1242 | |
| 1243 | /* |
| 1244 | * Given a function, a new function is returned that invokes the given |
| 1245 | * function. The return value from the function is always the `self` object. |
| 1246 | */ |
| 1247 | function delegateProperty(f) { |
| 1248 | return function() { |
| 1249 | if (!arguments.length) return f(); |
| 1250 | f.apply(null, arguments); |
| 1251 | return self; |
| 1252 | }; |
| 1253 | } |
| 1254 | }; |
| 1255 | |
| 1256 | |
| 1257 | },{"./order":13,"./position":18,"./rank":19,"./util":26,"graphlib":28}],13:[function(require,module,exports){ |
| 1258 | var util = require('./util'), |
| 1259 | crossCount = require('./order/crossCount'), |
| 1260 | initLayerGraphs = require('./order/initLayerGraphs'), |
| 1261 | initOrder = require('./order/initOrder'), |
| 1262 | sortLayer = require('./order/sortLayer'); |
| 1263 | |
| 1264 | module.exports = order; |
| 1265 | |
| 1266 | // The maximum number of sweeps to perform before finishing the order phase. |
| 1267 | var DEFAULT_MAX_SWEEPS = 24; |
| 1268 | order.DEFAULT_MAX_SWEEPS = DEFAULT_MAX_SWEEPS; |
| 1269 | |
| 1270 | /* |
| 1271 | * Runs the order phase with the specified `graph, `maxSweeps`, and |
| 1272 | * `debugLevel`. If `maxSweeps` is not specified we use `DEFAULT_MAX_SWEEPS`. |
| 1273 | * If `debugLevel` is not set we assume 0. |
| 1274 | */ |
| 1275 | function order(g, maxSweeps) { |
| 1276 | if (arguments.length < 2) { |
| 1277 | maxSweeps = DEFAULT_MAX_SWEEPS; |
| 1278 | } |
| 1279 | |
| 1280 | var restarts = g.graph().orderRestarts || 0; |
| 1281 | |
| 1282 | var layerGraphs = initLayerGraphs(g); |
| 1283 | // TODO: remove this when we add back support for ordering clusters |
| 1284 | layerGraphs.forEach(function(lg) { |
| 1285 | lg = lg.filterNodes(function(u) { return !g.children(u).length; }); |
| 1286 | }); |
| 1287 | |
| 1288 | var iters = 0, |
| 1289 | currentBestCC, |
| 1290 | allTimeBestCC = Number.MAX_VALUE, |
| 1291 | allTimeBest = {}; |
| 1292 | |
| 1293 | function saveAllTimeBest() { |
| 1294 | g.eachNode(function(u, value) { allTimeBest[u] = value.order; }); |
| 1295 | } |
| 1296 | |
| 1297 | for (var j = 0; j < Number(restarts) + 1 && allTimeBestCC !== 0; ++j) { |
| 1298 | currentBestCC = Number.MAX_VALUE; |
| 1299 | initOrder(g, restarts > 0); |
| 1300 | |
| 1301 | util.log(2, 'Order phase start cross count: ' + g.graph().orderInitCC); |
| 1302 | |
| 1303 | var i, lastBest, cc; |
| 1304 | for (i = 0, lastBest = 0; lastBest < 4 && i < maxSweeps && currentBestCC > 0; ++i, ++lastBest, ++iters) { |
| 1305 | sweep(g, layerGraphs, i); |
| 1306 | cc = crossCount(g); |
| 1307 | if (cc < currentBestCC) { |
| 1308 | lastBest = 0; |
| 1309 | currentBestCC = cc; |
| 1310 | if (cc < allTimeBestCC) { |
| 1311 | saveAllTimeBest(); |
| 1312 | allTimeBestCC = cc; |
| 1313 | } |
| 1314 | } |
| 1315 | util.log(3, 'Order phase start ' + j + ' iter ' + i + ' cross count: ' + cc); |
| 1316 | } |
| 1317 | } |
| 1318 | |
| 1319 | Object.keys(allTimeBest).forEach(function(u) { |
| 1320 | if (!g.children || !g.children(u).length) { |
| 1321 | g.node(u).order = allTimeBest[u]; |
| 1322 | } |
| 1323 | }); |
| 1324 | g.graph().orderCC = allTimeBestCC; |
| 1325 | |
| 1326 | util.log(2, 'Order iterations: ' + iters); |
| 1327 | util.log(2, 'Order phase best cross count: ' + g.graph().orderCC); |
| 1328 | } |
| 1329 | |
| 1330 | function predecessorWeights(g, nodes) { |
| 1331 | var weights = {}; |
| 1332 | nodes.forEach(function(u) { |
| 1333 | weights[u] = g.inEdges(u).map(function(e) { |
| 1334 | return g.node(g.source(e)).order; |
| 1335 | }); |
| 1336 | }); |
| 1337 | return weights; |
| 1338 | } |
| 1339 | |
| 1340 | function successorWeights(g, nodes) { |
| 1341 | var weights = {}; |
| 1342 | nodes.forEach(function(u) { |
| 1343 | weights[u] = g.outEdges(u).map(function(e) { |
| 1344 | return g.node(g.target(e)).order; |
| 1345 | }); |
| 1346 | }); |
| 1347 | return weights; |
| 1348 | } |
| 1349 | |
| 1350 | function sweep(g, layerGraphs, iter) { |
| 1351 | if (iter % 2 === 0) { |
| 1352 | sweepDown(g, layerGraphs, iter); |
| 1353 | } else { |
| 1354 | sweepUp(g, layerGraphs, iter); |
| 1355 | } |
| 1356 | } |
| 1357 | |
| 1358 | function sweepDown(g, layerGraphs) { |
| 1359 | var cg; |
| 1360 | for (i = 1; i < layerGraphs.length; ++i) { |
| 1361 | cg = sortLayer(layerGraphs[i], cg, predecessorWeights(g, layerGraphs[i].nodes())); |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | function sweepUp(g, layerGraphs) { |
| 1366 | var cg; |
| 1367 | for (i = layerGraphs.length - 2; i >= 0; --i) { |
| 1368 | sortLayer(layerGraphs[i], cg, successorWeights(g, layerGraphs[i].nodes())); |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | },{"./order/crossCount":14,"./order/initLayerGraphs":15,"./order/initOrder":16,"./order/sortLayer":17,"./util":26}],14:[function(require,module,exports){ |
| 1373 | var util = require('../util'); |
| 1374 | |
| 1375 | module.exports = crossCount; |
| 1376 | |
| 1377 | /* |
| 1378 | * Returns the cross count for the given graph. |
| 1379 | */ |
| 1380 | function crossCount(g) { |
| 1381 | var cc = 0; |
| 1382 | var ordering = util.ordering(g); |
| 1383 | for (var i = 1; i < ordering.length; ++i) { |
| 1384 | cc += twoLayerCrossCount(g, ordering[i-1], ordering[i]); |
| 1385 | } |
| 1386 | return cc; |
| 1387 | } |
| 1388 | |
| 1389 | /* |
| 1390 | * This function searches through a ranked and ordered graph and counts the |
| 1391 | * number of edges that cross. This algorithm is derived from: |
| 1392 | * |
| 1393 | * W. Barth et al., Bilayer Cross Counting, JGAA, 8(2) 179–194 (2004) |
| 1394 | */ |
| 1395 | function twoLayerCrossCount(g, layer1, layer2) { |
| 1396 | var indices = []; |
| 1397 | layer1.forEach(function(u) { |
| 1398 | var nodeIndices = []; |
| 1399 | g.outEdges(u).forEach(function(e) { nodeIndices.push(g.node(g.target(e)).order); }); |
| 1400 | nodeIndices.sort(function(x, y) { return x - y; }); |
| 1401 | indices = indices.concat(nodeIndices); |
| 1402 | }); |
| 1403 | |
| 1404 | var firstIndex = 1; |
| 1405 | while (firstIndex < layer2.length) firstIndex <<= 1; |
| 1406 | |
| 1407 | var treeSize = 2 * firstIndex - 1; |
| 1408 | firstIndex -= 1; |
| 1409 | |
| 1410 | var tree = []; |
| 1411 | for (var i = 0; i < treeSize; ++i) { tree[i] = 0; } |
| 1412 | |
| 1413 | var cc = 0; |
| 1414 | indices.forEach(function(i) { |
| 1415 | var treeIndex = i + firstIndex; |
| 1416 | ++tree[treeIndex]; |
| 1417 | while (treeIndex > 0) { |
| 1418 | if (treeIndex % 2) { |
| 1419 | cc += tree[treeIndex + 1]; |
| 1420 | } |
| 1421 | treeIndex = (treeIndex - 1) >> 1; |
| 1422 | ++tree[treeIndex]; |
| 1423 | } |
| 1424 | }); |
| 1425 | |
| 1426 | return cc; |
| 1427 | } |
| 1428 | |
| 1429 | },{"../util":26}],15:[function(require,module,exports){ |
| 1430 | var nodesFromList = require('graphlib').filter.nodesFromList, |
| 1431 | /* jshint -W079 */ |
| 1432 | Set = require('cp-data').Set; |
| 1433 | |
| 1434 | module.exports = initLayerGraphs; |
| 1435 | |
| 1436 | /* |
| 1437 | * This function takes a compound layered graph, g, and produces an array of |
| 1438 | * layer graphs. Each entry in the array represents a subgraph of nodes |
| 1439 | * relevant for performing crossing reduction on that layer. |
| 1440 | */ |
| 1441 | function initLayerGraphs(g) { |
| 1442 | var ranks = []; |
| 1443 | |
| 1444 | function dfs(u) { |
| 1445 | if (u === null) { |
| 1446 | g.children(u).forEach(function(v) { dfs(v); }); |
| 1447 | return; |
| 1448 | } |
| 1449 | |
| 1450 | var value = g.node(u); |
| 1451 | value.minRank = ('rank' in value) ? value.rank : Number.MAX_VALUE; |
| 1452 | value.maxRank = ('rank' in value) ? value.rank : Number.MIN_VALUE; |
| 1453 | var uRanks = new Set(); |
| 1454 | g.children(u).forEach(function(v) { |
| 1455 | var rs = dfs(v); |
| 1456 | uRanks = Set.union([uRanks, rs]); |
| 1457 | value.minRank = Math.min(value.minRank, g.node(v).minRank); |
| 1458 | value.maxRank = Math.max(value.maxRank, g.node(v).maxRank); |
| 1459 | }); |
| 1460 | |
| 1461 | if ('rank' in value) uRanks.add(value.rank); |
| 1462 | |
| 1463 | uRanks.keys().forEach(function(r) { |
| 1464 | if (!(r in ranks)) ranks[r] = []; |
| 1465 | ranks[r].push(u); |
| 1466 | }); |
| 1467 | |
| 1468 | return uRanks; |
| 1469 | } |
| 1470 | dfs(null); |
| 1471 | |
| 1472 | var layerGraphs = []; |
| 1473 | ranks.forEach(function(us, rank) { |
| 1474 | layerGraphs[rank] = g.filterNodes(nodesFromList(us)); |
| 1475 | }); |
| 1476 | |
| 1477 | return layerGraphs; |
| 1478 | } |
| 1479 | |
| 1480 | },{"cp-data":5,"graphlib":28}],16:[function(require,module,exports){ |
| 1481 | var crossCount = require('./crossCount'), |
| 1482 | util = require('../util'); |
| 1483 | |
| 1484 | module.exports = initOrder; |
| 1485 | |
| 1486 | /* |
| 1487 | * Given a graph with a set of layered nodes (i.e. nodes that have a `rank` |
| 1488 | * attribute) this function attaches an `order` attribute that uniquely |
| 1489 | * arranges each node of each rank. If no constraint graph is provided the |
| 1490 | * order of the nodes in each rank is entirely arbitrary. |
| 1491 | */ |
| 1492 | function initOrder(g, random) { |
| 1493 | var layers = []; |
| 1494 | |
| 1495 | g.eachNode(function(u, value) { |
| 1496 | var layer = layers[value.rank]; |
| 1497 | if (g.children && g.children(u).length > 0) return; |
| 1498 | if (!layer) { |
| 1499 | layer = layers[value.rank] = []; |
| 1500 | } |
| 1501 | layer.push(u); |
| 1502 | }); |
| 1503 | |
| 1504 | layers.forEach(function(layer) { |
| 1505 | if (random) { |
| 1506 | util.shuffle(layer); |
| 1507 | } |
| 1508 | layer.forEach(function(u, i) { |
| 1509 | g.node(u).order = i; |
| 1510 | }); |
| 1511 | }); |
| 1512 | |
| 1513 | var cc = crossCount(g); |
| 1514 | g.graph().orderInitCC = cc; |
| 1515 | g.graph().orderCC = Number.MAX_VALUE; |
| 1516 | } |
| 1517 | |
| 1518 | },{"../util":26,"./crossCount":14}],17:[function(require,module,exports){ |
| 1519 | var util = require('../util'); |
| 1520 | /* |
| 1521 | Digraph = require('graphlib').Digraph, |
| 1522 | topsort = require('graphlib').alg.topsort, |
| 1523 | nodesFromList = require('graphlib').filter.nodesFromList; |
| 1524 | */ |
| 1525 | |
| 1526 | module.exports = sortLayer; |
| 1527 | |
| 1528 | /* |
| 1529 | function sortLayer(g, cg, weights) { |
| 1530 | var result = sortLayerSubgraph(g, null, cg, weights); |
| 1531 | result.list.forEach(function(u, i) { |
| 1532 | g.node(u).order = i; |
| 1533 | }); |
| 1534 | return result.constraintGraph; |
| 1535 | } |
| 1536 | */ |
| 1537 | |
| 1538 | function sortLayer(g, cg, weights) { |
| 1539 | var ordering = []; |
| 1540 | var bs = {}; |
| 1541 | g.eachNode(function(u, value) { |
| 1542 | ordering[value.order] = u; |
| 1543 | var ws = weights[u]; |
| 1544 | if (ws.length) { |
| 1545 | bs[u] = util.sum(ws) / ws.length; |
| 1546 | } |
| 1547 | }); |
| 1548 | |
| 1549 | var toSort = g.nodes().filter(function(u) { return bs[u] !== undefined; }); |
| 1550 | toSort.sort(function(x, y) { |
| 1551 | return bs[x] - bs[y] || g.node(x).order - g.node(y).order; |
| 1552 | }); |
| 1553 | |
| 1554 | for (var i = 0, j = 0, jl = toSort.length; j < jl; ++i) { |
| 1555 | if (bs[ordering[i]] !== undefined) { |
| 1556 | g.node(toSort[j++]).order = i; |
| 1557 | } |
| 1558 | } |
| 1559 | } |
| 1560 | |
| 1561 | // TOOD: re-enable constrained sorting once we have a strategy for handling |
| 1562 | // undefined barycenters. |
| 1563 | /* |
| 1564 | function sortLayerSubgraph(g, sg, cg, weights) { |
| 1565 | cg = cg ? cg.filterNodes(nodesFromList(g.children(sg))) : new Digraph(); |
| 1566 | |
| 1567 | var nodeData = {}; |
| 1568 | g.children(sg).forEach(function(u) { |
| 1569 | if (g.children(u).length) { |
| 1570 | nodeData[u] = sortLayerSubgraph(g, u, cg, weights); |
| 1571 | nodeData[u].firstSG = u; |
| 1572 | nodeData[u].lastSG = u; |
| 1573 | } else { |
| 1574 | var ws = weights[u]; |
| 1575 | nodeData[u] = { |
| 1576 | degree: ws.length, |
| 1577 | barycenter: ws.length > 0 ? util.sum(ws) / ws.length : 0, |
| 1578 | list: [u] |
| 1579 | }; |
| 1580 | } |
| 1581 | }); |
| 1582 | |
| 1583 | resolveViolatedConstraints(g, cg, nodeData); |
| 1584 | |
| 1585 | var keys = Object.keys(nodeData); |
| 1586 | keys.sort(function(x, y) { |
| 1587 | return nodeData[x].barycenter - nodeData[y].barycenter; |
| 1588 | }); |
| 1589 | |
| 1590 | var result = keys.map(function(u) { return nodeData[u]; }) |
| 1591 | .reduce(function(lhs, rhs) { return mergeNodeData(g, lhs, rhs); }); |
| 1592 | return result; |
| 1593 | } |
| 1594 | |
| 1595 | /* |
| 1596 | function mergeNodeData(g, lhs, rhs) { |
| 1597 | var cg = mergeDigraphs(lhs.constraintGraph, rhs.constraintGraph); |
| 1598 | |
| 1599 | if (lhs.lastSG !== undefined && rhs.firstSG !== undefined) { |
| 1600 | if (cg === undefined) { |
| 1601 | cg = new Digraph(); |
| 1602 | } |
| 1603 | if (!cg.hasNode(lhs.lastSG)) { cg.addNode(lhs.lastSG); } |
| 1604 | cg.addNode(rhs.firstSG); |
| 1605 | cg.addEdge(null, lhs.lastSG, rhs.firstSG); |
| 1606 | } |
| 1607 | |
| 1608 | return { |
| 1609 | degree: lhs.degree + rhs.degree, |
| 1610 | barycenter: (lhs.barycenter * lhs.degree + rhs.barycenter * rhs.degree) / |
| 1611 | (lhs.degree + rhs.degree), |
| 1612 | list: lhs.list.concat(rhs.list), |
| 1613 | firstSG: lhs.firstSG !== undefined ? lhs.firstSG : rhs.firstSG, |
| 1614 | lastSG: rhs.lastSG !== undefined ? rhs.lastSG : lhs.lastSG, |
| 1615 | constraintGraph: cg |
| 1616 | }; |
| 1617 | } |
| 1618 | |
| 1619 | function mergeDigraphs(lhs, rhs) { |
| 1620 | if (lhs === undefined) return rhs; |
| 1621 | if (rhs === undefined) return lhs; |
| 1622 | |
| 1623 | lhs = lhs.copy(); |
| 1624 | rhs.nodes().forEach(function(u) { lhs.addNode(u); }); |
| 1625 | rhs.edges().forEach(function(e, u, v) { lhs.addEdge(null, u, v); }); |
| 1626 | return lhs; |
| 1627 | } |
| 1628 | |
| 1629 | function resolveViolatedConstraints(g, cg, nodeData) { |
| 1630 | // Removes nodes `u` and `v` from `cg` and makes any edges incident on them |
| 1631 | // incident on `w` instead. |
| 1632 | function collapseNodes(u, v, w) { |
| 1633 | // TODO original paper removes self loops, but it is not obvious when this would happen |
| 1634 | cg.inEdges(u).forEach(function(e) { |
| 1635 | cg.delEdge(e); |
| 1636 | cg.addEdge(null, cg.source(e), w); |
| 1637 | }); |
| 1638 | |
| 1639 | cg.outEdges(v).forEach(function(e) { |
| 1640 | cg.delEdge(e); |
| 1641 | cg.addEdge(null, w, cg.target(e)); |
| 1642 | }); |
| 1643 | |
| 1644 | cg.delNode(u); |
| 1645 | cg.delNode(v); |
| 1646 | } |
| 1647 | |
| 1648 | var violated; |
| 1649 | while ((violated = findViolatedConstraint(cg, nodeData)) !== undefined) { |
| 1650 | var source = cg.source(violated), |
| 1651 | target = cg.target(violated); |
| 1652 | |
| 1653 | var v; |
| 1654 | while ((v = cg.addNode(null)) && g.hasNode(v)) { |
| 1655 | cg.delNode(v); |
| 1656 | } |
| 1657 | |
| 1658 | // Collapse barycenter and list |
| 1659 | nodeData[v] = mergeNodeData(g, nodeData[source], nodeData[target]); |
| 1660 | delete nodeData[source]; |
| 1661 | delete nodeData[target]; |
| 1662 | |
| 1663 | collapseNodes(source, target, v); |
| 1664 | if (cg.incidentEdges(v).length === 0) { cg.delNode(v); } |
| 1665 | } |
| 1666 | } |
| 1667 | |
| 1668 | function findViolatedConstraint(cg, nodeData) { |
| 1669 | var us = topsort(cg); |
| 1670 | for (var i = 0; i < us.length; ++i) { |
