Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 1 | // Copyright 2013 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include <stdio.h> |
| 16 | #include <stdlib.h> |
| 17 | #include <string.h> |
| 18 | #include <math.h> |
| 19 | #include <pthread.h> |
| 20 | |
| 21 | #define MAX_STRING 100 |
| 22 | #define EXP_TABLE_SIZE 1000 |
| 23 | #define MAX_EXP 6 |
| 24 | #define MAX_SENTENCE_LENGTH 1000 |
Marc Kupietz | 71996e7 | 2016-03-18 13:40:24 +0100 | [diff] [blame] | 25 | #define MAX_CC 100 |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 26 | #define MAX_CODE_LENGTH 40 |
| 27 | |
| 28 | const int vocab_hash_size = 30000000; // Maximum 30 * 0.7 = 21M words in the vocabulary |
| 29 | |
| 30 | typedef float real; // Precision of float numbers |
| 31 | |
| 32 | struct vocab_word { |
| 33 | long long cn; |
| 34 | int *point; |
| 35 | char *word, *code, codelen; |
| 36 | }; |
| 37 | |
| 38 | char train_file[MAX_STRING], output_file[MAX_STRING]; |
| 39 | char save_vocab_file[MAX_STRING], read_vocab_file[MAX_STRING]; |
| 40 | char save_net_file[MAX_STRING], read_net_file[MAX_STRING]; |
| 41 | struct vocab_word *vocab; |
| 42 | int binary = 0, type = 1, debug_mode = 2, window = 5, min_count = 5, |
| 43 | num_threads = 12, min_reduce = 1; |
| 44 | int *vocab_hash; |
| 45 | long long vocab_max_size = 1000, vocab_size = 0, layer1_size = 100; |
| 46 | long long train_words = 0, word_count_actual = 0, iter = 5, file_size = 0, |
| 47 | classes = 0; |
| 48 | real alpha = 0.025, starting_alpha, sample = 1e-3; |
| 49 | real *syn0, *syn1, *syn1neg, *syn1nce, *expTable; |
| 50 | clock_t start; |
| 51 | |
| 52 | real *syn1_window, *syn1neg_window, *syn1nce_window; |
| 53 | int w_offset, window_layer_size; |
| 54 | |
| 55 | int window_hidden_size = 500; |
| 56 | real *syn_window_hidden, *syn_hidden_word, *syn_hidden_word_neg, |
| 57 | *syn_hidden_word_nce; |
| 58 | |
| 59 | int hs = 0, negative = 5; |
| 60 | const int table_size = 1e8; |
| 61 | int *table; |
| 62 | |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 63 | long cc = 0; |
| 64 | |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 65 | //constrastive negative sampling |
| 66 | char negative_classes_file[MAX_STRING]; |
| 67 | int *word_to_group; |
| 68 | int *group_to_table; //group_size*table_size |
| 69 | int class_number; |
| 70 | |
| 71 | //nce |
| 72 | real* noise_distribution; |
| 73 | int nce = 0; |
| 74 | |
| 75 | //param caps |
| 76 | real CAP_VALUE = 50; |
| 77 | int cap = 0; |
| 78 | |
| 79 | void capParam(real* array, int index) { |
| 80 | if (array[index] > CAP_VALUE) |
| 81 | array[index] = CAP_VALUE; |
| 82 | else if (array[index] < -CAP_VALUE) |
| 83 | array[index] = -CAP_VALUE; |
| 84 | } |
| 85 | |
| 86 | real hardTanh(real x) { |
| 87 | if (x >= 1) { |
| 88 | return 1; |
| 89 | } else if (x <= -1) { |
| 90 | return -1; |
| 91 | } else { |
| 92 | return x; |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | real dHardTanh(real x, real g) { |
| 97 | if (x > 1 && g > 0) { |
| 98 | return 0; |
| 99 | } |
| 100 | if (x < -1 && g < 0) { |
| 101 | return 0; |
| 102 | } |
| 103 | return 1; |
| 104 | } |
| 105 | |
| 106 | void InitUnigramTable() { |
| 107 | int a, i; |
| 108 | long long train_words_pow = 0; |
| 109 | real d1, power = 0.75; |
| 110 | table = (int *) malloc(table_size * sizeof(int)); |