| 1671 | var u = us[i]; |
| 1672 | var inEdges = cg.inEdges(u); |
| 1673 | for (var j = 0; j < inEdges.length; ++j) { |
| 1674 | var e = inEdges[j]; |
| 1675 | if (nodeData[cg.source(e)].barycenter >= nodeData[u].barycenter) { |
| 1676 | return e; |
| 1677 | } |
| 1678 | } |
| 1679 | } |
| 1680 | } |
| 1681 | */ |
| 1682 | |
| 1683 | },{"../util":26}],18:[function(require,module,exports){ |
| 1684 | var util = require('./util'); |
| 1685 | |
| 1686 | /* |
| 1687 | * The algorithms here are based on Brandes and Köpf, "Fast and Simple |
| 1688 | * Horizontal Coordinate Assignment". |
| 1689 | */ |
| 1690 | module.exports = function() { |
| 1691 | // External configuration |
| 1692 | var config = { |
| 1693 | nodeSep: 50, |
| 1694 | edgeSep: 10, |
| 1695 | universalSep: null, |
| 1696 | rankSep: 30 |
| 1697 | }; |
| 1698 | |
| 1699 | var self = {}; |
| 1700 | |
| 1701 | self.nodeSep = util.propertyAccessor(self, config, 'nodeSep'); |
| 1702 | self.edgeSep = util.propertyAccessor(self, config, 'edgeSep'); |
| 1703 | // If not null this separation value is used for all nodes and edges |
| 1704 | // regardless of their widths. `nodeSep` and `edgeSep` are ignored with this |
| 1705 | // option. |
| 1706 | self.universalSep = util.propertyAccessor(self, config, 'universalSep'); |
| 1707 | self.rankSep = util.propertyAccessor(self, config, 'rankSep'); |
| 1708 | self.debugLevel = util.propertyAccessor(self, config, 'debugLevel'); |
| 1709 | |
| 1710 | self.run = run; |
| 1711 | |
| 1712 | return self; |
| 1713 | |
| 1714 | function run(g) { |
| 1715 | g = g.filterNodes(util.filterNonSubgraphs(g)); |
| 1716 | |
| 1717 | var layering = util.ordering(g); |
| 1718 | |
| 1719 | var conflicts = findConflicts(g, layering); |
| 1720 | |
| 1721 | var xss = {}; |
| 1722 | ['u', 'd'].forEach(function(vertDir) { |
| 1723 | if (vertDir === 'd') layering.reverse(); |
| 1724 | |
| 1725 | ['l', 'r'].forEach(function(horizDir) { |
| 1726 | if (horizDir === 'r') reverseInnerOrder(layering); |
| 1727 | |
| 1728 | var dir = vertDir + horizDir; |
| 1729 | var align = verticalAlignment(g, layering, conflicts, vertDir === 'u' ? 'predecessors' : 'successors'); |
| 1730 | xss[dir]= horizontalCompaction(g, layering, align.pos, align.root, align.align); |
| 1731 | |
| 1732 | if (config.debugLevel >= 3) |
| 1733 | debugPositioning(vertDir + horizDir, g, layering, xss[dir]); |
| 1734 | |
| 1735 | if (horizDir === 'r') flipHorizontally(xss[dir]); |
| 1736 | |
| 1737 | if (horizDir === 'r') reverseInnerOrder(layering); |
| 1738 | }); |
| 1739 | |
| 1740 | if (vertDir === 'd') layering.reverse(); |
| 1741 | }); |
| 1742 | |
| 1743 | balance(g, layering, xss); |
| 1744 | |
| 1745 | g.eachNode(function(v) { |
| 1746 | var xs = []; |
| 1747 | for (var alignment in xss) { |
| 1748 | var alignmentX = xss[alignment][v]; |
| 1749 | posXDebug(alignment, g, v, alignmentX); |
| 1750 | xs.push(alignmentX); |
| 1751 | } |
| 1752 | xs.sort(function(x, y) { return x - y; }); |
| 1753 | posX(g, v, (xs[1] + xs[2]) / 2); |
| 1754 | }); |
| 1755 | |
| 1756 | // Align y coordinates with ranks |
| 1757 | var y = 0, reverseY = g.graph().rankDir === 'BT' || g.graph().rankDir === 'RL'; |
| 1758 | layering.forEach(function(layer) { |
| 1759 | var maxHeight = util.max(layer.map(function(u) { return height(g, u); })); |
| 1760 | y += maxHeight / 2; |
| 1761 | layer.forEach(function(u) { |
| 1762 | posY(g, u, reverseY ? -y : y); |
| 1763 | }); |
| 1764 | y += maxHeight / 2 + config.rankSep; |
| 1765 | }); |
| 1766 | |
| 1767 | // Translate layout so that top left corner of bounding rectangle has |
| 1768 | // coordinate (0, 0). |
| 1769 | var minX = util.min(g.nodes().map(function(u) { return posX(g, u) - width(g, u) / 2; })); |
| 1770 | var minY = util.min(g.nodes().map(function(u) { return posY(g, u) - height(g, u) / 2; })); |
| 1771 | g.eachNode(function(u) { |
| 1772 | posX(g, u, posX(g, u) - minX); |
| 1773 | posY(g, u, posY(g, u) - minY); |
| 1774 | }); |
| 1775 | } |
| 1776 | |
| 1777 | /* |
| 1778 | * Generate an ID that can be used to represent any undirected edge that is |
| 1779 | * incident on `u` and `v`. |
| 1780 | */ |
| 1781 | function undirEdgeId(u, v) { |
| 1782 | return u < v |
| 1783 | ? u.toString().length + ':' + u + '-' + v |
| 1784 | : v.toString().length + ':' + v + '-' + u; |
| 1785 | } |
| 1786 | |
| 1787 | function findConflicts(g, layering) { |
| 1788 | var conflicts = {}, // Set of conflicting edge ids |
| 1789 | pos = {}, // Position of node in its layer |
| 1790 | prevLayer, |
| 1791 | currLayer, |
| 1792 | k0, // Position of the last inner segment in the previous layer |
| 1793 | l, // Current position in the current layer (for iteration up to `l1`) |
| 1794 | k1; // Position of the next inner segment in the previous layer or |
| 1795 | // the position of the last element in the previous layer |
| 1796 | |
| 1797 | if (layering.length <= 2) return conflicts; |
| 1798 | |
| 1799 | function updateConflicts(v) { |
| 1800 | var k = pos[v]; |
| 1801 | if (k < k0 || k > k1) { |
| 1802 | conflicts[undirEdgeId(currLayer[l], v)] = true; |
| 1803 | } |
| 1804 | } |
| 1805 | |
| 1806 | layering[1].forEach(function(u, i) { pos[u] = i; }); |
| 1807 | for (var i = 1; i < layering.length - 1; ++i) { |
| 1808 | prevLayer = layering[i]; |
| 1809 | currLayer = layering[i+1]; |
| 1810 | k0 = 0; |
| 1811 | l = 0; |
| 1812 | |
| 1813 | // Scan current layer for next node that is incident to an inner segement |
| 1814 | // between layering[i+1] and layering[i]. |
| 1815 | for (var l1 = 0; l1 < currLayer.length; ++l1) { |
| 1816 | var u = currLayer[l1]; // Next inner segment in the current layer or |
| 1817 | // last node in the current layer |
| 1818 | pos[u] = l1; |
| 1819 | k1 = undefined; |
| 1820 | |
| 1821 | if (g.node(u).dummy) { |
| 1822 | var uPred = g.predecessors(u)[0]; |
| 1823 | // Note: In the case of self loops and sideways edges it is possible |
| 1824 | // for a dummy not to have a predecessor. |
| 1825 | if (uPred !== undefined && g.node(uPred).dummy) |
| 1826 | k1 = pos[uPred]; |
| 1827 | } |
| 1828 | if (k1 === undefined && l1 === currLayer.length - 1) |
| 1829 | k1 = prevLayer.length - 1; |
| 1830 | |
| 1831 | if (k1 !== undefined) { |
| 1832 | for (; l <= l1; ++l) { |
| 1833 | g.predecessors(currLayer[l]).forEach(updateConflicts); |
| 1834 | } |
| 1835 | k0 = k1; |
| 1836 | } |
| 1837 | } |
| 1838 | } |
| 1839 | |
| 1840 | return conflicts; |
| 1841 | } |
| 1842 | |
| 1843 | function verticalAlignment(g, layering, conflicts, relationship) { |
| 1844 | var pos = {}, // Position for a node in its layer |
| 1845 | root = {}, // Root of the block that the node participates in |
| 1846 | align = {}; // Points to the next node in the block or, if the last |
| 1847 | // element in the block, points to the first block's root |
| 1848 | |
| 1849 | layering.forEach(function(layer) { |
| 1850 | layer.forEach(function(u, i) { |
| 1851 | root[u] = u; |
| 1852 | align[u] = u; |
| 1853 | pos[u] = i; |
| 1854 | }); |
| 1855 | }); |
| 1856 | |
| 1857 | layering.forEach(function(layer) { |
| 1858 | var prevIdx = -1; |
| 1859 | layer.forEach(function(v) { |
| 1860 | var related = g[relationship](v), // Adjacent nodes from the previous layer |
| 1861 | mid; // The mid point in the related array |
| 1862 | |
| 1863 | if (related.length > 0) { |
| 1864 | related.sort(function(x, y) { return pos[x] - pos[y]; }); |
| 1865 | mid = (related.length - 1) / 2; |
| 1866 | related.slice(Math.floor(mid), Math.ceil(mid) + 1).forEach(function(u) { |
| 1867 | if (align[v] === v) { |
| 1868 | if (!conflicts[undirEdgeId(u, v)] && prevIdx < pos[u]) { |
| 1869 | align[u] = v; |
| 1870 | align[v] = root[v] = root[u]; |
| 1871 | prevIdx = pos[u]; |
| 1872 | } |
| 1873 | } |
| 1874 | }); |
| 1875 | } |
| 1876 | }); |
| 1877 | }); |
| 1878 | |
| 1879 | return { pos: pos, root: root, align: align }; |
| 1880 | } |
| 1881 | |
| 1882 | // This function deviates from the standard BK algorithm in two ways. First |
| 1883 | // it takes into account the size of the nodes. Second it includes a fix to |
| 1884 | // the original algorithm that is described in Carstens, "Node and Label |
| 1885 | // Placement in a Layered Layout Algorithm". |
| 1886 | function horizontalCompaction(g, layering, pos, root, align) { |
| 1887 | var sink = {}, // Mapping of node id -> sink node id for class |
| 1888 | maybeShift = {}, // Mapping of sink node id -> { class node id, min shift } |
| 1889 | shift = {}, // Mapping of sink node id -> shift |
| 1890 | pred = {}, // Mapping of node id -> predecessor node (or null) |
| 1891 | xs = {}; // Calculated X positions |
| 1892 | |
| 1893 | layering.forEach(function(layer) { |
| 1894 | layer.forEach(function(u, i) { |
| 1895 | sink[u] = u; |
| 1896 | maybeShift[u] = {}; |
| 1897 | if (i > 0) |
| 1898 | pred[u] = layer[i - 1]; |
| 1899 | }); |
| 1900 | }); |
| 1901 | |
| 1902 | function updateShift(toShift, neighbor, delta) { |
| 1903 | if (!(neighbor in maybeShift[toShift])) { |
| 1904 | maybeShift[toShift][neighbor] = delta; |
| 1905 | } else { |
| 1906 | maybeShift[toShift][neighbor] = Math.min(maybeShift[toShift][neighbor], delta); |
| 1907 | } |
| 1908 | } |
| 1909 | |
| 1910 | function placeBlock(v) { |
| 1911 | if (!(v in xs)) { |
| 1912 | xs[v] = 0; |
| 1913 | var w = v; |
| 1914 | do { |
| 1915 | if (pos[w] > 0) { |
| 1916 | var u = root[pred[w]]; |
| 1917 | placeBlock(u); |
| 1918 | if (sink[v] === v) { |
| 1919 | sink[v] = sink[u]; |
| 1920 | } |
| 1921 | var delta = sep(g, pred[w]) + sep(g, w); |
| 1922 | if (sink[v] !== sink[u]) { |
| 1923 | updateShift(sink[u], sink[v], xs[v] - xs[u] - delta); |
| 1924 | } else { |
| 1925 | xs[v] = Math.max(xs[v], xs[u] + delta); |
| 1926 | } |
| 1927 | } |
| 1928 | w = align[w]; |
| 1929 | } while (w !== v); |
| 1930 | } |
| 1931 | } |
| 1932 | |
| 1933 | // Root coordinates relative to sink |
| 1934 | util.values(root).forEach(function(v) { |
| 1935 | placeBlock(v); |
| 1936 | }); |
| 1937 | |
| 1938 | // Absolute coordinates |
| 1939 | // There is an assumption here that we've resolved shifts for any classes |
| 1940 | // that begin at an earlier layer. We guarantee this by visiting layers in |
| 1941 | // order. |
| 1942 | layering.forEach(function(layer) { |
| 1943 | layer.forEach(function(v) { |
| 1944 | xs[v] = xs[root[v]]; |
| 1945 | if (v === root[v] && v === sink[v]) { |
| 1946 | var minShift = 0; |
| 1947 | if (v in maybeShift && Object.keys(maybeShift[v]).length > 0) { |
| 1948 | minShift = util.min(Object.keys(maybeShift[v]) |
| 1949 | .map(function(u) { |
| 1950 | return maybeShift[v][u] + (u in shift ? shift[u] : 0); |
| 1951 | } |
| 1952 | )); |
| 1953 | } |
| 1954 | shift[v] = minShift; |
| 1955 | } |
| 1956 | }); |
| 1957 | }); |
| 1958 | |
| 1959 | layering.forEach(function(layer) { |
| 1960 | layer.forEach(function(v) { |
| 1961 | xs[v] += shift[sink[root[v]]] || 0; |
| 1962 | }); |
| 1963 | }); |
| 1964 | |
| 1965 | return xs; |
| 1966 | } |
| 1967 | |
| 1968 | function findMinCoord(g, layering, xs) { |
| 1969 | return util.min(layering.map(function(layer) { |
| 1970 | var u = layer[0]; |
| 1971 | return xs[u]; |
| 1972 | })); |
| 1973 | } |
| 1974 | |
| 1975 | function findMaxCoord(g, layering, xs) { |
| 1976 | return util.max(layering.map(function(layer) { |
| 1977 | var u = layer[layer.length - 1]; |
| 1978 | return xs[u]; |
| 1979 | })); |
| 1980 | } |
| 1981 | |
| 1982 | function balance(g, layering, xss) { |
| 1983 | var min = {}, // Min coordinate for the alignment |
| 1984 | max = {}, // Max coordinate for the alginment |
| 1985 | smallestAlignment, |
| 1986 | shift = {}; // Amount to shift a given alignment |
| 1987 | |
| 1988 | function updateAlignment(v) { |
| 1989 | xss[alignment][v] += shift[alignment]; |
| 1990 | } |
| 1991 | |
| 1992 | var smallest = Number.POSITIVE_INFINITY; |
| 1993 | for (var alignment in xss) { |
| 1994 | var xs = xss[alignment]; |
| 1995 | min[alignment] = findMinCoord(g, layering, xs); |
| 1996 | max[alignment] = findMaxCoord(g, layering, xs); |
| 1997 | var w = max[alignment] - min[alignment]; |
| 1998 | if (w < smallest) { |
| 1999 | smallest = w; |
| 2000 | smallestAlignment = alignment; |
| 2001 | } |
| 2002 | } |
| 2003 | |
| 2004 | // Determine how much to adjust positioning for each alignment |
| 2005 | ['u', 'd'].forEach(function(vertDir) { |
| 2006 | ['l', 'r'].forEach(function(horizDir) { |
| 2007 | var alignment = vertDir + horizDir; |
| 2008 | shift[alignment] = horizDir === 'l' |
| 2009 | ? min[smallestAlignment] - min[alignment] |
| 2010 | : max[smallestAlignment] - max[alignment]; |
| 2011 | }); |
| 2012 | }); |
| 2013 | |
| 2014 | // Find average of medians for xss array |
| 2015 | for (alignment in xss) { |
| 2016 | g.eachNode(updateAlignment); |
| 2017 | } |
| 2018 | } |
| 2019 | |
| 2020 | function flipHorizontally(xs) { |
| 2021 | for (var u in xs) { |
| 2022 | xs[u] = -xs[u]; |
| 2023 | } |
| 2024 | } |
| 2025 | |
| 2026 | function reverseInnerOrder(layering) { |
| 2027 | layering.forEach(function(layer) { |
| 2028 | layer.reverse(); |
| 2029 | }); |
| 2030 | } |
| 2031 | |
| 2032 | function width(g, u) { |
| 2033 | switch (g.graph().rankDir) { |
| 2034 | case 'LR': return g.node(u).height; |
| 2035 | case 'RL': return g.node(u).height; |
| 2036 | default: return g.node(u).width; |
| 2037 | } |
| 2038 | } |
| 2039 | |
| 2040 | function height(g, u) { |
| 2041 | switch(g.graph().rankDir) { |
| 2042 | case 'LR': return g.node(u).width; |
| 2043 | case 'RL': return g.node(u).width; |
| 2044 | default: return g.node(u).height; |
| 2045 | } |
| 2046 | } |
| 2047 | |
| 2048 | function sep(g, u) { |
| 2049 | if (config.universalSep !== null) { |
| 2050 | return config.universalSep; |
| 2051 | } |
| 2052 | var w = width(g, u); |
| 2053 | var s = g.node(u).dummy ? config.edgeSep : config.nodeSep; |
| 2054 | return (w + s) / 2; |
| 2055 | } |
| 2056 | |
| 2057 | function posX(g, u, x) { |
| 2058 | if (g.graph().rankDir === 'LR' || g.graph().rankDir === 'RL') { |
| 2059 | if (arguments.length < 3) { |
| 2060 | return g.node(u).y; |
| 2061 | } else { |
| 2062 | g.node(u).y = x; |
| 2063 | } |
| 2064 | } else { |
| 2065 | if (arguments.length < 3) { |
| 2066 | return g.node(u).x; |
| 2067 | } else { |
| 2068 | g.node(u).x = x; |
| 2069 | } |
| 2070 | } |
| 2071 | } |
| 2072 | |
| 2073 | function posXDebug(name, g, u, x) { |
| 2074 | if (g.graph().rankDir === 'LR' || g.graph().rankDir === 'RL') { |
| 2075 | if (arguments.length < 3) { |
| 2076 | return g.node(u)[name]; |
| 2077 | } else { |
| 2078 | g.node(u)[name] = x; |
| 2079 | } |
| 2080 | } else { |
| 2081 | if (arguments.length < 3) { |
| 2082 | return g.node(u)[name]; |
| 2083 | } else { |
| 2084 | g.node(u)[name] = x; |
| 2085 | } |
| 2086 | } |
| 2087 | } |
| 2088 | |
| 2089 | function posY(g, u, y) { |
| 2090 | if (g.graph().rankDir === 'LR' || g.graph().rankDir === 'RL') { |
| 2091 | if (arguments.length < 3) { |
| 2092 | return g.node(u).x; |
| 2093 | } else { |
| 2094 | g.node(u).x = y; |
| 2095 | } |
| 2096 | } else { |
| 2097 | if (arguments.length < 3) { |
| 2098 | return g.node(u).y; |
| 2099 | } else { |
| 2100 | g.node(u).y = y; |
| 2101 | } |
| 2102 | } |
| 2103 | } |
| 2104 | |
| 2105 | function debugPositioning(align, g, layering, xs) { |
| 2106 | layering.forEach(function(l, li) { |
| 2107 | var u, xU; |
| 2108 | l.forEach(function(v) { |
| 2109 | var xV = xs[v]; |
| 2110 | if (u) { |
| 2111 | var s = sep(g, u) + sep(g, v); |
| 2112 | if (xV - xU < s) |
| 2113 | console.log('Position phase: sep violation. Align: ' + align + '. Layer: ' + li + '. ' + |
| 2114 | 'U: ' + u + ' V: ' + v + '. Actual sep: ' + (xV - xU) + ' Expected sep: ' + s); |
| 2115 | } |
| 2116 | u = v; |
| 2117 | xU = xV; |
| 2118 | }); |
| 2119 | }); |
| 2120 | } |
| 2121 | }; |
| 2122 | |
| 2123 | },{"./util":26}],19:[function(require,module,exports){ |
| 2124 | var util = require('./util'), |
| 2125 | acyclic = require('./rank/acyclic'), |
| 2126 | initRank = require('./rank/initRank'), |
| 2127 | feasibleTree = require('./rank/feasibleTree'), |
| 2128 | constraints = require('./rank/constraints'), |
| 2129 | simplex = require('./rank/simplex'), |
| 2130 | components = require('graphlib').alg.components, |
| 2131 | filter = require('graphlib').filter; |
| 2132 | |
| 2133 | exports.run = run; |
| 2134 | exports.restoreEdges = restoreEdges; |
| 2135 | |
| 2136 | /* |
| 2137 | * Heuristic function that assigns a rank to each node of the input graph with |
| 2138 | * the intent of minimizing edge lengths, while respecting the `minLen` |
| 2139 | * attribute of incident edges. |
| 2140 | * |
| 2141 | * Prerequisites: |
| 2142 | * |
| 2143 | * * Each edge in the input graph must have an assigned 'minLen' attribute |
| 2144 | */ |
| 2145 | function run(g, useSimplex) { |
| 2146 | expandSelfLoops(g); |
| 2147 | |
| 2148 | // If there are rank constraints on nodes, then build a new graph that |
| 2149 | // encodes the constraints. |
| 2150 | util.time('constraints.apply', constraints.apply)(g); |
| 2151 | |
| 2152 | expandSidewaysEdges(g); |
| 2153 | |
| 2154 | // Reverse edges to get an acyclic graph, we keep the graph in an acyclic |
| 2155 | // state until the very end. |
| 2156 | util.time('acyclic', acyclic)(g); |
| 2157 | |
| 2158 | // Convert the graph into a flat graph for ranking |
| 2159 | var flatGraph = g.filterNodes(util.filterNonSubgraphs(g)); |
| 2160 | |
| 2161 | // Assign an initial ranking using DFS. |
| 2162 | initRank(flatGraph); |
| 2163 | |
| 2164 | // For each component improve the assigned ranks. |
| 2165 | components(flatGraph).forEach(function(cmpt) { |
| 2166 | var subgraph = flatGraph.filterNodes(filter.nodesFromList(cmpt)); |
| 2167 | rankComponent(subgraph, useSimplex); |
| 2168 | }); |
| 2169 | |
| 2170 | // Relax original constraints |
| 2171 | util.time('constraints.relax', constraints.relax(g)); |
| 2172 | |
| 2173 | // When handling nodes with constrained ranks it is possible to end up with |
| 2174 | // edges that point to previous ranks. Most of the subsequent algorithms assume |
| 2175 | // that edges are pointing to successive ranks only. Here we reverse any "back |
| 2176 | // edges" and mark them as such. The acyclic algorithm will reverse them as a |
| 2177 | // post processing step. |
| 2178 | util.time('reorientEdges', reorientEdges)(g); |
| 2179 | } |
| 2180 | |
| 2181 | function restoreEdges(g) { |
| 2182 | acyclic.undo(g); |
| 2183 | } |
| 2184 | |
| 2185 | /* |
| 2186 | * Expand self loops into three dummy nodes. One will sit above the incident |
| 2187 | * node, one will be at the same level, and one below. The result looks like: |
| 2188 | * |
| 2189 | * /--<--x--->--\ |
| 2190 | * node y |
| 2191 | * \--<--z--->--/ |
| 2192 | * |
| 2193 | * Dummy nodes x, y, z give us the shape of a loop and node y is where we place |
| 2194 | * the label. |
| 2195 | * |
| 2196 | * TODO: consolidate knowledge of dummy node construction. |
| 2197 | * TODO: support minLen = 2 |
| 2198 | */ |
| 2199 | function expandSelfLoops(g) { |
| 2200 | g.eachEdge(function(e, u, v, a) { |
| 2201 | if (u === v) { |
| 2202 | var x = addDummyNode(g, e, u, v, a, 0, false), |
| 2203 | y = addDummyNode(g, e, u, v, a, 1, true), |
| 2204 | z = addDummyNode(g, e, u, v, a, 2, false); |
| 2205 | g.addEdge(null, x, u, {minLen: 1, selfLoop: true}); |
| 2206 | g.addEdge(null, x, y, {minLen: 1, selfLoop: true}); |
| 2207 | g.addEdge(null, u, z, {minLen: 1, selfLoop: true}); |
| 2208 | g.addEdge(null, y, z, {minLen: 1, selfLoop: true}); |
| 2209 | g.delEdge(e); |
| 2210 | } |
| 2211 | }); |
| 2212 | } |
| 2213 | |
| 2214 | function expandSidewaysEdges(g) { |
| 2215 | g.eachEdge(function(e, u, v, a) { |
| 2216 | if (u === v) { |
| 2217 | var origEdge = a.originalEdge, |
| 2218 | dummy = addDummyNode(g, origEdge.e, origEdge.u, origEdge.v, origEdge.value, 0, true); |
| 2219 | g.addEdge(null, u, dummy, {minLen: 1}); |
| 2220 | g.addEdge(null, dummy, v, {minLen: 1}); |
| 2221 | g.delEdge(e); |
| 2222 | } |
| 2223 | }); |
| 2224 | } |
| 2225 | |
| 2226 | function addDummyNode(g, e, u, v, a, index, isLabel) { |
| 2227 | return g.addNode(null, { |
| 2228 | width: isLabel ? a.width : 0, |
| 2229 | height: isLabel ? a.height : 0, |
| 2230 | edge: { id: e, source: u, target: v, attrs: a }, |
| 2231 | dummy: true, |
| 2232 | index: index |
| 2233 | }); |
| 2234 | } |
| 2235 | |
| 2236 | function reorientEdges(g) { |
| 2237 | g.eachEdge(function(e, u, v, value) { |
| 2238 | if (g.node(u).rank > g.node(v).rank) { |
| 2239 | g.delEdge(e); |
| 2240 | value.reversed = true; |
| 2241 | g.addEdge(e, v, u, value); |
| 2242 | } |
| 2243 | }); |
| 2244 | } |
| 2245 | |
| 2246 | function rankComponent(subgraph, useSimplex) { |
| 2247 | var spanningTree = feasibleTree(subgraph); |
| 2248 | |
| 2249 | if (useSimplex) { |
| 2250 | util.log(1, 'Using network simplex for ranking'); |
| 2251 | simplex(subgraph, spanningTree); |
| 2252 | } |
| 2253 | normalize(subgraph); |
| 2254 | } |
| 2255 | |
| 2256 | function normalize(g) { |
| 2257 | var m = util.min(g.nodes().map(function(u) { return g.node(u).rank; })); |
| 2258 | g.eachNode(function(u, node) { node.rank -= m; }); |
| 2259 | } |
| 2260 | |
| 2261 | },{"./rank/acyclic":20,"./rank/constraints":21,"./rank/feasibleTree":22,"./rank/initRank":23,"./rank/simplex":25,"./util":26,"graphlib":28}],20:[function(require,module,exports){ |
| 2262 | var util = require('../util'); |
| 2263 | |
| 2264 | module.exports = acyclic; |
| 2265 | module.exports.undo = undo; |
| 2266 | |
| 2267 | /* |
| 2268 | * This function takes a directed graph that may have cycles and reverses edges |
| 2269 | * as appropriate to break these cycles. Each reversed edge is assigned a |
| 2270 | * `reversed` attribute with the value `true`. |
| 2271 | * |
| 2272 | * There should be no self loops in the graph. |
| 2273 | */ |
| 2274 | function acyclic(g) { |
| 2275 | var onStack = {}, |
| 2276 | visited = {}, |
| 2277 | reverseCount = 0; |
| 2278 | |
| 2279 | function dfs(u) { |
| 2280 | if (u in visited) return; |
| 2281 | visited[u] = onStack[u] = true; |
| 2282 | g.outEdges(u).forEach(function(e) { |
| 2283 | var t = g.target(e), |
| 2284 | value; |
| 2285 | |
| 2286 | if (u === t) { |
| 2287 | console.error('Warning: found self loop "' + e + '" for node "' + u + '"'); |
| 2288 | } else if (t in onStack) { |
| 2289 | value = g.edge(e); |
| 2290 | g.delEdge(e); |
| 2291 | value.reversed = true; |
| 2292 | ++reverseCount; |
| 2293 | g.addEdge(e, t, u, value); |
| 2294 | } else { |
| 2295 | dfs(t); |
| 2296 | } |
| 2297 | }); |
| 2298 | |
| 2299 | delete onStack[u]; |
| 2300 | } |
| 2301 | |
| 2302 | g.eachNode(function(u) { dfs(u); }); |
| 2303 | |
| 2304 | util.log(2, 'Acyclic Phase: reversed ' + reverseCount + ' edge(s)'); |
| 2305 | |
| 2306 | return reverseCount; |
| 2307 | } |
| 2308 | |
| 2309 | /* |
| 2310 | * Given a graph that has had the acyclic operation applied, this function |
| 2311 | * undoes that operation. More specifically, any edge with the `reversed` |
| 2312 | * attribute is again reversed to restore the original direction of the edge. |
| 2313 | */ |
| 2314 | function undo(g) { |
| 2315 | g.eachEdge(function(e, s, t, a) { |
| 2316 | if (a.reversed) { |
| 2317 | delete a.reversed; |
| 2318 | g.delEdge(e); |
| 2319 | g.addEdge(e, t, s, a); |
| 2320 | } |
| 2321 | }); |
| 2322 | } |
| 2323 | |
| 2324 | },{"../util":26}],21:[function(require,module,exports){ |
| 2325 | exports.apply = function(g) { |
| 2326 | function dfs(sg) { |
| 2327 | var rankSets = {}; |
| 2328 | g.children(sg).forEach(function(u) { |
| 2329 | if (g.children(u).length) { |
| 2330 | dfs(u); |
| 2331 | return; |
| 2332 | } |
| 2333 | |
| 2334 | var value = g.node(u), |
| 2335 | prefRank = value.prefRank; |
| 2336 | if (prefRank !== undefined) { |
| 2337 | if (!checkSupportedPrefRank(prefRank)) { return; } |
| 2338 | |
| 2339 | if (!(prefRank in rankSets)) { |
| 2340 | rankSets.prefRank = [u]; |
| 2341 | } else { |
| 2342 | rankSets.prefRank.push(u); |
| 2343 | } |
| 2344 | |
| 2345 | var newU = rankSets[prefRank]; |
| 2346 | if (newU === undefined) { |
| 2347 | newU = rankSets[prefRank] = g.addNode(null, { originalNodes: [] }); |
| 2348 | g.parent(newU, sg); |
| 2349 | } |
| 2350 | |
| 2351 | redirectInEdges(g, u, newU, prefRank === 'min'); |
| 2352 | redirectOutEdges(g, u, newU, prefRank === 'max'); |
| 2353 | |
| 2354 | // Save original node and remove it from reduced graph |
| 2355 | g.node(newU).originalNodes.push({ u: u, value: value, parent: sg }); |
| 2356 | g.delNode(u); |
| 2357 | } |
| 2358 | }); |
| 2359 | |
| 2360 | addLightEdgesFromMinNode(g, sg, rankSets.min); |
| 2361 | addLightEdgesToMaxNode(g, sg, rankSets.max); |
| 2362 | } |
| 2363 | |
| 2364 | dfs(null); |
| 2365 | }; |
| 2366 | |
| 2367 | function checkSupportedPrefRank(prefRank) { |
| 2368 | if (prefRank !== 'min' && prefRank !== 'max' && prefRank.indexOf('same_') !== 0) { |
| 2369 | console.error('Unsupported rank type: ' + prefRank); |
| 2370 | return false; |
| 2371 | } |
| 2372 | return true; |
| 2373 | } |
| 2374 | |
| 2375 | function redirectInEdges(g, u, newU, reverse) { |
| 2376 | g.inEdges(u).forEach(function(e) { |
| 2377 | var origValue = g.edge(e), |
| 2378 | value; |
| 2379 | if (origValue.originalEdge) { |
| 2380 | value = origValue; |
| 2381 | } else { |
| 2382 | value = { |
| 2383 | originalEdge: { e: e, u: g.source(e), v: g.target(e), value: origValue }, |
| 2384 | minLen: g.edge(e).minLen |
| 2385 | }; |
| 2386 | } |
| 2387 | |
| 2388 | // Do not reverse edges for self-loops. |
| 2389 | if (origValue.selfLoop) { |
| 2390 | reverse = false; |
| 2391 | } |
| 2392 | |
| 2393 | if (reverse) { |
| 2394 | // Ensure that all edges to min are reversed |
| 2395 | g.addEdge(null, newU, g.source(e), value); |
| 2396 | value.reversed = true; |
| 2397 | } else { |
| 2398 | g.addEdge(null, g.source(e), newU, value); |
| 2399 | } |
| 2400 | }); |
| 2401 | } |
| 2402 | |
| 2403 | function redirectOutEdges(g, u, newU, reverse) { |
| 2404 | g.outEdges(u).forEach(function(e) { |
| 2405 | var origValue = g.edge(e), |
| 2406 | value; |
| 2407 | if (origValue.originalEdge) { |
| 2408 | value = origValue; |
| 2409 | } else { |
| 2410 | value = { |
| 2411 | originalEdge: { e: e, u: g.source(e), v: g.target(e), value: origValue }, |
| 2412 | minLen: g.edge(e).minLen |
| 2413 | }; |
| 2414 | } |
| 2415 | |
| 2416 | // Do not reverse edges for self-loops. |
| 2417 | if (origValue.selfLoop) { |
| 2418 | reverse = false; |
| 2419 | } |
| 2420 | |
| 2421 | if (reverse) { |
| 2422 | // Ensure that all edges from max are reversed |
| 2423 | g.addEdge(null, g.target(e), newU, value); |
| 2424 | value.reversed = true; |
| 2425 | } else { |
| 2426 | g.addEdge(null, newU, g.target(e), value); |
| 2427 | } |
| 2428 | }); |
| 2429 | } |
| 2430 | |
| 2431 | function addLightEdgesFromMinNode(g, sg, minNode) { |
| 2432 | if (minNode !== undefined) { |
| 2433 | g.children(sg).forEach(function(u) { |
| 2434 | // The dummy check ensures we don't add an edge if the node is involved |
| 2435 | // in a self loop or sideways edge. |
| 2436 | if (u !== minNode && !g.outEdges(minNode, u).length && !g.node(u).dummy) { |
| 2437 | g.addEdge(null, minNode, u, { minLen: 0 }); |
| 2438 | } |
| 2439 | }); |
| 2440 | } |
| 2441 | } |
| 2442 | |
| 2443 | function addLightEdgesToMaxNode(g, sg, maxNode) { |
| 2444 | if (maxNode !== undefined) { |
| 2445 | g.children(sg).forEach(function(u) { |
| 2446 | // The dummy check ensures we don't add an edge if the node is involved |
| 2447 | // in a self loop or sideways edge. |
| 2448 | if (u !== maxNode && !g.outEdges(u, maxNode).length && !g.node(u).dummy) { |
| 2449 | g.addEdge(null, u, maxNode, { minLen: 0 }); |
| 2450 | } |
| 2451 | }); |
| 2452 | } |
| 2453 | } |
| 2454 | |
| 2455 | /* |
| 2456 | * This function "relaxes" the constraints applied previously by the "apply" |
| 2457 | * function. It expands any nodes that were collapsed and assigns the rank of |
| 2458 | * the collapsed node to each of the expanded nodes. It also restores the |
| 2459 | * original edges and removes any dummy edges pointing at the collapsed nodes. |
| 2460 | * |
| 2461 | * Note that the process of removing collapsed nodes also removes dummy edges |
| 2462 | * automatically. |
| 2463 | */ |
| 2464 | exports.relax = function(g) { |
| 2465 | // Save original edges |
| 2466 | var originalEdges = []; |
| 2467 | g.eachEdge(function(e, u, v, value) { |
| 2468 | var originalEdge = value.originalEdge; |
| 2469 | if (originalEdge) { |
| 2470 | originalEdges.push(originalEdge); |
| 2471 | } |
| 2472 | }); |
| 2473 | |
| 2474 | // Expand collapsed nodes |
| 2475 | g.eachNode(function(u, value) { |
| 2476 | var originalNodes = value.originalNodes; |
| 2477 | if (originalNodes) { |
| 2478 | originalNodes.forEach(function(originalNode) { |
| 2479 | originalNode.value.rank = value.rank; |
| 2480 | g.addNode(originalNode.u, originalNode.value); |
| 2481 | g.parent(originalNode.u, originalNode.parent); |
| 2482 | }); |
| 2483 | g.delNode(u); |
| 2484 | } |
| 2485 | }); |
| 2486 | |
| 2487 | // Restore original edges |
| 2488 | originalEdges.forEach(function(edge) { |
| 2489 | g.addEdge(edge.e, edge.u, edge.v, edge.value); |
| 2490 | }); |
| 2491 | }; |
| 2492 | |
| 2493 | },{}],22:[function(require,module,exports){ |
| 2494 | /* jshint -W079 */ |
| 2495 | var Set = require('cp-data').Set, |
| 2496 | /* jshint +W079 */ |
| 2497 | Digraph = require('graphlib').Digraph, |
| 2498 | util = require('../util'); |
| 2499 | |
| 2500 | module.exports = feasibleTree; |
| 2501 | |
| 2502 | /* |
| 2503 | * Given an acyclic graph with each node assigned a `rank` attribute, this |
| 2504 | * function constructs and returns a spanning tree. This function may reduce |
| 2505 | * the length of some edges from the initial rank assignment while maintaining |
| 2506 | * the `minLen` specified by each edge. |
| 2507 | * |
| 2508 | * Prerequisites: |
| 2509 | * |
| 2510 | * * The input graph is acyclic |
| 2511 | * * Each node in the input graph has an assigned `rank` attribute |
| 2512 | * * Each edge in the input graph has an assigned `minLen` attribute |
| 2513 | * |
| 2514 | * Outputs: |
| 2515 | * |
| 2516 | * A feasible spanning tree for the input graph (i.e. a spanning tree that |
| 2517 | * respects each graph edge's `minLen` attribute) represented as a Digraph with |
| 2518 | * a `root` attribute on graph. |
| 2519 | * |
| 2520 | * Nodes have the same id and value as that in the input graph. |
| 2521 | * |
| 2522 | * Edges in the tree have arbitrarily assigned ids. The attributes for edges |
| 2523 | * include `reversed`. `reversed` indicates that the edge is a |