| 111 | for (a = 0; a < vocab_size; a++) |
| 112 | train_words_pow += pow(vocab[a].cn, power); |
| 113 | i = 0; |
| 114 | d1 = pow(vocab[i].cn, power) / (real) train_words_pow; |
| 115 | for (a = 0; a < table_size; a++) { |
| 116 | table[a] = i; |
| 117 | if (a / (real) table_size > d1) { |
| 118 | i++; |
| 119 | d1 += pow(vocab[i].cn, power) / (real) train_words_pow; |
| 120 | } |
| 121 | if (i >= vocab_size) |
| 122 | i = vocab_size - 1; |
| 123 | } |
| 124 | |
| 125 | noise_distribution = (real *) calloc(vocab_size, sizeof(real)); |
| 126 | for (a = 0; a < vocab_size; a++) |
| 127 | noise_distribution[a] = pow(vocab[a].cn, power) |
| 128 | / (real) train_words_pow; |
| 129 | } |
| 130 | |
| 131 | // Reads a single word from a file, assuming space + tab + EOL to be word boundaries |
| 132 | void ReadWord(char *word, FILE *fin) { |
| 133 | int a = 0, ch; |
| 134 | while (!feof(fin)) { |
| 135 | ch = fgetc(fin); |
| 136 | if (ch == 13) |
| 137 | continue; |
| 138 | if ((ch == ' ') || (ch == '\t') || (ch == '\n')) { |
| 139 | if (a > 0) { |
| 140 | if (ch == '\n') |
| 141 | ungetc(ch, fin); |
| 142 | break; |
| 143 | } |
| 144 | if (ch == '\n') { |
| 145 | strcpy(word, (char *) "</s>"); |
| 146 | return; |
| 147 | } else |
| 148 | continue; |
| 149 | } |
| 150 | word[a] = ch; |
| 151 | a++; |
| 152 | if (a >= MAX_STRING - 1) |
| 153 | a--; // Truncate too long words |
| 154 | } |
| 155 | word[a] = 0; |
| 156 | } |
| 157 | |
| 158 | // Returns hash value of a word |
| 159 | int GetWordHash(char *word) { |
| 160 | unsigned long long a, hash = 0; |
| 161 | for (a = 0; a < strlen(word); a++) |
| 162 | hash = hash * 257 + word[a]; |
| 163 | hash = hash % vocab_hash_size; |
| 164 | return hash; |
| 165 | } |
| 166 | |
| 167 | // Returns position of a word in the vocabulary; if the word is not found, returns -1 |
| 168 | int SearchVocab(char *word) { |
| 169 | unsigned int hash = GetWordHash(word); |
| 170 | while (1) { |
| 171 | if (vocab_hash[hash] == -1) |
| 172 | return -1; |
| 173 | if (!strcmp(word, vocab[vocab_hash[hash]].word)) |
| 174 | return vocab_hash[hash]; |
| 175 | hash = (hash + 1) % vocab_hash_size; |
| 176 | } |
| 177 | return -1; |
| 178 | } |
| 179 | |
| 180 | // Reads a word and returns its index in the vocabulary |
| 181 | int ReadWordIndex(FILE *fin) { |
| 182 | char word[MAX_STRING]; |
| 183 | ReadWord(word, fin); |
| 184 | if (feof(fin)) |
| 185 | return -1; |
| 186 | return SearchVocab(word); |
| 187 | } |
| 188 | |
| 189 | // Adds a word to the vocabulary |
| 190 | int AddWordToVocab(char *word) { |
| 191 | unsigned int hash, length = strlen(word) + 1; |
| 192 | if (length > MAX_STRING) |
| 193 | length = MAX_STRING; |
| 194 | vocab[vocab_size].word = (char *) calloc(length, sizeof(char)); |
| 195 | strcpy(vocab[vocab_size].word, word); |
| 196 | vocab[vocab_size].cn = 0; |
| 197 | vocab_size++; |
| 198 | // Reallocate memory if needed |
| 199 | if (vocab_size + 2 >= vocab_max_size) { |
| 200 | vocab_max_size += 1000; |
| 201 | vocab = (struct vocab_word *) realloc(vocab, |
| 202 | vocab_max_size * sizeof(struct vocab_word)); |
| 203 | } |
| 204 | hash = GetWordHash(word); |
| 205 | while (vocab_hash[hash] != -1) |
| 206 | hash = (hash + 1) % vocab_hash_size; |
| 207 | vocab_hash[hash] = vocab_size - 1; |
| 208 | return vocab_size - 1; |