| 2524 | * back edge in the input graph. |
| 2525 | */ |
| 2526 | function feasibleTree(g) { |
| 2527 | var remaining = new Set(g.nodes()), |
| 2528 | tree = new Digraph(); |
| 2529 | |
| 2530 | if (remaining.size() === 1) { |
| 2531 | var root = g.nodes()[0]; |
| 2532 | tree.addNode(root, {}); |
| 2533 | tree.graph({ root: root }); |
| 2534 | return tree; |
| 2535 | } |
| 2536 | |
| 2537 | function addTightEdges(v) { |
| 2538 | var continueToScan = true; |
| 2539 | g.predecessors(v).forEach(function(u) { |
| 2540 | if (remaining.has(u) && !slack(g, u, v)) { |
| 2541 | if (remaining.has(v)) { |
| 2542 | tree.addNode(v, {}); |
| 2543 | remaining.remove(v); |
| 2544 | tree.graph({ root: v }); |
| 2545 | } |
| 2546 | |
| 2547 | tree.addNode(u, {}); |
| 2548 | tree.addEdge(null, u, v, { reversed: true }); |
| 2549 | remaining.remove(u); |
| 2550 | addTightEdges(u); |
| 2551 | continueToScan = false; |
| 2552 | } |
| 2553 | }); |
| 2554 | |
| 2555 | g.successors(v).forEach(function(w) { |
| 2556 | if (remaining.has(w) && !slack(g, v, w)) { |
| 2557 | if (remaining.has(v)) { |
| 2558 | tree.addNode(v, {}); |
| 2559 | remaining.remove(v); |
| 2560 | tree.graph({ root: v }); |
| 2561 | } |
| 2562 | |
| 2563 | tree.addNode(w, {}); |
| 2564 | tree.addEdge(null, v, w, {}); |
| 2565 | remaining.remove(w); |
| 2566 | addTightEdges(w); |
| 2567 | continueToScan = false; |
| 2568 | } |
| 2569 | }); |
| 2570 | return continueToScan; |
| 2571 | } |
| 2572 | |
| 2573 | function createTightEdge() { |
| 2574 | var minSlack = Number.MAX_VALUE; |
| 2575 | remaining.keys().forEach(function(v) { |
| 2576 | g.predecessors(v).forEach(function(u) { |
| 2577 | if (!remaining.has(u)) { |
| 2578 | var edgeSlack = slack(g, u, v); |
| 2579 | if (Math.abs(edgeSlack) < Math.abs(minSlack)) { |
| 2580 | minSlack = -edgeSlack; |
| 2581 | } |
| 2582 | } |
| 2583 | }); |
| 2584 | |
| 2585 | g.successors(v).forEach(function(w) { |
| 2586 | if (!remaining.has(w)) { |
| 2587 | var edgeSlack = slack(g, v, w); |
| 2588 | if (Math.abs(edgeSlack) < Math.abs(minSlack)) { |
| 2589 | minSlack = edgeSlack; |
| 2590 | } |
| 2591 | } |
| 2592 | }); |
| 2593 | }); |
| 2594 | |
| 2595 | tree.eachNode(function(u) { g.node(u).rank -= minSlack; }); |
| 2596 | } |
| 2597 | |
| 2598 | while (remaining.size()) { |
| 2599 | var nodesToSearch = !tree.order() ? remaining.keys() : tree.nodes(); |
| 2600 | for (var i = 0, il = nodesToSearch.length; |
| 2601 | i < il && addTightEdges(nodesToSearch[i]); |
| 2602 | ++i); |
| 2603 | if (remaining.size()) { |
| 2604 | createTightEdge(); |
| 2605 | } |
| 2606 | } |
| 2607 | |
| 2608 | return tree; |
| 2609 | } |
| 2610 | |
| 2611 | function slack(g, u, v) { |
| 2612 | var rankDiff = g.node(v).rank - g.node(u).rank; |
| 2613 | var maxMinLen = util.max(g.outEdges(u, v) |
| 2614 | .map(function(e) { return g.edge(e).minLen; })); |
| 2615 | return rankDiff - maxMinLen; |
| 2616 | } |
| 2617 | |
| 2618 | },{"../util":26,"cp-data":5,"graphlib":28}],23:[function(require,module,exports){ |
| 2619 | var util = require('../util'), |
| 2620 | topsort = require('graphlib').alg.topsort; |
| 2621 | |
| 2622 | module.exports = initRank; |
| 2623 | |
| 2624 | /* |
| 2625 | * Assigns a `rank` attribute to each node in the input graph and ensures that |
| 2626 | * this rank respects the `minLen` attribute of incident edges. |
| 2627 | * |
| 2628 | * Prerequisites: |
| 2629 | * |
| 2630 | * * The input graph must be acyclic |
| 2631 | * * Each edge in the input graph must have an assigned 'minLen' attribute |
| 2632 | */ |
| 2633 | function initRank(g) { |
| 2634 | var sorted = topsort(g); |
| 2635 | |
| 2636 | sorted.forEach(function(u) { |
| 2637 | var inEdges = g.inEdges(u); |
| 2638 | if (inEdges.length === 0) { |
| 2639 | g.node(u).rank = 0; |
| 2640 | return; |
| 2641 | } |
| 2642 | |
| 2643 | var minLens = inEdges.map(function(e) { |
| 2644 | return g.node(g.source(e)).rank + g.edge(e).minLen; |
| 2645 | }); |
| 2646 | g.node(u).rank = util.max(minLens); |
| 2647 | }); |
| 2648 | } |
| 2649 | |
| 2650 | },{"../util":26,"graphlib":28}],24:[function(require,module,exports){ |
| 2651 | module.exports = { |
| 2652 | slack: slack |
| 2653 | }; |
| 2654 | |
| 2655 | /* |
| 2656 | * A helper to calculate the slack between two nodes (`u` and `v`) given a |
| 2657 | * `minLen` constraint. The slack represents how much the distance between `u` |
| 2658 | * and `v` could shrink while maintaining the `minLen` constraint. If the value |
| 2659 | * is negative then the constraint is currently violated. |
| 2660 | * |
| 2661 | This function requires that `u` and `v` are in `graph` and they both have a |
| 2662 | `rank` attribute. |
| 2663 | */ |
| 2664 | function slack(graph, u, v, minLen) { |
| 2665 | return Math.abs(graph.node(u).rank - graph.node(v).rank) - minLen; |
| 2666 | } |
| 2667 | |
| 2668 | },{}],25:[function(require,module,exports){ |
| 2669 | var util = require('../util'), |
| 2670 | rankUtil = require('./rankUtil'); |
| 2671 | |
| 2672 | module.exports = simplex; |
| 2673 | |
| 2674 | function simplex(graph, spanningTree) { |
| 2675 | // The network simplex algorithm repeatedly replaces edges of |
| 2676 | // the spanning tree with negative cut values until no such |
| 2677 | // edge exists. |
| 2678 | initCutValues(graph, spanningTree); |
| 2679 | while (true) { |
| 2680 | var e = leaveEdge(spanningTree); |
| 2681 | if (e === null) break; |
| 2682 | var f = enterEdge(graph, spanningTree, e); |
| 2683 | exchange(graph, spanningTree, e, f); |
| 2684 | } |
| 2685 | } |
| 2686 | |
| 2687 | /* |
| 2688 | * Set the cut values of edges in the spanning tree by a depth-first |
| 2689 | * postorder traversal. The cut value corresponds to the cost, in |
| 2690 | * terms of a ranking's edge length sum, of lengthening an edge. |
| 2691 | * Negative cut values typically indicate edges that would yield a |
| 2692 | * smaller edge length sum if they were lengthened. |
| 2693 | */ |
| 2694 | function initCutValues(graph, spanningTree) { |
| 2695 | computeLowLim(spanningTree); |
| 2696 | |
| 2697 | spanningTree.eachEdge(function(id, u, v, treeValue) { |
| 2698 | treeValue.cutValue = 0; |
| 2699 | }); |
| 2700 | |
| 2701 | // Propagate cut values up the tree. |
| 2702 | function dfs(n) { |
| 2703 | var children = spanningTree.successors(n); |
| 2704 | for (var c in children) { |
| 2705 | var child = children[c]; |
| 2706 | dfs(child); |
| 2707 | } |
| 2708 | if (n !== spanningTree.graph().root) { |
| 2709 | setCutValue(graph, spanningTree, n); |
| 2710 | } |
| 2711 | } |
| 2712 | dfs(spanningTree.graph().root); |
| 2713 | } |
| 2714 | |
| 2715 | /* |
| 2716 | * Perform a DFS postorder traversal, labeling each node v with |
| 2717 | * its traversal order 'lim(v)' and the minimum traversal number |
| 2718 | * of any of its descendants 'low(v)'. This provides an efficient |
| 2719 | * way to test whether u is an ancestor of v since |
| 2720 | * low(u) <= lim(v) <= lim(u) if and only if u is an ancestor. |
| 2721 | */ |
| 2722 | function computeLowLim(tree) { |
| 2723 | var postOrderNum = 0; |
| 2724 | |
| 2725 | function dfs(n) { |
| 2726 | var children = tree.successors(n); |
| 2727 | var low = postOrderNum; |
| 2728 | for (var c in children) { |
| 2729 | var child = children[c]; |
| 2730 | dfs(child); |
| 2731 | low = Math.min(low, tree.node(child).low); |
| 2732 | } |
| 2733 | tree.node(n).low = low; |
| 2734 | tree.node(n).lim = postOrderNum++; |
| 2735 | } |
| 2736 | |
| 2737 | dfs(tree.graph().root); |
| 2738 | } |
| 2739 | |
| 2740 | /* |
| 2741 | * To compute the cut value of the edge parent -> child, we consider |
| 2742 | * it and any other graph edges to or from the child. |
| 2743 | * parent |
| 2744 | * | |
| 2745 | * child |
| 2746 | * / \ |
| 2747 | * u v |
| 2748 | */ |
| 2749 | function setCutValue(graph, tree, child) { |
| 2750 | var parentEdge = tree.inEdges(child)[0]; |
| 2751 | |
| 2752 | // List of child's children in the spanning tree. |
| 2753 | var grandchildren = []; |
| 2754 | var grandchildEdges = tree.outEdges(child); |
| 2755 | for (var gce in grandchildEdges) { |
| 2756 | grandchildren.push(tree.target(grandchildEdges[gce])); |
| 2757 | } |
| 2758 | |
| 2759 | var cutValue = 0; |
| 2760 | |
| 2761 | // TODO: Replace unit increment/decrement with edge weights. |
| 2762 | var E = 0; // Edges from child to grandchild's subtree. |
| 2763 | var F = 0; // Edges to child from grandchild's subtree. |
| 2764 | var G = 0; // Edges from child to nodes outside of child's subtree. |
| 2765 | var H = 0; // Edges from nodes outside of child's subtree to child. |
| 2766 | |
| 2767 | // Consider all graph edges from child. |
| 2768 | var outEdges = graph.outEdges(child); |
| 2769 | var gc; |
| 2770 | for (var oe in outEdges) { |
| 2771 | var succ = graph.target(outEdges[oe]); |
| 2772 | for (gc in grandchildren) { |
| 2773 | if (inSubtree(tree, succ, grandchildren[gc])) { |
| 2774 | E++; |
| 2775 | } |
| 2776 | } |
| 2777 | if (!inSubtree(tree, succ, child)) { |
| 2778 | G++; |
| 2779 | } |
| 2780 | } |
| 2781 | |
| 2782 | // Consider all graph edges to child. |
| 2783 | var inEdges = graph.inEdges(child); |
| 2784 | for (var ie in inEdges) { |
| 2785 | var pred = graph.source(inEdges[ie]); |
| 2786 | for (gc in grandchildren) { |
| 2787 | if (inSubtree(tree, pred, grandchildren[gc])) { |
| 2788 | F++; |
| 2789 | } |
| 2790 | } |
| 2791 | if (!inSubtree(tree, pred, child)) { |
| 2792 | H++; |
| 2793 | } |
| 2794 | } |
| 2795 | |
| 2796 | // Contributions depend on the alignment of the parent -> child edge |
| 2797 | // and the child -> u or v edges. |
| 2798 | var grandchildCutSum = 0; |
| 2799 | for (gc in grandchildren) { |
| 2800 | var cv = tree.edge(grandchildEdges[gc]).cutValue; |
| 2801 | if (!tree.edge(grandchildEdges[gc]).reversed) { |
| 2802 | grandchildCutSum += cv; |
| 2803 | } else { |
| 2804 | grandchildCutSum -= cv; |
| 2805 | } |
| 2806 | } |
| 2807 | |
| 2808 | if (!tree.edge(parentEdge).reversed) { |
| 2809 | cutValue += grandchildCutSum - E + F - G + H; |
| 2810 | } else { |
| 2811 | cutValue -= grandchildCutSum - E + F - G + H; |
| 2812 | } |
| 2813 | |
| 2814 | tree.edge(parentEdge).cutValue = cutValue; |
| 2815 | } |
| 2816 | |
| 2817 | /* |
| 2818 | * Return whether n is a node in the subtree with the given |
| 2819 | * root. |
| 2820 | */ |
| 2821 | function inSubtree(tree, n, root) { |
| 2822 | return (tree.node(root).low <= tree.node(n).lim && |
| 2823 | tree.node(n).lim <= tree.node(root).lim); |
| 2824 | } |
| 2825 | |
| 2826 | /* |
| 2827 | * Return an edge from the tree with a negative cut value, or null if there |
| 2828 | * is none. |
| 2829 | */ |
| 2830 | function leaveEdge(tree) { |
| 2831 | var edges = tree.edges(); |
| 2832 | for (var n in edges) { |
| 2833 | var e = edges[n]; |
| 2834 | var treeValue = tree.edge(e); |
| 2835 | if (treeValue.cutValue < 0) { |
| 2836 | return e; |
| 2837 | } |
| 2838 | } |
| 2839 | return null; |
| 2840 | } |
| 2841 | |
| 2842 | /* |
| 2843 | * The edge e should be an edge in the tree, with an underlying edge |
| 2844 | * in the graph, with a negative cut value. Of the two nodes incident |
| 2845 | * on the edge, take the lower one. enterEdge returns an edge with |
| 2846 | * minimum slack going from outside of that node's subtree to inside |
| 2847 | * of that node's subtree. |
| 2848 | */ |
| 2849 | function enterEdge(graph, tree, e) { |
| 2850 | var source = tree.source(e); |
| 2851 | var target = tree.target(e); |
| 2852 | var lower = tree.node(target).lim < tree.node(source).lim ? target : source; |
| 2853 | |
| 2854 | // Is the tree edge aligned with the graph edge? |
| 2855 | var aligned = !tree.edge(e).reversed; |
| 2856 | |
| 2857 | var minSlack = Number.POSITIVE_INFINITY; |
| 2858 | var minSlackEdge; |
| 2859 | if (aligned) { |
| 2860 | graph.eachEdge(function(id, u, v, value) { |
| 2861 | if (id !== e && inSubtree(tree, u, lower) && !inSubtree(tree, v, lower)) { |
| 2862 | var slack = rankUtil.slack(graph, u, v, value.minLen); |
| 2863 | if (slack < minSlack) { |
| 2864 | minSlack = slack; |
| 2865 | minSlackEdge = id; |
| 2866 | } |
| 2867 | } |
| 2868 | }); |
| 2869 | } else { |
| 2870 | graph.eachEdge(function(id, u, v, value) { |
| 2871 | if (id !== e && !inSubtree(tree, u, lower) && inSubtree(tree, v, lower)) { |
| 2872 | var slack = rankUtil.slack(graph, u, v, value.minLen); |
| 2873 | if (slack < minSlack) { |
| 2874 | minSlack = slack; |
| 2875 | minSlackEdge = id; |
| 2876 | } |
| 2877 | } |
| 2878 | }); |
| 2879 | } |
| 2880 | |
| 2881 | if (minSlackEdge === undefined) { |
| 2882 | var outside = []; |
| 2883 | var inside = []; |
| 2884 | graph.eachNode(function(id) { |
| 2885 | if (!inSubtree(tree, id, lower)) { |
| 2886 | outside.push(id); |
| 2887 | } else { |
| 2888 | inside.push(id); |
| 2889 | } |
| 2890 | }); |
| 2891 | throw new Error('No edge found from outside of tree to inside'); |
| 2892 | } |
| 2893 | |
| 2894 | return minSlackEdge; |
| 2895 | } |
| 2896 | |
| 2897 | /* |
| 2898 | * Replace edge e with edge f in the tree, recalculating the tree root, |
| 2899 | * the nodes' low and lim properties and the edges' cut values. |
| 2900 | */ |
| 2901 | function exchange(graph, tree, e, f) { |
| 2902 | tree.delEdge(e); |
| 2903 | var source = graph.source(f); |
| 2904 | var target = graph.target(f); |
| 2905 | |
| 2906 | // Redirect edges so that target is the root of its subtree. |
| 2907 | function redirect(v) { |
| 2908 | var edges = tree.inEdges(v); |
| 2909 | for (var i in edges) { |
| 2910 | var e = edges[i]; |
| 2911 | var u = tree.source(e); |
| 2912 | var value = tree.edge(e); |
| 2913 | redirect(u); |
| 2914 | tree.delEdge(e); |
| 2915 | value.reversed = !value.reversed; |
| 2916 | tree.addEdge(e, v, u, value); |
| 2917 | } |
| 2918 | } |
| 2919 | |
| 2920 | redirect(target); |
| 2921 | |
| 2922 | var root = source; |
| 2923 | var edges = tree.inEdges(root); |
| 2924 | while (edges.length > 0) { |
| 2925 | root = tree.source(edges[0]); |
| 2926 | edges = tree.inEdges(root); |
| 2927 | } |
| 2928 | |
| 2929 | tree.graph().root = root; |
| 2930 | |
| 2931 | tree.addEdge(null, source, target, {cutValue: 0}); |
| 2932 | |
| 2933 | initCutValues(graph, tree); |
| 2934 | |
| 2935 | adjustRanks(graph, tree); |
| 2936 | } |
| 2937 | |
| 2938 | /* |
| 2939 | * Reset the ranks of all nodes based on the current spanning tree. |
| 2940 | * The rank of the tree's root remains unchanged, while all other |
| 2941 | * nodes are set to the sum of minimum length constraints along |
| 2942 | * the path from the root. |
| 2943 | */ |
| 2944 | function adjustRanks(graph, tree) { |
| 2945 | function dfs(p) { |
| 2946 | var children = tree.successors(p); |
| 2947 | children.forEach(function(c) { |
| 2948 | var minLen = minimumLength(graph, p, c); |
| 2949 | graph.node(c).rank = graph.node(p).rank + minLen; |
| 2950 | dfs(c); |
| 2951 | }); |
| 2952 | } |
| 2953 | |
| 2954 | dfs(tree.graph().root); |
| 2955 | } |
| 2956 | |
| 2957 | /* |
| 2958 | * If u and v are connected by some edges in the graph, return the |
| 2959 | * minimum length of those edges, as a positive number if v succeeds |
| 2960 | * u and as a negative number if v precedes u. |
| 2961 | */ |
| 2962 | function minimumLength(graph, u, v) { |
| 2963 | var outEdges = graph.outEdges(u, v); |
| 2964 | if (outEdges.length > 0) { |
| 2965 | return util.max(outEdges.map(function(e) { |
| 2966 | return graph.edge(e).minLen; |
| 2967 | })); |
| 2968 | } |
| 2969 | |
| 2970 | var inEdges = graph.inEdges(u, v); |
| 2971 | if (inEdges.length > 0) { |
| 2972 | return -util.max(inEdges.map(function(e) { |
| 2973 | return graph.edge(e).minLen; |
| 2974 | })); |
| 2975 | } |
| 2976 | } |
| 2977 | |
| 2978 | },{"../util":26,"./rankUtil":24}],26:[function(require,module,exports){ |
| 2979 | /* |
| 2980 | * Returns the smallest value in the array. |
| 2981 | */ |
| 2982 | exports.min = function(values) { |
| 2983 | return Math.min.apply(Math, values); |
| 2984 | }; |
| 2985 | |
| 2986 | /* |
| 2987 | * Returns the largest value in the array. |
| 2988 | */ |
| 2989 | exports.max = function(values) { |
| 2990 | return Math.max.apply(Math, values); |
| 2991 | }; |
| 2992 | |
| 2993 | /* |
| 2994 | * Returns `true` only if `f(x)` is `true` for all `x` in `xs`. Otherwise |
| 2995 | * returns `false`. This function will return immediately if it finds a |
| 2996 | * case where `f(x)` does not hold. |
| 2997 | */ |
| 2998 | exports.all = function(xs, f) { |
| 2999 | for (var i = 0; i < xs.length; ++i) { |
| 3000 | if (!f(xs[i])) { |
| 3001 | return false; |
| 3002 | } |
| 3003 | } |
| 3004 | return true; |
| 3005 | }; |
| 3006 | |
| 3007 | /* |
| 3008 | * Accumulates the sum of elements in the given array using the `+` operator. |
| 3009 | */ |
| 3010 | exports.sum = function(values) { |
| 3011 | return values.reduce(function(acc, x) { return acc + x; }, 0); |
| 3012 | }; |
| 3013 | |
| 3014 | /* |
| 3015 | * Returns an array of all values in the given object. |
| 3016 | */ |
| 3017 | exports.values = function(obj) { |
| 3018 | return Object.keys(obj).map(function(k) { return obj[k]; }); |
| 3019 | }; |
| 3020 | |
| 3021 | exports.shuffle = function(array) { |
| 3022 | for (i = array.length - 1; i > 0; --i) { |
| 3023 | var j = Math.floor(Math.random() * (i + 1)); |
| 3024 | var aj = array[j]; |
| 3025 | array[j] = array[i]; |
| 3026 | array[i] = aj; |
| 3027 | } |
| 3028 | }; |
| 3029 | |
| 3030 | exports.propertyAccessor = function(self, config, field, setHook) { |
| 3031 | return function(x) { |
| 3032 | if (!arguments.length) return config[field]; |
| 3033 | config[field] = x; |
| 3034 | if (setHook) setHook(x); |
| 3035 | return self; |
| 3036 | }; |
| 3037 | }; |
| 3038 | |
| 3039 | /* |
| 3040 | * Given a layered, directed graph with `rank` and `order` node attributes, |
| 3041 | * this function returns an array of ordered ranks. Each rank contains an array |
| 3042 | * of the ids of the nodes in that rank in the order specified by the `order` |
| 3043 | * attribute. |
| 3044 | */ |
| 3045 | exports.ordering = function(g) { |
| 3046 | var ordering = []; |
| 3047 | g.eachNode(function(u, value) { |
| 3048 | var rank = ordering[value.rank] || (ordering[value.rank] = []); |
| 3049 | rank[value.order] = u; |
| 3050 | }); |
| 3051 | return ordering; |
| 3052 | }; |
| 3053 | |
| 3054 | /* |
| 3055 | * A filter that can be used with `filterNodes` to get a graph that only |
| 3056 | * includes nodes that do not contain others nodes. |
| 3057 | */ |
| 3058 | exports.filterNonSubgraphs = function(g) { |
| 3059 | return function(u) { |
| 3060 | return g.children(u).length === 0; |
| 3061 | }; |
| 3062 | }; |
| 3063 | |
| 3064 | /* |
| 3065 | * Returns a new function that wraps `func` with a timer. The wrapper logs the |
| 3066 | * time it takes to execute the function. |
| 3067 | * |
| 3068 | * The timer will be enabled provided `log.level >= 1`. |
| 3069 | */ |
| 3070 | function time(name, func) { |
| 3071 | return function() { |
| 3072 | var start = new Date().getTime(); |
| 3073 | try { |
| 3074 | return func.apply(null, arguments); |
| 3075 | } finally { |
| 3076 | log(1, name + ' time: ' + (new Date().getTime() - start) + 'ms'); |
| 3077 | } |
| 3078 | }; |
| 3079 | } |
| 3080 | time.enabled = false; |
| 3081 | |
| 3082 | exports.time = time; |
| 3083 | |
| 3084 | /* |
| 3085 | * A global logger with the specification `log(level, message, ...)` that |
| 3086 | * will log a message to the console if `log.level >= level`. |
| 3087 | */ |
| 3088 | function log(level) { |
| 3089 | if (log.level >= level) { |
| 3090 | console.log.apply(console, Array.prototype.slice.call(arguments, 1)); |
| 3091 | } |
| 3092 | } |
| 3093 | log.level = 0; |
| 3094 | |
| 3095 | exports.log = log; |
| 3096 | |
| 3097 | },{}],27:[function(require,module,exports){ |
| 3098 | module.exports = '0.4.5'; |
| 3099 | |
| 3100 | },{}],28:[function(require,module,exports){ |
| 3101 | exports.Graph = require("./lib/Graph"); |
| 3102 | exports.Digraph = require("./lib/Digraph"); |
| 3103 | exports.CGraph = require("./lib/CGraph"); |
| 3104 | exports.CDigraph = require("./lib/CDigraph"); |
| 3105 | require("./lib/graph-converters"); |
| 3106 | |
| 3107 | exports.alg = { |
| 3108 | isAcyclic: require("./lib/alg/isAcyclic"), |
| 3109 | components: require("./lib/alg/components"), |
| 3110 | dijkstra: require("./lib/alg/dijkstra"), |
| 3111 | dijkstraAll: require("./lib/alg/dijkstraAll"), |
| 3112 | findCycles: require("./lib/alg/findCycles"), |
| 3113 | floydWarshall: require("./lib/alg/floydWarshall"), |
| 3114 | postorder: require("./lib/alg/postorder"), |
| 3115 | preorder: require("./lib/alg/preorder"), |
| 3116 | prim: require("./lib/alg/prim"), |
| 3117 | tarjan: require("./lib/alg/tarjan"), |
| 3118 | topsort: require("./lib/alg/topsort") |
| 3119 | }; |
| 3120 | |
| 3121 | exports.converter = { |
| 3122 | json: require("./lib/converter/json.js") |
| 3123 | }; |
| 3124 | |
| 3125 | var filter = require("./lib/filter"); |
| 3126 | exports.filter = { |
| 3127 | all: filter.all, |
| 3128 | nodesFromList: filter.nodesFromList |
| 3129 | }; |
| 3130 | |
| 3131 | exports.version = require("./lib/version"); |
| 3132 | |
| 3133 | },{"./lib/CDigraph":30,"./lib/CGraph":31,"./lib/Digraph":32,"./lib/Graph":33,"./lib/alg/components":34,"./lib/alg/dijkstra":35,"./lib/alg/dijkstraAll":36,"./lib/alg/findCycles":37,"./lib/alg/floydWarshall":38,"./lib/alg/isAcyclic":39,"./lib/alg/postorder":40,"./lib/alg/preorder":41,"./lib/alg/prim":42,"./lib/alg/tarjan":43,"./lib/alg/topsort":44,"./lib/converter/json.js":46,"./lib/filter":47,"./lib/graph-converters":48,"./lib/version":50}],29:[function(require,module,exports){ |
| 3134 | /* jshint -W079 */ |
| 3135 | var Set = require("cp-data").Set; |
| 3136 | /* jshint +W079 */ |
| 3137 | |
| 3138 | module.exports = BaseGraph; |
| 3139 | |
| 3140 | function BaseGraph() { |
| 3141 | // The value assigned to the graph itself. |
| 3142 | this._value = undefined; |
| 3143 | |
| 3144 | // Map of node id -> { id, value } |
| 3145 | this._nodes = {}; |
| 3146 | |
| 3147 | // Map of edge id -> { id, u, v, value } |
| 3148 | this._edges = {}; |
| 3149 | |
| 3150 | // Used to generate a unique id in the graph |
| 3151 | this._nextId = 0; |
| 3152 | } |
| 3153 | |
| 3154 | // Number of nodes |
| 3155 | BaseGraph.prototype.order = function() { |
| 3156 | return Object.keys(this._nodes).length; |
| 3157 | }; |
| 3158 | |
| 3159 | // Number of edges |
| 3160 | BaseGraph.prototype.size = function() { |
| 3161 | return Object.keys(this._edges).length; |
| 3162 | }; |
| 3163 | |
| 3164 | // Accessor for graph level value |
| 3165 | BaseGraph.prototype.graph = function(value) { |
| 3166 | if (arguments.length === 0) { |
| 3167 | return this._value; |
| 3168 | } |
| 3169 | this._value = value; |
| 3170 | }; |
| 3171 | |
| 3172 | BaseGraph.prototype.hasNode = function(u) { |
| 3173 | return u in this._nodes; |
| 3174 | }; |
| 3175 | |
| 3176 | BaseGraph.prototype.node = function(u, value) { |
| 3177 | var node = this._strictGetNode(u); |
| 3178 | if (arguments.length === 1) { |
| 3179 | return node.value; |
| 3180 | } |
| 3181 | node.value = value; |
| 3182 | }; |
| 3183 | |
| 3184 | BaseGraph.prototype.nodes = function() { |
| 3185 | var nodes = []; |
| 3186 | this.eachNode(function(id) { nodes.push(id); }); |
| 3187 | return nodes; |
| 3188 | }; |
| 3189 | |
| 3190 | BaseGraph.prototype.eachNode = function(func) { |
| 3191 | for (var k in this._nodes) { |
| 3192 | var node = this._nodes[k]; |
| 3193 | func(node.id, node.value); |
| 3194 | } |
| 3195 | }; |
| 3196 | |
| 3197 | BaseGraph.prototype.hasEdge = function(e) { |
| 3198 | return e in this._edges; |
| 3199 | }; |
| 3200 | |
| 3201 | BaseGraph.prototype.edge = function(e, value) { |
| 3202 | var edge = this._strictGetEdge(e); |
| 3203 | if (arguments.length === 1) { |
| 3204 | return edge.value; |
| 3205 | } |
| 3206 | edge.value = value; |
| 3207 | }; |
| 3208 | |
| 3209 | BaseGraph.prototype.edges = function() { |
| 3210 | var es = []; |
| 3211 | this.eachEdge(function(id) { es.push(id); }); |
| 3212 | return es; |
| 3213 | }; |
| 3214 | |
| 3215 | BaseGraph.prototype.eachEdge = function(func) { |
| 3216 | for (var k in this._edges) { |
| 3217 | var edge = this._edges[k]; |
| 3218 | func(edge.id, edge.u, edge.v, edge.value); |
| 3219 | } |
| 3220 | }; |
| 3221 | |
| 3222 | BaseGraph.prototype.incidentNodes = function(e) { |
| 3223 | var edge = this._strictGetEdge(e); |
| 3224 | return [edge.u, edge.v]; |
| 3225 | }; |
| 3226 | |
| 3227 | BaseGraph.prototype.addNode = function(u, value) { |
| 3228 | if (u === undefined || u === null) { |
| 3229 | do { |
| 3230 | u = "_" + (++this._nextId); |
| 3231 | } while (this.hasNode(u)); |
| 3232 | } else if (this.hasNode(u)) { |
| 3233 | throw new Error("Graph already has node '" + u + "'"); |
| 3234 | } |
| 3235 | this._nodes[u] = { id: u, value: value }; |
| 3236 | return u; |
| 3237 | }; |
| 3238 | |
| 3239 | BaseGraph.prototype.delNode = function(u) { |
| 3240 | this._strictGetNode(u); |
| 3241 | this.incidentEdges(u).forEach(function(e) { this.delEdge(e); }, this); |
| 3242 | delete this._nodes[u]; |
| 3243 | }; |
| 3244 | |
| 3245 | // inMap and outMap are opposite sides of an incidence map. For example, for |
| 3246 | // Graph these would both come from the _incidentEdges map, while for Digraph |
| 3247 | // they would come from _inEdges and _outEdges. |
| 3248 | BaseGraph.prototype._addEdge = function(e, u, v, value, inMap, outMap) { |
| 3249 | this._strictGetNode(u); |
| 3250 | this._strictGetNode(v); |
| 3251 | |
| 3252 | if (e === undefined || e === null) { |
| 3253 | do { |
| 3254 | e = "_" + (++this._nextId); |
| 3255 | } while (this.hasEdge(e)); |
| 3256 | } |
| 3257 | else if (this.hasEdge(e)) { |
| 3258 | throw new Error("Graph already has edge '" + e + "'"); |
| 3259 | } |
| 3260 | |
| 3261 | this._edges[e] = { id: e, u: u, v: v, value: value }; |
| 3262 | addEdgeToMap(inMap[v], u, e); |
| 3263 | addEdgeToMap(outMap[u], v, e); |
| 3264 | |
| 3265 | return e; |
| 3266 | }; |
| 3267 | |
| 3268 | // See note for _addEdge regarding inMap and outMap. |
| 3269 | BaseGraph.prototype._delEdge = function(e, inMap, outMap) { |
| 3270 | var edge = this._strictGetEdge(e); |
| 3271 | delEdgeFromMap(inMap[edge.v], edge.u, e); |
| 3272 | delEdgeFromMap(outMap[edge.u], edge.v, e); |
| 3273 | delete this._edges[e]; |
| 3274 | }; |
| 3275 | |
| 3276 | BaseGraph.prototype.copy = function() { |
| 3277 | var copy = new this.constructor(); |
| 3278 | copy.graph(this.graph()); |
| 3279 | this.eachNode(function(u, value) { copy.addNode(u, value); }); |
| 3280 | this.eachEdge(function(e, u, v, value) { copy.addEdge(e, u, v, value); }); |
| 3281 | copy._nextId = this._nextId; |
| 3282 | return copy; |
| 3283 | }; |
| 3284 | |
| 3285 | BaseGraph.prototype.filterNodes = function(filter) { |
| 3286 | var copy = new this.constructor(); |
| 3287 | copy.graph(this.graph()); |
| 3288 | this.eachNode(function(u, value) { |
| 3289 | if (filter(u)) { |
| 3290 | copy.addNode(u, value); |
| 3291 | } |
| 3292 | }); |
| 3293 | this.eachEdge(function(e, u, v, value) { |
| 3294 | if (copy.hasNode(u) && copy.hasNode(v)) { |
| 3295 | copy.addEdge(e, u, v, value); |
| 3296 | } |
| 3297 | }); |
| 3298 | return copy; |
| 3299 | }; |
| 3300 | |
| 3301 | BaseGraph.prototype._strictGetNode = function(u) { |
| 3302 | var node = this._nodes[u]; |
| 3303 | if (node === undefined) { |
| 3304 | throw new Error("Node '" + u + "' is not in graph"); |
| 3305 | } |
| 3306 | return node; |
| 3307 | }; |
| 3308 | |
| 3309 | BaseGraph.prototype._strictGetEdge = function(e) { |
| 3310 | var edge = this._edges[e]; |
| 3311 | if (edge === undefined) { |
| 3312 | throw new Error("Edge '" + e + "' is not in graph"); |
| 3313 | } |
| 3314 | return edge; |
| 3315 | }; |
| 3316 | |
| 3317 | function addEdgeToMap(map, v, e) { |
| 3318 | (map[v] || (map[v] = new Set())).add(e); |
| 3319 | } |
| 3320 | |
| 3321 | function delEdgeFromMap(map, v, e) { |
| 3322 | var vEntry = map[v]; |
| 3323 | vEntry.remove(e); |
| 3324 | if (vEntry.size() === 0) { |
| 3325 | delete map[v]; |
| 3326 | } |
| 3327 | } |
| 3328 | |
| 3329 | |
| 3330 | },{"cp-data":5}],30:[function(require,module,exports){ |
| 3331 | var Digraph = require("./Digraph"), |
| 3332 | compoundify = require("./compoundify"); |
| 3333 | |
| 3334 | var CDigraph = compoundify(Digraph); |
| 3335 | |
| 3336 | module.exports = CDigraph; |
| 3337 | |
| 3338 | CDigraph.fromDigraph = function(src) { |
| 3339 | var g = new CDigraph(), |
| 3340 | graphValue = src.graph(); |
| 3341 | |
| 3342 | if (graphValue !== undefined) { |
| 3343 | g.graph(graphValue); |
| 3344 | } |
| 3345 | |
| 3346 | src.eachNode(function(u, value) { |
| 3347 | if (value === undefined) { |
| 3348 | g.addNode(u); |
| 3349 | } else { |
| 3350 | g.addNode(u, value); |
| 3351 | } |
| 3352 | }); |
| 3353 | src.eachEdge(function(e, u, v, value) { |
| 3354 | if (value === undefined) { |
| 3355 | g.addEdge(null, u, v); |
| 3356 | } else { |
| 3357 | g.addEdge(null, u, v, value); |
| 3358 | } |
| 3359 | }); |
| 3360 | return g; |
| 3361 | }; |
| 3362 | |
| 3363 | CDigraph.prototype.toString = function() { |
| 3364 | return "CDigraph " + JSON.stringify(this, null, 2); |
| 3365 | }; |
| 3366 | |
| 3367 | },{"./Digraph":32,"./compoundify":45}],31:[function(require,module,exports){ |
| 3368 | var Graph = require("./Graph"), |
| 3369 | compoundify = require("./compoundify"); |
| 3370 | |
| 3371 | var CGraph = compoundify(Graph); |
| 3372 | |
| 3373 | module.exports = CGraph; |
| 3374 | |
| 3375 | CGraph.fromGraph = function(src) { |
| 3376 | var g = new CGraph(), |
| 3377 | graphValue = src.graph(); |
| 3378 | |
| 3379 | if (graphValue !== undefined) { |
| 3380 | g.graph(graphValue); |
| 3381 | } |
| 3382 | |
| 3383 | src.eachNode(function(u, value) { |
| 3384 | if (value === undefined) { |
| 3385 | g.addNode(u); |
| 3386 | } else { |
| 3387 | g.addNode(u, value); |
| 3388 | } |
| 3389 | }); |
| 3390 | src.eachEdge(function(e, u, v, value) { |
| 3391 | if (value === undefined) { |
| 3392 | g.addEdge(null, u, v); |
| 3393 | } else { |
| 3394 | g.addEdge(null, u, v, value); |
| 3395 | } |
| 3396 | }); |
| 3397 | return g; |
| 3398 | }; |
| 3399 | |
| 3400 | CGraph.prototype.toString = function() { |
| 3401 | return "CGraph " + JSON.stringify(this, null, 2); |
| 3402 | }; |
| 3403 | |
| 3404 | },{"./Graph":33,"./compoundify":45}],32:[function(require,module,exports){ |
| 3405 | /* |
| 3406 | * This file is organized with in the following order: |
| 3407 | * |
| 3408 | * Exports |
| 3409 | * Graph constructors |
| 3410 | * Graph queries (e.g. nodes(), edges() |
| 3411 | * Graph mutators |