| 209 | } |
| 210 | |
| 211 | // Used later for sorting by word counts |
| 212 | int VocabCompare(const void *a, const void *b) { |
| 213 | return ((struct vocab_word *) b)->cn - ((struct vocab_word *) a)->cn; |
| 214 | } |
| 215 | |
| 216 | // Sorts the vocabulary by frequency using word counts |
| 217 | void SortVocab() { |
| 218 | int a, size; |
| 219 | unsigned int hash; |
| 220 | // Sort the vocabulary and keep </s> at the first position |
| 221 | qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare); |
| 222 | for (a = 0; a < vocab_hash_size; a++) |
| 223 | vocab_hash[a] = -1; |
| 224 | size = vocab_size; |
| 225 | train_words = 0; |
| 226 | for (a = 0; a < size; a++) { |
| 227 | // Words occuring less than min_count times will be discarded from the vocab |
| 228 | if ((vocab[a].cn < min_count) && (a != 0)) { |
| 229 | vocab_size--; |
| 230 | free(vocab[a].word); |
| 231 | } else { |
| 232 | // Hash will be re-computed, as after the sorting it is not actual |
| 233 | hash = GetWordHash(vocab[a].word); |
| 234 | while (vocab_hash[hash] != -1) |
| 235 | hash = (hash + 1) % vocab_hash_size; |
| 236 | vocab_hash[hash] = a; |
| 237 | train_words += vocab[a].cn; |
| 238 | } |
| 239 | } |
| 240 | vocab = (struct vocab_word *) realloc(vocab, |
| 241 | (vocab_size + 1) * sizeof(struct vocab_word)); |
| 242 | // Allocate memory for the binary tree construction |
| 243 | for (a = 0; a < vocab_size; a++) { |
| 244 | vocab[a].code = (char *) calloc(MAX_CODE_LENGTH, sizeof(char)); |
| 245 | vocab[a].point = (int *) calloc(MAX_CODE_LENGTH, sizeof(int)); |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | // Reduces the vocabulary by removing infrequent tokens |
| 250 | void ReduceVocab() { |
| 251 | int a, b = 0; |
| 252 | unsigned int hash; |
| 253 | for (a = 0; a < vocab_size; a++) |
| 254 | if (vocab[a].cn > min_reduce) { |
| 255 | vocab[b].cn = vocab[a].cn; |
| 256 | vocab[b].word = vocab[a].word; |
| 257 | b++; |
| 258 | } else |
| 259 | free(vocab[a].word); |
| 260 | vocab_size = b; |
| 261 | for (a = 0; a < vocab_hash_size; a++) |
| 262 | vocab_hash[a] = -1; |
| 263 | for (a = 0; a < vocab_size; a++) { |
| 264 | // Hash will be re-computed, as it is not actual |
| 265 | hash = GetWordHash(vocab[a].word); |
| 266 | while (vocab_hash[hash] != -1) |
| 267 | hash = (hash + 1) % vocab_hash_size; |
| 268 | vocab_hash[hash] = a; |
| 269 | } |
| 270 | fflush(stdout); |
| 271 | min_reduce++; |
| 272 | } |
| 273 | |
| 274 | // Create binary Huffman tree using the word counts |
| 275 | // Frequent words will have short uniqe binary codes |
| 276 | void CreateBinaryTree() { |
| 277 | long long a, b, i, min1i, min2i, pos1, pos2, point[MAX_CODE_LENGTH]; |
| 278 | char code[MAX_CODE_LENGTH]; |
| 279 | long long *count = (long long *) calloc(vocab_size * 2 + 1, |
| 280 | sizeof(long long)); |
| 281 | long long *binary = (long long *) calloc(vocab_size * 2 + 1, |
| 282 | sizeof(long long)); |
| 283 | long long *parent_node = (long long *) calloc(vocab_size * 2 + 1, |
| 284 | sizeof(long long)); |
| 285 | for (a = 0; a < vocab_size; a++) |
| 286 | count[a] = vocab[a].cn; |
| 287 | for (a = vocab_size; a < vocab_size * 2; a++) |
| 288 | count[a] = 1e15; |
| 289 | pos1 = vocab_size - 1; |
| 290 | pos2 = vocab_size; |
| 291 | // Following algorithm constructs the Huffman tree by adding one node at a time |