| 3412 | * Helper functions |
| 3413 | */ |
| 3414 | |
| 3415 | var util = require("./util"), |
| 3416 | BaseGraph = require("./BaseGraph"), |
| 3417 | /* jshint -W079 */ |
| 3418 | Set = require("cp-data").Set; |
| 3419 | /* jshint +W079 */ |
| 3420 | |
| 3421 | module.exports = Digraph; |
| 3422 | |
| 3423 | /* |
| 3424 | * Constructor to create a new directed multi-graph. |
| 3425 | */ |
| 3426 | function Digraph() { |
| 3427 | BaseGraph.call(this); |
| 3428 | |
| 3429 | /*! Map of sourceId -> {targetId -> Set of edge ids} */ |
| 3430 | this._inEdges = {}; |
| 3431 | |
| 3432 | /*! Map of targetId -> {sourceId -> Set of edge ids} */ |
| 3433 | this._outEdges = {}; |
| 3434 | } |
| 3435 | |
| 3436 | Digraph.prototype = new BaseGraph(); |
| 3437 | Digraph.prototype.constructor = Digraph; |
| 3438 | |
| 3439 | /* |
| 3440 | * Always returns `true`. |
| 3441 | */ |
| 3442 | Digraph.prototype.isDirected = function() { |
| 3443 | return true; |
| 3444 | }; |
| 3445 | |
| 3446 | /* |
| 3447 | * Returns all successors of the node with the id `u`. That is, all nodes |
| 3448 | * that have the node `u` as their source are returned. |
| 3449 | * |
| 3450 | * If no node `u` exists in the graph this function throws an Error. |
| 3451 | * |
| 3452 | * @param {String} u a node id |
| 3453 | */ |
| 3454 | Digraph.prototype.successors = function(u) { |
| 3455 | this._strictGetNode(u); |
| 3456 | return Object.keys(this._outEdges[u]) |
| 3457 | .map(function(v) { return this._nodes[v].id; }, this); |
| 3458 | }; |
| 3459 | |
| 3460 | /* |
| 3461 | * Returns all predecessors of the node with the id `u`. That is, all nodes |
| 3462 | * that have the node `u` as their target are returned. |
| 3463 | * |
| 3464 | * If no node `u` exists in the graph this function throws an Error. |
| 3465 | * |
| 3466 | * @param {String} u a node id |
| 3467 | */ |
| 3468 | Digraph.prototype.predecessors = function(u) { |
| 3469 | this._strictGetNode(u); |
| 3470 | return Object.keys(this._inEdges[u]) |
| 3471 | .map(function(v) { return this._nodes[v].id; }, this); |
| 3472 | }; |
| 3473 | |
| 3474 | /* |
| 3475 | * Returns all nodes that are adjacent to the node with the id `u`. In other |
| 3476 | * words, this function returns the set of all successors and predecessors of |
| 3477 | * node `u`. |
| 3478 | * |
| 3479 | * @param {String} u a node id |
| 3480 | */ |
| 3481 | Digraph.prototype.neighbors = function(u) { |
| 3482 | return Set.union([this.successors(u), this.predecessors(u)]).keys(); |
| 3483 | }; |
| 3484 | |
| 3485 | /* |
| 3486 | * Returns all nodes in the graph that have no in-edges. |
| 3487 | */ |
| 3488 | Digraph.prototype.sources = function() { |
| 3489 | var self = this; |
| 3490 | return this._filterNodes(function(u) { |
| 3491 | // This could have better space characteristics if we had an inDegree function. |
| 3492 | return self.inEdges(u).length === 0; |
| 3493 | }); |
| 3494 | }; |
| 3495 | |
| 3496 | /* |
| 3497 | * Returns all nodes in the graph that have no out-edges. |
| 3498 | */ |
| 3499 | Digraph.prototype.sinks = function() { |
| 3500 | var self = this; |
| 3501 | return this._filterNodes(function(u) { |
| 3502 | // This could have better space characteristics if we have an outDegree function. |
| 3503 | return self.outEdges(u).length === 0; |
| 3504 | }); |
| 3505 | }; |
| 3506 | |
| 3507 | /* |
| 3508 | * Returns the source node incident on the edge identified by the id `e`. If no |
| 3509 | * such edge exists in the graph this function throws an Error. |
| 3510 | * |
| 3511 | * @param {String} e an edge id |
| 3512 | */ |
| 3513 | Digraph.prototype.source = function(e) { |
| 3514 | return this._strictGetEdge(e).u; |
| 3515 | }; |
| 3516 | |
| 3517 | /* |
| 3518 | * Returns the target node incident on the edge identified by the id `e`. If no |
| 3519 | * such edge exists in the graph this function throws an Error. |
| 3520 | * |
| 3521 | * @param {String} e an edge id |
| 3522 | */ |
| 3523 | Digraph.prototype.target = function(e) { |
| 3524 | return this._strictGetEdge(e).v; |
| 3525 | }; |
| 3526 | |
| 3527 | /* |
| 3528 | * Returns an array of ids for all edges in the graph that have the node |
| 3529 | * `target` as their target. If the node `target` is not in the graph this |
| 3530 | * function raises an Error. |
| 3531 | * |
| 3532 | * Optionally a `source` node can also be specified. This causes the results |
| 3533 | * to be filtered such that only edges from `source` to `target` are included. |
| 3534 | * If the node `source` is specified but is not in the graph then this function |
| 3535 | * raises an Error. |
| 3536 | * |
| 3537 | * @param {String} target the target node id |
| 3538 | * @param {String} [source] an optional source node id |
| 3539 | */ |
| 3540 | Digraph.prototype.inEdges = function(target, source) { |
| 3541 | this._strictGetNode(target); |
| 3542 | var results = Set.union(util.values(this._inEdges[target])).keys(); |
| 3543 | if (arguments.length > 1) { |
| 3544 | this._strictGetNode(source); |
| 3545 | results = results.filter(function(e) { return this.source(e) === source; }, this); |
| 3546 | } |
| 3547 | return results; |
| 3548 | }; |
| 3549 | |
| 3550 | /* |
| 3551 | * Returns an array of ids for all edges in the graph that have the node |
| 3552 | * `source` as their source. If the node `source` is not in the graph this |
| 3553 | * function raises an Error. |
| 3554 | * |
| 3555 | * Optionally a `target` node may also be specified. This causes the results |
| 3556 | * to be filtered such that only edges from `source` to `target` are included. |
| 3557 | * If the node `target` is specified but is not in the graph then this function |
| 3558 | * raises an Error. |
| 3559 | * |
| 3560 | * @param {String} source the source node id |
| 3561 | * @param {String} [target] an optional target node id |
| 3562 | */ |
| 3563 | Digraph.prototype.outEdges = function(source, target) { |
| 3564 | this._strictGetNode(source); |
| 3565 | var results = Set.union(util.values(this._outEdges[source])).keys(); |
| 3566 | if (arguments.length > 1) { |
| 3567 | this._strictGetNode(target); |
| 3568 | results = results.filter(function(e) { return this.target(e) === target; }, this); |
| 3569 | } |
| 3570 | return results; |
| 3571 | }; |
| 3572 | |
| 3573 | /* |
| 3574 | * Returns an array of ids for all edges in the graph that have the `u` as |
| 3575 | * their source or their target. If the node `u` is not in the graph this |
| 3576 | * function raises an Error. |
| 3577 | * |
| 3578 | * Optionally a `v` node may also be specified. This causes the results to be |
| 3579 | * filtered such that only edges between `u` and `v` - in either direction - |
| 3580 | * are included. IF the node `v` is specified but not in the graph then this |
| 3581 | * function raises an Error. |
| 3582 | * |
| 3583 | * @param {String} u the node for which to find incident edges |
| 3584 | * @param {String} [v] option node that must be adjacent to `u` |
| 3585 | */ |
| 3586 | Digraph.prototype.incidentEdges = function(u, v) { |
| 3587 | if (arguments.length > 1) { |
| 3588 | return Set.union([this.outEdges(u, v), this.outEdges(v, u)]).keys(); |
| 3589 | } else { |
| 3590 | return Set.union([this.inEdges(u), this.outEdges(u)]).keys(); |
| 3591 | } |
| 3592 | }; |
| 3593 | |
| 3594 | /* |
| 3595 | * Returns a string representation of this graph. |
| 3596 | */ |
| 3597 | Digraph.prototype.toString = function() { |
| 3598 | return "Digraph " + JSON.stringify(this, null, 2); |
| 3599 | }; |
| 3600 | |
| 3601 | /* |
| 3602 | * Adds a new node with the id `u` to the graph and assigns it the value |
| 3603 | * `value`. If a node with the id is already a part of the graph this function |
| 3604 | * throws an Error. |
| 3605 | * |
| 3606 | * @param {String} u a node id |
| 3607 | * @param {Object} [value] an optional value to attach to the node |
| 3608 | */ |
| 3609 | Digraph.prototype.addNode = function(u, value) { |
| 3610 | u = BaseGraph.prototype.addNode.call(this, u, value); |
| 3611 | this._inEdges[u] = {}; |
| 3612 | this._outEdges[u] = {}; |
| 3613 | return u; |
| 3614 | }; |
| 3615 | |
| 3616 | /* |
| 3617 | * Removes a node from the graph that has the id `u`. Any edges incident on the |
| 3618 | * node are also removed. If the graph does not contain a node with the id this |
| 3619 | * function will throw an Error. |
| 3620 | * |
| 3621 | * @param {String} u a node id |
| 3622 | */ |
| 3623 | Digraph.prototype.delNode = function(u) { |
| 3624 | BaseGraph.prototype.delNode.call(this, u); |
| 3625 | delete this._inEdges[u]; |
| 3626 | delete this._outEdges[u]; |
| 3627 | }; |
| 3628 | |
| 3629 | /* |
| 3630 | * Adds a new edge to the graph with the id `e` from a node with the id `source` |
| 3631 | * to a node with an id `target` and assigns it the value `value`. This graph |
| 3632 | * allows more than one edge from `source` to `target` as long as the id `e` |
| 3633 | * is unique in the set of edges. If `e` is `null` the graph will assign a |
| 3634 | * unique identifier to the edge. |
| 3635 | * |
| 3636 | * If `source` or `target` are not present in the graph this function will |
| 3637 | * throw an Error. |
| 3638 | * |
| 3639 | * @param {String} [e] an edge id |
| 3640 | * @param {String} source the source node id |
| 3641 | * @param {String} target the target node id |
| 3642 | * @param {Object} [value] an optional value to attach to the edge |
| 3643 | */ |
| 3644 | Digraph.prototype.addEdge = function(e, source, target, value) { |
| 3645 | return BaseGraph.prototype._addEdge.call(this, e, source, target, value, |
| 3646 | this._inEdges, this._outEdges); |
| 3647 | }; |
| 3648 | |
| 3649 | /* |
| 3650 | * Removes an edge in the graph with the id `e`. If no edge in the graph has |
| 3651 | * the id `e` this function will throw an Error. |
| 3652 | * |
| 3653 | * @param {String} e an edge id |
| 3654 | */ |
| 3655 | Digraph.prototype.delEdge = function(e) { |
| 3656 | BaseGraph.prototype._delEdge.call(this, e, this._inEdges, this._outEdges); |
| 3657 | }; |
| 3658 | |
| 3659 | // Unlike BaseGraph.filterNodes, this helper just returns nodes that |
| 3660 | // satisfy a predicate. |
| 3661 | Digraph.prototype._filterNodes = function(pred) { |
| 3662 | var filtered = []; |
| 3663 | this.eachNode(function(u) { |
| 3664 | if (pred(u)) { |
| 3665 | filtered.push(u); |
| 3666 | } |
| 3667 | }); |
| 3668 | return filtered; |
| 3669 | }; |
| 3670 | |
| 3671 | |
| 3672 | },{"./BaseGraph":29,"./util":49,"cp-data":5}],33:[function(require,module,exports){ |
| 3673 | /* |
| 3674 | * This file is organized with in the following order: |
| 3675 | * |
| 3676 | * Exports |
| 3677 | * Graph constructors |
| 3678 | * Graph queries (e.g. nodes(), edges() |
| 3679 | * Graph mutators |
| 3680 | * Helper functions |
| 3681 | */ |
| 3682 | |
| 3683 | var util = require("./util"), |
| 3684 | BaseGraph = require("./BaseGraph"), |
| 3685 | /* jshint -W079 */ |
| 3686 | Set = require("cp-data").Set; |
| 3687 | /* jshint +W079 */ |
| 3688 | |
| 3689 | module.exports = Graph; |
| 3690 | |
| 3691 | /* |
| 3692 | * Constructor to create a new undirected multi-graph. |
| 3693 | */ |
| 3694 | function Graph() { |
| 3695 | BaseGraph.call(this); |
| 3696 | |
| 3697 | /*! Map of nodeId -> { otherNodeId -> Set of edge ids } */ |
| 3698 | this._incidentEdges = {}; |
| 3699 | } |
| 3700 | |
| 3701 | Graph.prototype = new BaseGraph(); |
| 3702 | Graph.prototype.constructor = Graph; |
| 3703 | |
| 3704 | /* |
| 3705 | * Always returns `false`. |
| 3706 | */ |
| 3707 | Graph.prototype.isDirected = function() { |
| 3708 | return false; |
| 3709 | }; |
| 3710 | |
| 3711 | /* |
| 3712 | * Returns all nodes that are adjacent to the node with the id `u`. |
| 3713 | * |
| 3714 | * @param {String} u a node id |
| 3715 | */ |
| 3716 | Graph.prototype.neighbors = function(u) { |
| 3717 | this._strictGetNode(u); |
| 3718 | return Object.keys(this._incidentEdges[u]) |
| 3719 | .map(function(v) { return this._nodes[v].id; }, this); |
| 3720 | }; |
| 3721 | |
| 3722 | /* |
| 3723 | * Returns an array of ids for all edges in the graph that are incident on `u`. |
| 3724 | * If the node `u` is not in the graph this function raises an Error. |
| 3725 | * |
| 3726 | * Optionally a `v` node may also be specified. This causes the results to be |
| 3727 | * filtered such that only edges between `u` and `v` are included. If the node |
| 3728 | * `v` is specified but not in the graph then this function raises an Error. |
| 3729 | * |
| 3730 | * @param {String} u the node for which to find incident edges |
| 3731 | * @param {String} [v] option node that must be adjacent to `u` |
| 3732 | */ |
| 3733 | Graph.prototype.incidentEdges = function(u, v) { |
| 3734 | this._strictGetNode(u); |
| 3735 | if (arguments.length > 1) { |
| 3736 | this._strictGetNode(v); |
| 3737 | return v in this._incidentEdges[u] ? this._incidentEdges[u][v].keys() : []; |
| 3738 | } else { |
| 3739 | return Set.union(util.values(this._incidentEdges[u])).keys(); |
| 3740 | } |
| 3741 | }; |
| 3742 | |
| 3743 | /* |
| 3744 | * Returns a string representation of this graph. |
| 3745 | */ |
| 3746 | Graph.prototype.toString = function() { |
| 3747 | return "Graph " + JSON.stringify(this, null, 2); |
| 3748 | }; |
| 3749 | |
| 3750 | /* |
| 3751 | * Adds a new node with the id `u` to the graph and assigns it the value |
| 3752 | * `value`. If a node with the id is already a part of the graph this function |
| 3753 | * throws an Error. |
| 3754 | * |
| 3755 | * @param {String} u a node id |
| 3756 | * @param {Object} [value] an optional value to attach to the node |
| 3757 | */ |
| 3758 | Graph.prototype.addNode = function(u, value) { |
| 3759 | u = BaseGraph.prototype.addNode.call(this, u, value); |
| 3760 | this._incidentEdges[u] = {}; |
| 3761 | return u; |
| 3762 | }; |
| 3763 | |
| 3764 | /* |
| 3765 | * Removes a node from the graph that has the id `u`. Any edges incident on the |
| 3766 | * node are also removed. If the graph does not contain a node with the id this |
| 3767 | * function will throw an Error. |
| 3768 | * |
| 3769 | * @param {String} u a node id |
| 3770 | */ |
| 3771 | Graph.prototype.delNode = function(u) { |
| 3772 | BaseGraph.prototype.delNode.call(this, u); |
| 3773 | delete this._incidentEdges[u]; |
| 3774 | }; |
| 3775 | |
| 3776 | /* |
| 3777 | * Adds a new edge to the graph with the id `e` between a node with the id `u` |
| 3778 | * and a node with an id `v` and assigns it the value `value`. This graph |
| 3779 | * allows more than one edge between `u` and `v` as long as the id `e` |
| 3780 | * is unique in the set of edges. If `e` is `null` the graph will assign a |
| 3781 | * unique identifier to the edge. |
| 3782 | * |
| 3783 | * If `u` or `v` are not present in the graph this function will throw an |
| 3784 | * Error. |
| 3785 | * |
| 3786 | * @param {String} [e] an edge id |
| 3787 | * @param {String} u the node id of one of the adjacent nodes |
| 3788 | * @param {String} v the node id of the other adjacent node |
| 3789 | * @param {Object} [value] an optional value to attach to the edge |
| 3790 | */ |
| 3791 | Graph.prototype.addEdge = function(e, u, v, value) { |
| 3792 | return BaseGraph.prototype._addEdge.call(this, e, u, v, value, |
| 3793 | this._incidentEdges, this._incidentEdges); |
| 3794 | }; |
| 3795 | |