| 292 | for (a = 0; a < vocab_size - 1; a++) { |
| 293 | // First, find two smallest nodes 'min1, min2' |
| 294 | if (pos1 >= 0) { |
| 295 | if (count[pos1] < count[pos2]) { |
| 296 | min1i = pos1; |
| 297 | pos1--; |
| 298 | } else { |
| 299 | min1i = pos2; |
| 300 | pos2++; |
| 301 | } |
| 302 | } else { |
| 303 | min1i = pos2; |
| 304 | pos2++; |
| 305 | } |
| 306 | if (pos1 >= 0) { |
| 307 | if (count[pos1] < count[pos2]) { |
| 308 | min2i = pos1; |
| 309 | pos1--; |
| 310 | } else { |
| 311 | min2i = pos2; |
| 312 | pos2++; |
| 313 | } |
| 314 | } else { |
| 315 | min2i = pos2; |
| 316 | pos2++; |
| 317 | } |
| 318 | count[vocab_size + a] = count[min1i] + count[min2i]; |
| 319 | parent_node[min1i] = vocab_size + a; |
| 320 | parent_node[min2i] = vocab_size + a; |
| 321 | binary[min2i] = 1; |
| 322 | } |
| 323 | // Now assign binary code to each vocabulary word |
| 324 | for (a = 0; a < vocab_size; a++) { |
| 325 | b = a; |
| 326 | i = 0; |
| 327 | while (1) { |
| 328 | code[i] = binary[b]; |
| 329 | point[i] = b; |
| 330 | i++; |
| 331 | b = parent_node[b]; |
| 332 | if (b == vocab_size * 2 - 2) |
| 333 | break; |
| 334 | } |
| 335 | vocab[a].codelen = i; |
| 336 | vocab[a].point[0] = vocab_size - 2; |
| 337 | for (b = 0; b < i; b++) { |
| 338 | vocab[a].code[i - b - 1] = code[b]; |
| 339 | vocab[a].point[i - b] = point[b] - vocab_size; |
| 340 | } |
| 341 | } |
| 342 | free(count); |
| 343 | free(binary); |
| 344 | free(parent_node); |
| 345 | } |
| 346 | |
| 347 | void LearnVocabFromTrainFile() { |
| 348 | char word[MAX_STRING]; |
| 349 | FILE *fin; |
| 350 | long long a, i; |
| 351 | for (a = 0; a < vocab_hash_size; a++) |
| 352 | vocab_hash[a] = -1; |
| 353 | fin = fopen(train_file, "rb"); |
| 354 | if (fin == NULL) { |
| 355 | printf("ERROR: training data file not found!\n"); |
| 356 | exit(1); |
| 357 | } |
| 358 | vocab_size = 0; |
| 359 | AddWordToVocab((char *) "</s>"); |
| 360 | while (1) { |
| 361 | ReadWord(word, fin); |
| 362 | if (feof(fin)) |
| 363 | break; |
| 364 | train_words++; |
| 365 | if ((debug_mode > 1) && (train_words % 100000 == 0)) { |
| 366 | printf("%lldK%c", train_words / 1000, 13); |
| 367 | fflush(stdout); |
| 368 | } |
| 369 | i = SearchVocab(word); |
| 370 | if (i == -1) { |
| 371 | a = AddWordToVocab(word); |
| 372 | vocab[a].cn = 1; |
| 373 | } else |
| 374 | vocab[i].cn++; |
| 375 | if (vocab_size > vocab_hash_size * 0.7) |
| 376 | ReduceVocab(); |
| 377 | } |
| 378 | SortVocab(); |
| 379 | if (debug_mode > 0) { |
| 380 | printf("Vocab size: %lld\n", vocab_size); |
| 381 | printf("Words in train file: %lld\n", train_words); |
| 382 | } |
| 383 | file_size = ftell(fin); |
| 384 | fclose(fin); |
| 385 | } |
| 386 | |
| 387 | void SaveVocab() { |
| 388 | long long i; |
| 389 | FILE *fo = fopen(save_vocab_file, "wb"); |
| 390 | for (i = 0; i < vocab_size; i++) |
| 391 | fprintf(fo, "%s %lld\n", vocab[i].word, vocab[i].cn); |
| 392 | fclose(fo); |
| 393 | } |
| 394 | |
| 395 | void ReadVocab() { |
| 396 | long long a, i = 0; |
| 397 | char c; |
| 398 | char word[MAX_STRING]; |
| 399 | FILE *fin = fopen(read_vocab_file, "rb"); |
| 400 | if (fin == NULL) { |
| 401 | printf("Vocabulary file not found\n"); |
| 402 | exit(1); |
| 403 | } |
| 404 | for (a = 0; a < vocab_hash_size; a++) |