| 3796 | /* |
| 3797 | * Removes an edge in the graph with the id `e`. If no edge in the graph has |
| 3798 | * the id `e` this function will throw an Error. |
| 3799 | * |
| 3800 | * @param {String} e an edge id |
| 3801 | */ |
| 3802 | Graph.prototype.delEdge = function(e) { |
| 3803 | BaseGraph.prototype._delEdge.call(this, e, this._incidentEdges, this._incidentEdges); |
| 3804 | }; |
| 3805 | |
| 3806 | |
| 3807 | },{"./BaseGraph":29,"./util":49,"cp-data":5}],34:[function(require,module,exports){ |
| 3808 | /* jshint -W079 */ |
| 3809 | var Set = require("cp-data").Set; |
| 3810 | /* jshint +W079 */ |
| 3811 | |
| 3812 | module.exports = components; |
| 3813 | |
| 3814 | /** |
| 3815 | * Finds all [connected components][] in a graph and returns an array of these |
| 3816 | * components. Each component is itself an array that contains the ids of nodes |
| 3817 | * in the component. |
| 3818 | * |
| 3819 | * This function only works with undirected Graphs. |
| 3820 | * |
| 3821 | * [connected components]: http://en.wikipedia.org/wiki/Connected_component_(graph_theory) |
| 3822 | * |
| 3823 | * @param {Graph} g the graph to search for components |
| 3824 | */ |
| 3825 | function components(g) { |
| 3826 | var results = []; |
| 3827 | var visited = new Set(); |
| 3828 | |
| 3829 | function dfs(v, component) { |
| 3830 | if (!visited.has(v)) { |
| 3831 | visited.add(v); |
| 3832 | component.push(v); |
| 3833 | g.neighbors(v).forEach(function(w) { |
| 3834 | dfs(w, component); |
| 3835 | }); |
| 3836 | } |
| 3837 | } |
| 3838 | |
| 3839 | g.nodes().forEach(function(v) { |
| 3840 | var component = []; |
| 3841 | dfs(v, component); |
| 3842 | if (component.length > 0) { |
| 3843 | results.push(component); |
| 3844 | } |
| 3845 | }); |
| 3846 | |
| 3847 | return results; |
| 3848 | } |
| 3849 | |
| 3850 | },{"cp-data":5}],35:[function(require,module,exports){ |
| 3851 | var PriorityQueue = require("cp-data").PriorityQueue; |
| 3852 | |
| 3853 | module.exports = dijkstra; |
| 3854 | |
| 3855 | /** |
| 3856 | * This function is an implementation of [Dijkstra's algorithm][] which finds |
| 3857 | * the shortest path from **source** to all other nodes in **g**. This |
| 3858 | * function returns a map of `u -> { distance, predecessor }`. The distance |
| 3859 | * property holds the sum of the weights from **source** to `u` along the |
| 3860 | * shortest path or `Number.POSITIVE_INFINITY` if there is no path from |
| 3861 | * **source**. The predecessor property can be used to walk the individual |
| 3862 | * elements of the path from **source** to **u** in reverse order. |
| 3863 | * |
| 3864 | * This function takes an optional `weightFunc(e)` which returns the |
| 3865 | * weight of the edge `e`. If no weightFunc is supplied then each edge is |
| 3866 | * assumed to have a weight of 1. This function throws an Error if any of |
| 3867 | * the traversed edges have a negative edge weight. |
| 3868 | * |
| 3869 | * This function takes an optional `incidentFunc(u)` which returns the ids of |
| 3870 | * all edges incident to the node `u` for the purposes of shortest path |
| 3871 | * traversal. By default this function uses the `g.outEdges` for Digraphs and |
| 3872 | * `g.incidentEdges` for Graphs. |
| 3873 | * |
| 3874 | * This function takes `O((|E| + |V|) * log |V|)` time. |
| 3875 | * |
| 3876 | * [Dijkstra's algorithm]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm |
| 3877 | * |
| 3878 | * @param {Graph} g the graph to search for shortest paths from **source** |
| 3879 | * @param {Object} source the source from which to start the search |
| 3880 | * @param {Function} [weightFunc] optional weight function |
| 3881 | * @param {Function} [incidentFunc] optional incident function |
| 3882 | */ |
| 3883 | function dijkstra(g, source, weightFunc, incidentFunc) { |
| 3884 | var results = {}, |
| 3885 | pq = new PriorityQueue(); |
| 3886 | |
| 3887 | function updateNeighbors(e) { |
| 3888 | var incidentNodes = g.incidentNodes(e), |
| 3889 | v = incidentNodes[0] !== u ? incidentNodes[0] : incidentNodes[1], |
| 3890 | vEntry = results[v], |
| 3891 | weight = weightFunc(e), |
| 3892 | distance = uEntry.distance + weight; |
| 3893 | |
| 3894 | if (weight < 0) { |
| 3895 | throw new Error("dijkstra does not allow negative edge weights. Bad edge: " + e + " Weight: " + weight); |
| 3896 | } |
| 3897 | |
| 3898 | if (distance < vEntry.distance) { |
| 3899 | vEntry.distance = distance; |
| 3900 | vEntry.predecessor = u; |
| 3901 | pq.decrease(v, distance); |
| 3902 | } |
| 3903 | } |
| 3904 | |
| 3905 | weightFunc = weightFunc || function() { return 1; }; |
| 3906 | incidentFunc = incidentFunc || (g.isDirected() |
| 3907 | ? function(u) { return g.outEdges(u); } |
| 3908 | : function(u) { return g.incidentEdges(u); }); |
| 3909 | |
| 3910 | g.eachNode(function(u) { |
| 3911 | var distance = u === source ? 0 : Number.POSITIVE_INFINITY; |
| 3912 | results[u] = { distance: distance }; |
| 3913 | pq.add(u, distance); |
| 3914 | }); |
| 3915 | |
| 3916 | var u, uEntry; |
| 3917 | while (pq.size() > 0) { |
| 3918 | u = pq.removeMin(); |
| 3919 | uEntry = results[u]; |
| 3920 | if (uEntry.distance === Number.POSITIVE_INFINITY) { |
| 3921 | break; |
| 3922 | } |
| 3923 | |
| 3924 | incidentFunc(u).forEach(updateNeighbors); |
| 3925 | } |
| 3926 | |
| 3927 | return results; |
| 3928 | } |
| 3929 | |
| 3930 | },{"cp-data":5}],36:[function(require,module,exports){ |
| 3931 | var dijkstra = require("./dijkstra"); |
| 3932 | |
| 3933 | module.exports = dijkstraAll; |
| 3934 | |
| 3935 | /** |
| 3936 | * This function finds the shortest path from each node to every other |
| 3937 | * reachable node in the graph. It is similar to [alg.dijkstra][], but |
| 3938 | * instead of returning a single-source array, it returns a mapping of |
| 3939 | * of `source -> alg.dijksta(g, source, weightFunc, incidentFunc)`. |
| 3940 | * |
| 3941 | * This function takes an optional `weightFunc(e)` which returns the |
| 3942 | * weight of the edge `e`. If no weightFunc is supplied then each edge is |
| 3943 | * assumed to have a weight of 1. This function throws an Error if any of |
| 3944 | * the traversed edges have a negative edge weight. |
| 3945 | * |
| 3946 | * This function takes an optional `incidentFunc(u)` which returns the ids of |
| 3947 | * all edges incident to the node `u` for the purposes of shortest path |
| 3948 | * traversal. By default this function uses the `outEdges` function on the |
| 3949 | * supplied graph. |
| 3950 | * |
| 3951 | * This function takes `O(|V| * (|E| + |V|) * log |V|)` time. |
| 3952 | * |
| 3953 | * [alg.dijkstra]: dijkstra.js.html#dijkstra |
| 3954 | * |
| 3955 | * @param {Graph} g the graph to search for shortest paths from **source** |
| 3956 | * @param {Function} [weightFunc] optional weight function |
| 3957 | * @param {Function} [incidentFunc] optional incident function |
| 3958 | */ |
| 3959 | function dijkstraAll(g, weightFunc, incidentFunc) { |
| 3960 | var results = {}; |
| 3961 | g.eachNode(function(u) { |
| 3962 | results[u] = dijkstra(g, u, weightFunc, incidentFunc); |
| 3963 | }); |
| 3964 | return results; |
| 3965 | } |
| 3966 | |
| 3967 | },{"./dijkstra":35}],37:[function(require,module,exports){ |
| 3968 | var tarjan = require("./tarjan"); |
| 3969 | |
| 3970 | module.exports = findCycles; |
| 3971 | |
| 3972 | /* |
| 3973 | * Given a Digraph **g** this function returns all nodes that are part of a |
| 3974 | * cycle. Since there may be more than one cycle in a graph this function |
| 3975 | * returns an array of these cycles, where each cycle is itself represented |
| 3976 | * by an array of ids for each node involved in that cycle. |
| 3977 | * |
| 3978 | * [alg.isAcyclic][] is more efficient if you only need to determine whether |
| 3979 | * a graph has a cycle or not. |
| 3980 | * |
| 3981 | * [alg.isAcyclic]: isAcyclic.js.html#isAcyclic |
| 3982 | * |
| 3983 | * @param {Digraph} g the graph to search for cycles. |
| 3984 | */ |
| 3985 | function findCycles(g) { |
| 3986 | return tarjan(g).filter(function(cmpt) { return cmpt.length > 1; }); |
| 3987 | } |
| 3988 | |
| 3989 | },{"./tarjan":43}],38:[function(require,module,exports){ |
| 3990 | module.exports = floydWarshall; |
| 3991 | |
| 3992 | /** |
| 3993 | * This function is an implementation of the [Floyd-Warshall algorithm][], |
| 3994 | * which finds the shortest path from each node to every other reachable node |
| 3995 | * in the graph. It is similar to [alg.dijkstraAll][], but it handles negative |
| 3996 | * edge weights and is more efficient for some types of graphs. This function |
| 3997 | * returns a map of `source -> { target -> { distance, predecessor }`. The |
| 3998 | * distance property holds the sum of the weights from `source` to `target` |
| 3999 | * along the shortest path of `Number.POSITIVE_INFINITY` if there is no path |
| 4000 | * from `source`. The predecessor property can be used to walk the individual |
| 4001 | * elements of the path from `source` to `target` in reverse order. |
| 4002 | * |
| 4003 | * This function takes an optional `weightFunc(e)` which returns the |
| 4004 | * weight of the edge `e`. If no weightFunc is supplied then each edge is |
| 4005 | * assumed to have a weight of 1. |
| 4006 | * |
| 4007 | * This function takes an optional `incidentFunc(u)` which returns the ids of |
| 4008 | * all edges incident to the node `u` for the purposes of shortest path |
| 4009 | * traversal. By default this function uses the `outEdges` function on the |
| 4010 | * supplied graph. |
| 4011 | * |
| 4012 | * This algorithm takes O(|V|^3) time. |
| 4013 | * |
| 4014 | * [Floyd-Warshall algorithm]: https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm |
| 4015 | * [alg.dijkstraAll]: dijkstraAll.js.html#dijkstraAll |
| 4016 | * |
| 4017 | * @param {Graph} g the graph to search for shortest paths from **source** |
| 4018 | * @param {Function} [weightFunc] optional weight function |
| 4019 | * @param {Function} [incidentFunc] optional incident function |
| 4020 | */ |
| 4021 | function floydWarshall(g, weightFunc, incidentFunc) { |
| 4022 | var results = {}, |
| 4023 | nodes = g.nodes(); |
| 4024 | |
| 4025 | weightFunc = weightFunc || function() { return 1; }; |
| 4026 | incidentFunc = incidentFunc || (g.isDirected() |
| 4027 | ? function(u) { return g.outEdges(u); } |
| 4028 | : function(u) { return g.incidentEdges(u); }); |
| 4029 | |
| 4030 | nodes.forEach(function(u) { |
| 4031 | results[u] = {}; |
| 4032 | results[u][u] = { distance: 0 }; |
| 4033 | nodes.forEach(function(v) { |
| 4034 | if (u !== v) { |
| 4035 | results[u][v] = { distance: Number.POSITIVE_INFINITY }; |
| 4036 | } |
| 4037 | }); |
| 4038 | incidentFunc(u).forEach(function(e) { |
| 4039 | var incidentNodes = g.incidentNodes(e), |
| 4040 | v = incidentNodes[0] !== u ? incidentNodes[0] : incidentNodes[1], |
| 4041 | d = weightFunc(e); |
| 4042 | if (d < results[u][v].distance) { |
| 4043 | results[u][v] = { distance: d, predecessor: u }; |
| 4044 | } |
| 4045 | }); |
| 4046 | }); |
| 4047 | |
| 4048 | nodes.forEach(function(k) { |
| 4049 | var rowK = results[k]; |
| 4050 | nodes.forEach(function(i) { |
| 4051 | var rowI = results[i]; |
| 4052 | nodes.forEach(function(j) { |
| 4053 | var ik = rowI[k]; |
| 4054 | var kj = rowK[j]; |
| 4055 | var ij = rowI[j]; |
| 4056 | var altDistance = ik.distance + kj.distance; |
| 4057 | if (altDistance < ij.distance) { |
| 4058 | ij.distance = altDistance; |
| 4059 | ij.predecessor = kj.predecessor; |
| 4060 | } |
| 4061 | }); |
| 4062 | }); |
| 4063 | }); |
| 4064 | |
| 4065 | return results; |
| 4066 | } |
| 4067 | |
| 4068 | },{}],39:[function(require,module,exports){ |
| 4069 | var topsort = require("./topsort"); |
| 4070 | |
| 4071 | module.exports = isAcyclic; |
| 4072 | |
| 4073 | /* |
| 4074 | * Given a Digraph **g** this function returns `true` if the graph has no |
| 4075 | * cycles and returns `false` if it does. This algorithm returns as soon as it |
| 4076 | * detects the first cycle. |
| 4077 | * |
| 4078 | * Use [alg.findCycles][] if you need the actual list of cycles in a graph. |
| 4079 | * |
| 4080 | * [alg.findCycles]: findCycles.js.html#findCycles |
| 4081 | * |
| 4082 | * @param {Digraph} g the graph to test for cycles |
| 4083 | */ |
| 4084 | function isAcyclic(g) { |
| 4085 | try { |
| 4086 | topsort(g); |
| 4087 | } catch (e) { |
| 4088 | if (e instanceof topsort.CycleException) return false; |
| 4089 | throw e; |
| 4090 | } |
| 4091 | return true; |
| 4092 | } |
| 4093 | |
| 4094 | },{"./topsort":44}],40:[function(require,module,exports){ |
| 4095 | /* jshint -W079 */ |
| 4096 | var Set = require("cp-data").Set; |
| 4097 | /* jshint +W079 */ |
| 4098 | |
| 4099 | module.exports = postorder; |
| 4100 | |
| 4101 | // Postorder traversal of g, calling f for each visited node. Assumes the graph |
| 4102 | // is a tree. |
| 4103 | function postorder(g, root, f) { |
| 4104 | var visited = new Set(); |
| 4105 | if (g.isDirected()) { |
| 4106 | throw new Error("This function only works for undirected graphs"); |
| 4107 | } |
| 4108 | function dfs(u, prev) { |
| 4109 | if (visited.has(u)) { |
| 4110 | throw new Error("The input graph is not a tree: " + g); |
| 4111 | } |
| 4112 | visited.add(u); |
| 4113 | g.neighbors(u).forEach(function(v) { |
| 4114 | if (v !== prev) dfs(v, u); |
| 4115 | }); |
| 4116 | f(u); |
| 4117 | } |
| 4118 | dfs(root); |
| 4119 | } |
| 4120 | |
| 4121 | },{"cp-data":5}],41:[function(require,module,exports){ |
| 4122 | /* jshint -W079 */ |
| 4123 | var Set = require("cp-data").Set; |
| 4124 | /* jshint +W079 */ |
| 4125 | |
| 4126 | module.exports = preorder; |
| 4127 | |
| 4128 | // Preorder traversal of g, calling f for each visited node. Assumes the graph |
| 4129 | // is a tree. |
| 4130 | function preorder(g, root, f) { |
| 4131 | var visited = new Set(); |
| 4132 | if (g.isDirected()) { |
| 4133 | throw new Error("This function only works for undirected graphs"); |
| 4134 | } |
| 4135 | function dfs(u, prev) { |
| 4136 | if (visited.has(u)) { |
| 4137 | throw new Error("The input graph is not a tree: " + g); |
| 4138 | } |
| 4139 | visited.add(u); |
| 4140 | f(u); |
| 4141 | g.neighbors(u).forEach(function(v) { |
| 4142 | if (v !== prev) dfs(v, u); |
| 4143 | }); |
| 4144 | } |
| 4145 | dfs(root); |
| 4146 | } |
| 4147 | |
| 4148 | },{"cp-data":5}],42:[function(require,module,exports){ |
| 4149 | var Graph = require("../Graph"), |
| 4150 | PriorityQueue = require("cp-data").PriorityQueue; |
| 4151 | |
| 4152 | module.exports = prim; |
| 4153 | |
| 4154 | /** |
| 4155 | * [Prim's algorithm][] takes a connected undirected graph and generates a |
| 4156 | * [minimum spanning tree][]. This function returns the minimum spanning |
| 4157 | * tree as an undirected graph. This algorithm is derived from the description |
| 4158 | * in "Introduction to Algorithms", Third Edition, Cormen, et al., Pg 634. |
| 4159 | * |
| 4160 | * This function takes a `weightFunc(e)` which returns the weight of the edge |
| 4161 | * `e`. It throws an Error if the graph is not connected. |
| 4162 | * |
| 4163 | * This function takes `O(|E| log |V|)` time. |
| 4164 | * |
| 4165 | * [Prim's algorithm]: https://en.wikipedia.org/wiki/Prim's_algorithm |
| 4166 | * [minimum spanning tree]: https://en.wikipedia.org/wiki/Minimum_spanning_tree |
| 4167 | * |
| 4168 | * @param {Graph} g the graph used to generate the minimum spanning tree |
| 4169 | * @param {Function} weightFunc the weight function to use |
| 4170 | */ |
| 4171 | function prim(g, weightFunc) { |
| 4172 | var result = new Graph(), |
| 4173 | parents = {}, |
| 4174 | pq = new PriorityQueue(), |
| 4175 | u; |
| 4176 | |
| 4177 | function updateNeighbors(e) { |
| 4178 | var incidentNodes = g.incidentNodes(e), |
| 4179 | v = incidentNodes[0] !== u ? incidentNodes[0] : incidentNodes[1], |
| 4180 | pri = pq.priority(v); |
| 4181 | if (pri !== undefined) { |
| 4182 | var edgeWeight = weightFunc(e); |
| 4183 | if (edgeWeight < pri) { |
| 4184 | parents[v] = u; |
| 4185 | pq.decrease(v, edgeWeight); |
| 4186 | } |
| 4187 | } |
| 4188 | } |
| 4189 | |
| 4190 | if (g.order() === 0) { |
| 4191 | return result; |
| 4192 | } |
| 4193 | |
| 4194 | g.eachNode(function(u) { |
| 4195 | pq.add(u, Number.POSITIVE_INFINITY); |
| 4196 | result.addNode(u); |
| 4197 | }); |
| 4198 | |
| 4199 | // Start from an arbitrary node |
| 4200 | pq.decrease(g.nodes()[0], 0); |
| 4201 | |
| 4202 | var init = false; |
| 4203 | while (pq.size() > 0) { |
| 4204 | u = pq.removeMin(); |
| 4205 | if (u in parents) { |
| 4206 | result.addEdge(null, u, parents[u]); |
| 4207 | } else if (init) { |
| 4208 | throw new Error("Input graph is not connected: " + g); |
| 4209 | } else { |
| 4210 | init = true; |
| 4211 | } |
| 4212 | |
| 4213 | g.incidentEdges(u).forEach(updateNeighbors); |
| 4214 | } |
| 4215 | |
| 4216 | return result; |
| 4217 | } |
| 4218 | |
| 4219 | },{"../Graph":33,"cp-data":5}],43:[function(require,module,exports){ |
| 4220 | module.exports = tarjan; |
| 4221 | |
| 4222 | /** |
| 4223 | * This function is an implementation of [Tarjan's algorithm][] which finds |
| 4224 | * all [strongly connected components][] in the directed graph **g**. Each |
| 4225 | * strongly connected component is composed of nodes that can reach all other |
| 4226 | * nodes in the component via directed edges. A strongly connected component |
| 4227 | * can consist of a single node if that node cannot both reach and be reached |
| 4228 | * by any other specific node in the graph. Components of more than one node |
| 4229 | * are guaranteed to have at least one cycle. |
| 4230 | * |
| 4231 | * This function returns an array of components. Each component is itself an |
| 4232 | * array that contains the ids of all nodes in the component. |
| 4233 | * |
| 4234 | * [Tarjan's algorithm]: http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm |
| 4235 | * [strongly connected components]: http://en.wikipedia.org/wiki/Strongly_connected_component |
| 4236 | * |
| 4237 | * @param {Digraph} g the graph to search for strongly connected components |
| 4238 | */ |
| 4239 | function tarjan(g) { |
| 4240 | if (!g.isDirected()) { |
| 4241 | throw new Error("tarjan can only be applied to a directed graph. Bad input: " + g); |
| 4242 | } |
| 4243 | |
| 4244 | var index = 0, |
| 4245 | stack = [], |
| 4246 | visited = {}, // node id -> { onStack, lowlink, index } |
| 4247 | results = []; |
| 4248 | |
| 4249 | function dfs(u) { |
| 4250 | var entry = visited[u] = { |
| 4251 | onStack: true, |
| 4252 | lowlink: index, |
| 4253 | index: index++ |
| 4254 | }; |
| 4255 | stack.push(u); |
| 4256 | |
| 4257 | g.successors(u).forEach(function(v) { |
| 4258 | if (!(v in visited)) { |
| 4259 | dfs(v); |
| 4260 | entry.lowlink = Math.min(entry.lowlink, visited[v].lowlink); |
| 4261 | } else if (visited[v].onStack) { |
| 4262 | entry.lowlink = Math.min(entry.lowlink, visited[v].index); |
| 4263 | } |
| 4264 | }); |
| 4265 | |
| 4266 | if (entry.lowlink === entry.index) { |
| 4267 | var cmpt = [], |
| 4268 | v; |
| 4269 | do { |
| 4270 | v = stack.pop(); |
| 4271 | visited[v].onStack = false; |
| 4272 | cmpt.push(v); |
| 4273 | } while (u !== v); |
| 4274 | results.push(cmpt); |
| 4275 | } |
| 4276 | } |
| 4277 | |
| 4278 | g.nodes().forEach(function(u) { |
| 4279 | if (!(u in visited)) { |
| 4280 | dfs(u); |
| 4281 | } |
| 4282 | }); |
| 4283 | |
| 4284 | return results; |
| 4285 | } |
| 4286 | |
| 4287 | },{}],44:[function(require,module,exports){ |
| 4288 | module.exports = topsort; |
| 4289 | topsort.CycleException = CycleException; |
| 4290 | |
| 4291 | /* |
| 4292 | * Given a graph **g**, this function returns an ordered list of nodes such |
| 4293 | * that for each edge `u -> v`, `u` appears before `v` in the list. If the |
| 4294 | * graph has a cycle it is impossible to generate such a list and |
| 4295 | * **CycleException** is thrown. |
| 4296 | * |
| 4297 | * See [topological sorting](https://en.wikipedia.org/wiki/Topological_sorting) |
| 4298 | * for more details about how this algorithm works. |
| 4299 | * |
| 4300 | * @param {Digraph} g the graph to sort |
| 4301 | */ |
| 4302 | function topsort(g) { |
| 4303 | if (!g.isDirected()) { |
| 4304 | throw new Error("topsort can only be applied to a directed graph. Bad input: " + g); |
| 4305 | } |
| 4306 | |
| 4307 | var visited = {}; |
| 4308 | var stack = {}; |
| 4309 | var results = []; |
| 4310 | |
| 4311 | function visit(node) { |
| 4312 | if (node in stack) { |
| 4313 | throw new CycleException(); |
| 4314 | } |
| 4315 | |
| 4316 | if (!(node in visited)) { |
| 4317 | stack[node] = true; |
| 4318 | visited[node] = true; |
| 4319 | g.predecessors(node).forEach(function(pred) { |
| 4320 | visit(pred); |
| 4321 | }); |
| 4322 | delete stack[node]; |
| 4323 | results.push(node); |
| 4324 | } |
| 4325 | } |
| 4326 | |
| 4327 | var sinks = g.sinks(); |
| 4328 | if (g.order() !== 0 && sinks.length === 0) { |
| 4329 | throw new CycleException(); |
| 4330 | } |
| 4331 | |
| 4332 | g.sinks().forEach(function(sink) { |
| 4333 | visit(sink); |
| 4334 | }); |
| 4335 | |
| 4336 | return results; |
| 4337 | } |
| 4338 | |
| 4339 | function CycleException() {} |
| 4340 | |
| 4341 | CycleException.prototype.toString = function() { |
| 4342 | return "Graph has at least one cycle"; |
| 4343 | }; |
| 4344 | |
| 4345 | },{}],45:[function(require,module,exports){ |
| 4346 | // This file provides a helper function that mixes-in Dot behavior to an |
| 4347 | // existing graph prototype. |
| 4348 | |
| 4349 | /* jshint -W079 */ |
| 4350 | var Set = require("cp-data").Set; |
| 4351 | /* jshint +W079 */ |
| 4352 | |
| 4353 | module.exports = compoundify; |
| 4354 | |
| 4355 | // Extends the given SuperConstructor with the ability for nodes to contain |
| 4356 | // other nodes. A special node id `null` is used to indicate the root graph. |
| 4357 | function compoundify(SuperConstructor) { |
| 4358 | function Constructor() { |
| 4359 | SuperConstructor.call(this); |
| 4360 | |
| 4361 | // Map of object id -> parent id (or null for root graph) |
| 4362 | this._parents = {}; |
| 4363 | |
| 4364 | // Map of id (or null) -> children set |
| 4365 | this._children = {}; |
| 4366 | this._children[null] = new Set(); |
| 4367 | } |
| 4368 | |
| 4369 | Constructor.prototype = new SuperConstructor(); |
| 4370 | Constructor.prototype.constructor = Constructor; |
| 4371 | |
| 4372 | Constructor.prototype.parent = function(u, parent) { |
| 4373 | this._strictGetNode(u); |
| 4374 | |
| 4375 | if (arguments.length < 2) { |
| 4376 | return this._parents[u]; |
| 4377 | } |
| 4378 | |
| 4379 | if (u === parent) { |
| 4380 | throw new Error("Cannot make " + u + " a parent of itself"); |
| 4381 | } |
| 4382 | if (parent !== null) { |
| 4383 | this._strictGetNode(parent); |
| 4384 | } |
| 4385 | |
| 4386 | this._children[this._parents[u]].remove(u); |
| 4387 | this._parents[u] = parent; |
| 4388 | this._children[parent].add(u); |
| 4389 | }; |
| 4390 | |
| 4391 | Constructor.prototype.children = function(u) { |
| 4392 | if (u !== null) { |
| 4393 | this._strictGetNode(u); |
| 4394 | } |
| 4395 | return this._children[u].keys(); |
| 4396 | }; |
| 4397 | |
| 4398 | Constructor.prototype.addNode = function(u, value) { |
| 4399 | u = SuperConstructor.prototype.addNode.call(this, u, value); |
| 4400 | this._parents[u] = null; |
| 4401 | this._children[u] = new Set(); |
| 4402 | this._children[null].add(u); |
| 4403 | return u; |
| 4404 | }; |
| 4405 | |
| 4406 | Constructor.prototype.delNode = function(u) { |
| 4407 | // Promote all children to the parent of the subgraph |
| 4408 | var parent = this.parent(u); |
| 4409 | this._children[u].keys().forEach(function(child) { |
| 4410 | this.parent(child, parent); |
| 4411 | }, this); |
| 4412 | |
| 4413 | this._children[parent].remove(u); |
| 4414 | delete this._parents[u]; |
| 4415 | delete this._children[u]; |
| 4416 | |
| 4417 | return SuperConstructor.prototype.delNode.call(this, u); |
| 4418 | }; |
| 4419 | |
| 4420 | Constructor.prototype.copy = function() { |
| 4421 | var copy = SuperConstructor.prototype.copy.call(this); |
| 4422 | this.nodes().forEach(function(u) { |
| 4423 | copy.parent(u, this.parent(u)); |
| 4424 | }, this); |
| 4425 | return copy; |
| 4426 | }; |
| 4427 | |
| 4428 | Constructor.prototype.filterNodes = function(filter) { |
| 4429 | var self = this, |
| 4430 | copy = SuperConstructor.prototype.filterNodes.call(this, filter); |
| 4431 | |
| 4432 | var parents = {}; |
| 4433 | function findParent(u) { |
| 4434 | var parent = self.parent(u); |
| 4435 | if (parent === null || copy.hasNode(parent)) { |
| 4436 | parents[u] = parent; |
| 4437 | return parent; |
| 4438 | } else if (parent in parents) { |
| 4439 | return parents[parent]; |
| 4440 | } else { |
| 4441 | return findParent(parent); |
| 4442 | } |
| 4443 | } |
| 4444 | |
| 4445 | copy.eachNode(function(u) { copy.parent(u, findParent(u)); }); |
| 4446 | |
| 4447 | return copy; |
| 4448 | }; |
| 4449 | |
| 4450 | return Constructor; |
| 4451 | } |
| 4452 | |
| 4453 | },{"cp-data":5}],46:[function(require,module,exports){ |
| 4454 | var Graph = require("../Graph"), |
| 4455 | Digraph = require("../Digraph"), |
| 4456 | CGraph = require("../CGraph"), |
| 4457 | CDigraph = require("../CDigraph"); |
| 4458 | |
| 4459 | exports.decode = function(nodes, edges, Ctor) { |
| 4460 | Ctor = Ctor || Digraph; |
| 4461 | |
| 4462 | if (typeOf(nodes) !== "Array") { |
| 4463 | throw new Error("nodes is not an Array"); |
| 4464 | } |
| 4465 | |
| 4466 | if (typeOf(edges) !== "Array") { |
| 4467 | throw new Error("edges is not an Array"); |
| 4468 | } |
| 4469 | |
| 4470 | if (typeof Ctor === "string") { |
| 4471 | switch(Ctor) { |
| 4472 | case "graph": Ctor = Graph; break; |
| 4473 | case "digraph": Ctor = Digraph; break; |
| 4474 | case "cgraph": Ctor = CGraph; break; |
| 4475 | case "cdigraph": Ctor = CDigraph; break; |
| 4476 | default: throw new Error("Unrecognized graph type: " + Ctor); |
| 4477 | } |
| 4478 | } |
| 4479 | |
| 4480 | var graph = new Ctor(); |
| 4481 | |
| 4482 | nodes.forEach(function(u) { |
| 4483 | graph.addNode(u.id, u.value); |
| 4484 | }); |
| 4485 | |
| 4486 | // If the graph is compound, set up children... |
| 4487 | if (graph.parent) { |
| 4488 | nodes.forEach(function(u) { |
| 4489 | if (u.children) { |
| 4490 | u.children.forEach(function(v) { |
| 4491 | graph.parent(v, u.id); |
| 4492 | }); |
| 4493 | } |
| 4494 | }); |
| 4495 | } |
| 4496 | |
| 4497 | edges.forEach(function(e) { |
| 4498 | graph.addEdge(e.id, e.u, e.v, e.value); |
| 4499 | }); |
| 4500 | |
| 4501 | return graph; |
| 4502 | }; |
| 4503 | |
| 4504 | exports.encode = function(graph) { |
| 4505 | var nodes = []; |
| 4506 | var edges = []; |
| 4507 | |
| 4508 | graph.eachNode(function(u, value) { |
| 4509 | var node = {id: u, value: value}; |
| 4510 | if (graph.children) { |
| 4511 | var children = graph.children(u); |
| 4512 | if (children.length) { |
| 4513 | node.children = children; |
| 4514 | } |
| 4515 | } |
| 4516 | nodes.push(node); |
| 4517 | }); |
| 4518 | |
| 4519 | graph.eachEdge(function(e, u, v, value) { |
| 4520 | edges.push({id: e, u: u, v: v, value: value}); |
| 4521 | }); |
| 4522 | |
| 4523 | var type; |
| 4524 | if (graph instanceof CDigraph) { |
| 4525 | type = "cdigraph"; |
| 4526 | } else if (graph instanceof CGraph) { |
| 4527 | type = "cgraph"; |
| 4528 | } else if (graph instanceof Digraph) { |
| 4529 | type = "digraph"; |
| 4530 | } else if (graph instanceof Graph) { |
| 4531 | type = "graph"; |
| 4532 | } else { |
| 4533 | throw new Error("Couldn't determine type of graph: " + graph); |
| 4534 | } |
| 4535 | |
| 4536 | return { nodes: nodes, edges: edges, type: type }; |
| 4537 | }; |
| 4538 | |
| 4539 | function typeOf(obj) { |
| 4540 | return Object.prototype.toString.call(obj).slice(8, -1); |
| 4541 | } |
| 4542 | |
| 4543 | },{"../CDigraph":30,"../CGraph":31,"../Digraph":32,"../Graph":33}],47:[function(require,module,exports){ |
| 4544 | /* jshint -W079 */ |
| 4545 | var Set = require("cp-data").Set; |
| 4546 | /* jshint +W079 */ |
| 4547 | |
| 4548 | exports.all = function() { |
| 4549 | return function() { return true; }; |
| 4550 | }; |
| 4551 | |
| 4552 | exports.nodesFromList = function(nodes) { |
| 4553 | var set = new Set(nodes); |
| 4554 | return function(u) { |
| 4555 | return set.has(u); |
| 4556 | }; |
| 4557 | }; |
| 4558 | |
| 4559 | },{"cp-data":5}],48:[function(require,module,exports){ |
| 4560 | var Graph = require("./Graph"), |
| 4561 | Digraph = require("./Digraph"); |
| 4562 | |
| 4563 | // Side-effect based changes are lousy, but node doesn't seem to resolve the |
| 4564 | // requires cycle. |
| 4565 | |
| 4566 | /** |
| 4567 | * Returns a new directed graph using the nodes and edges from this graph. The |
| 4568 | * new graph will have the same nodes, but will have twice the number of edges: |
| 4569 | * each edge is split into two edges with opposite directions. Edge ids, |
| 4570 | * consequently, are not preserved by this transformation. |
| 4571 | */ |
| 4572 | Graph.prototype.toDigraph = |
| 4573 | Graph.prototype.asDirected = function() { |
| 4574 | var g = new Digraph(); |
| 4575 | this.eachNode(function(u, value) { g.addNode(u, value); }); |
| 4576 | this.eachEdge(function(e, u, v, value) { |
| 4577 | g.addEdge(null, u, v, value); |
| 4578 | g.addEdge(null, v, u, value); |
| 4579 | }); |
| 4580 | return g; |
| 4581 | }; |
| 4582 | |
| 4583 | /** |
| 4584 | * Returns a new undirected graph using the nodes and edges from this graph. |
| 4585 | * The new graph will have the same nodes, but the edges will be made |
| 4586 | * undirected. Edge ids are preserved in this transformation. |
| 4587 | */ |
| 4588 | Digraph.prototype.toGraph = |
| 4589 | Digraph.prototype.asUndirected = function() { |
| 4590 | var g = new Graph(); |
| 4591 | this.eachNode(function(u, value) { g.addNode(u, value); }); |
| 4592 | this.eachEdge(function(e, u, v, value) { |
| 4593 | g.addEdge(e, u, v, value); |
| 4594 | }); |
| 4595 | return g; |
| 4596 | }; |
| 4597 | |
| 4598 | },{"./Digraph":32,"./Graph":33}],49:[function(require,module,exports){ |
| 4599 | // Returns an array of all values for properties of **o**. |
| 4600 | exports.values = function(o) { |
| 4601 | var ks = Object.keys(o), |
| 4602 | len = ks.length, |
| 4603 | result = new Array(len), |
| 4604 | i; |
| 4605 | for (i = 0; i < len; ++i) { |
| 4606 | result[i] = o[ks[i]]; |
| 4607 | } |
| 4608 | return result; |
| 4609 | }; |
| 4610 | |
| 4611 | },{}],50:[function(require,module,exports){ |
| 4612 | module.exports = '0.7.4'; |
| 4613 | |
| 4614 | },{}]},{},[1]) |
| 4615 | ; |