| 405 | vocab_hash[a] = -1; |
| 406 | vocab_size = 0; |
| 407 | while (1) { |
| 408 | ReadWord(word, fin); |
| 409 | if (feof(fin)) |
| 410 | break; |
| 411 | a = AddWordToVocab(word); |
| 412 | fscanf(fin, "%lld%c", &vocab[a].cn, &c); |
| 413 | i++; |
| 414 | } |
| 415 | SortVocab(); |
| 416 | if (debug_mode > 0) { |
| 417 | printf("Vocab size: %lld\n", vocab_size); |
| 418 | printf("Words in train file: %lld\n", train_words); |
| 419 | } |
| 420 | fin = fopen(train_file, "rb"); |
| 421 | if (fin == NULL) { |
| 422 | printf("ERROR: training data file not found!\n"); |
| 423 | exit(1); |
| 424 | } |
| 425 | fseek(fin, 0, SEEK_END); |
| 426 | file_size = ftell(fin); |
| 427 | fclose(fin); |
| 428 | } |
| 429 | |
| 430 | void InitClassUnigramTable() { |
| 431 | long long a, c; |
| 432 | printf("loading class unigrams \n"); |
| 433 | FILE *fin = fopen(negative_classes_file, "rb"); |
| 434 | if (fin == NULL) { |
| 435 | printf("ERROR: class file not found!\n"); |
| 436 | exit(1); |
| 437 | } |
| 438 | word_to_group = (int *) malloc(vocab_size * sizeof(int)); |
| 439 | for (a = 0; a < vocab_size; a++) |
| 440 | word_to_group[a] = -1; |
| 441 | char class[MAX_STRING]; |
| 442 | char prev_class[MAX_STRING]; |
| 443 | prev_class[0] = 0; |
| 444 | char word[MAX_STRING]; |
| 445 | class_number = -1; |
| 446 | while (1) { |
| 447 | if (feof(fin)) |
| 448 | break; |
| 449 | ReadWord(class, fin); |
| 450 | ReadWord(word, fin); |
| 451 | int word_index = SearchVocab(word); |
| 452 | if (word_index != -1) { |
| 453 | if (strcmp(class, prev_class) != 0) { |
| 454 | class_number++; |
| 455 | strcpy(prev_class, class); |
| 456 | } |
| 457 | word_to_group[word_index] = class_number; |
| 458 | } |
| 459 | ReadWord(word, fin); |
| 460 | } |
| 461 | class_number++; |
| 462 | fclose(fin); |
| 463 | |
| 464 | group_to_table = (int *) malloc(table_size * class_number * sizeof(int)); |
| 465 | long long train_words_pow = 0; |
| 466 | real d1, power = 0.75; |
| 467 | |
| 468 | for (c = 0; c < class_number; c++) { |
| 469 | long long offset = c * table_size; |
| 470 | train_words_pow = 0; |
| 471 | for (a = 0; a < vocab_size; a++) |
| 472 | if (word_to_group[a] == c) |
| 473 | train_words_pow += pow(vocab[a].cn, power); |
| 474 | int i = 0; |
| 475 | while (word_to_group[i] != c && i < vocab_size) |
| 476 | i++; |
| 477 | d1 = pow(vocab[i].cn, power) / (real) train_words_pow; |
| 478 | for (a = 0; a < table_size; a++) { |
| 479 | //printf("index %lld , word %d\n", a, i); |
| 480 | group_to_table[offset + a] = i; |
| 481 | if (a / (real) table_size > d1) { |
| 482 | i++; |
| 483 | while (word_to_group[i] != c && i < vocab_size) |
| 484 | i++; |
| 485 | d1 += pow(vocab[i].cn, power) / (real) train_words_pow; |
| 486 | } |
| 487 | if (i >= vocab_size) |
| 488 | while (word_to_group[i] != c && i >= 0) |
| 489 | i--; |
| 490 | } |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | void SaveNet() { |
Marc Kupietz | 313fcc5 | 2016-03-16 16:43:37 +0100 | [diff] [blame] | 495 | if(type != 3 || negative <= 0) { |
| 496 | fprintf(stderr, "save-net only supported for type 3 with negative sampling\n"); |
| 497 | return; |
| 498 | } |
| 499 | |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 500 | FILE *fnet = fopen(save_net_file, "wb"); |
| 501 | if (fnet == NULL) { |
| 502 | printf("Net parameter file not found\n"); |
| 503 | exit(1); |
| 504 | } |
Marc Kupietz | c697933 | 2016-03-16 15:29:07 +0100 | [diff] [blame] | 505 | fwrite(syn0, sizeof(real), vocab_size * layer1_size, fnet); |
Marc Kupietz | 313fcc5 | 2016-03-16 16:43:37 +0100 | [diff] [blame] | 506 | fwrite(syn1neg_window, sizeof(real), vocab_size * window_layer_size, fnet); |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 507 | fclose(fnet); |
| 508 | } |
| 509 | |
| 510 | void InitNet() { |
| 511 | long long a, b; |
| 512 | unsigned long long next_random = 1; |
Marc Kupietz | 57c0df1 | 2016-03-18 12:48:00 +0100 | [diff] [blame] | 513 | long long read; |
| 514 | |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 515 | window_layer_size = layer1_size * window * 2; |
| 516 | a = posix_memalign((void **) &syn0, 128, |
| 517 | (long long) vocab_size * layer1_size * sizeof(real)); |
| 518 | if (syn0 == NULL) { |
| 519 | printf("Memory allocation failed\n"); |
| 520 | exit(1); |
| 521 | } |
| 522 | |
| 523 | if (hs) { |
| 524 | a = posix_memalign((void **) &syn1, 128, |
| 525 | (long long) vocab_size * layer1_size * sizeof(real)); |
| 526 | if (syn1 == NULL) { |
| 527 | printf("Memory allocation failed\n"); |
| 528 | exit(1); |
| 529 | } |
| 530 | a = posix_memalign((void **) &syn1_window, 128, |
| 531 | (long long) vocab_size * window_layer_size * sizeof(real)); |
| 532 | if (syn1_window == NULL) { |
| 533 | printf("Memory allocation failed\n"); |
| 534 | exit(1); |
| 535 | } |
| 536 | a = posix_memalign((void **) &syn_hidden_word, 128, |
| 537 | (long long) vocab_size * window_hidden_size * sizeof(real)); |
| 538 | if (syn_hidden_word == NULL) { |
| 539 | printf("Memory allocation failed\n"); |
| 540 | exit(1); |
| 541 | } |
| 542 | |
| 543 | for (a = 0; a < vocab_size; a++) |
| 544 | for (b = 0; b < layer1_size; b++) |
| 545 | syn1[a * layer1_size + b] = 0; |
| 546 | for (a = 0; a < vocab_size; a++) |
| 547 | for (b = 0; b < window_layer_size; b++) |
| 548 | syn1_window[a * window_layer_size + b] = 0; |
| 549 | for (a = 0; a < vocab_size; a++) |
| 550 | for (b = 0; b < window_hidden_size; b++) |
| 551 | syn_hidden_word[a * window_hidden_size + b] = 0; |
| 552 | } |
| 553 | if (negative > 0) { |
Marc Kupietz | 1006a27 | 2016-03-16 15:50:20 +0100 | [diff] [blame] | 554 | if(type == 0) { |
| 555 | a = posix_memalign((void **) &syn1neg, 128, |
| 556 | (long long) vocab_size * layer1_size * sizeof(real)); |
| 557 | if (syn1neg == NULL) { |
| 558 | printf("Memory allocation failed\n"); |
| 559 | exit(1); |
| 560 | } |
| 561 | for (a = 0; a < vocab_size; a++) |
| 562 | for (b = 0; b < layer1_size; b++) |
| 563 | syn1neg[a * layer1_size + b] = 0; |
| 564 | } else if (type == 3) { |
| 565 | a = posix_memalign((void **) &syn1neg_window, 128, |
| 566 | (long long) vocab_size * window_layer_size * sizeof(real)); |
| 567 | if (syn1neg_window == NULL) { |
| 568 | printf("Memory allocation failed\n"); |
| 569 | exit(1); |
| 570 | } |
| 571 | for (a = 0; a < vocab_size; a++) |
| 572 | for (b = 0; b < window_layer_size; b++) |
| 573 | syn1neg_window[a * window_layer_size + b] = 0; |
| 574 | } else if (type == 4) { |
| 575 | a = posix_memalign((void **) &syn_hidden_word_neg, 128, |
| 576 | (long long) vocab_size * window_hidden_size * sizeof(real)); |
| 577 | if (syn_hidden_word_neg == NULL) { |
| 578 | printf("Memory allocation failed\n"); |
| 579 | exit(1); |
| 580 | } |
| 581 | for (a = 0; a < vocab_size; a++) |
| 582 | for (b = 0; b < window_hidden_size; b++) |
| 583 | syn_hidden_word_neg[a * window_hidden_size + b] = 0; |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 584 | } |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 585 | } |
| 586 | if (nce > 0) { |
| 587 | a = posix_memalign((void **) &syn1nce, 128, |
| 588 | (long long) vocab_size * layer1_size * sizeof(real)); |
| 589 | if (syn1nce == NULL) { |
| 590 | printf("Memory allocation failed\n"); |
| 591 | exit(1); |
| 592 | } |
| 593 | a = posix_memalign((void **) &syn1nce_window, 128, |
| 594 | (long long) vocab_size * window_layer_size * sizeof(real)); |
| 595 | if (syn1nce_window == NULL) { |
| 596 | printf("Memory allocation failed\n"); |
| 597 | exit(1); |
| 598 | } |
| 599 | a = posix_memalign((void **) &syn_hidden_word_nce, 128, |
| 600 | (long long) vocab_size * window_hidden_size * sizeof(real)); |
| 601 | if (syn_hidden_word_nce == NULL) { |
| 602 | printf("Memory allocation failed\n"); |
| 603 | exit(1); |
| 604 | } |
| 605 | |
| 606 | for (a = 0; a < vocab_size; a++) |
| 607 | for (b = 0; b < layer1_size; b++) |
| 608 | syn1nce[a * layer1_size + b] = 0; |
| 609 | for (a = 0; a < vocab_size; a++) |
| 610 | for (b = 0; b < window_layer_size; b++) |
| 611 | syn1nce_window[a * window_layer_size + b] = 0; |
| 612 | for (a = 0; a < vocab_size; a++) |
| 613 | for (b = 0; b < window_hidden_size; b++) |
| 614 | syn_hidden_word_nce[a * window_hidden_size + b] = 0; |
| 615 | } |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 616 | |
Marc Kupietz | 1006a27 | 2016-03-16 15:50:20 +0100 | [diff] [blame] | 617 | if(type == 4) { |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 618 | a = posix_memalign((void **) &syn_window_hidden, 128, |
| 619 | window_hidden_size * window_layer_size * sizeof(real)); |
| 620 | if (syn_window_hidden == NULL) { |
| 621 | printf("Memory allocation failed\n"); |
| 622 | exit(1); |
| 623 | } |
| 624 | for (a = 0; a < window_hidden_size * window_layer_size; a++) { |
| 625 | next_random = next_random * (unsigned long long) 25214903917 + 11; |
| 626 | syn_window_hidden[a] = (((next_random & 0xFFFF) / (real) 65536) |
| 627 | - 0.5) / (window_hidden_size * window_layer_size); |
| 628 | } |
| 629 | } |
Marc Kupietz | 1006a27 | 2016-03-16 15:50:20 +0100 | [diff] [blame] | 630 | |
| 631 | if (read_net_file[0] == 0) { |
| 632 | for (a = 0; a < vocab_size; a++) |
| 633 | for (b = 0; b < layer1_size; b++) { |
| 634 | next_random = next_random * (unsigned long long) 25214903917 |
| 635 | + 11; |
| 636 | syn0[a * layer1_size + b] = (((next_random & 0xFFFF) |
| 637 | / (real) 65536) - 0.5) / layer1_size; |
| 638 | } |
Marc Kupietz | 313fcc5 | 2016-03-16 16:43:37 +0100 | [diff] [blame] | 639 | } else if(type == 3 && negative > 0) { |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 640 | FILE *fnet = fopen(read_net_file, "rb"); |
| 641 | if (fnet == NULL) { |
| 642 | printf("Net parameter file not found\n"); |
| 643 | exit(1); |
| 644 | } |
Marc Kupietz | 57c0df1 | 2016-03-18 12:48:00 +0100 | [diff] [blame] | 645 | printf("vocab-size: %lld, layer1_size: %lld, window_layer_size %d\n", vocab_size, layer1_size, window_layer_size); |
| 646 | read = fread(syn0, sizeof(real), vocab_size * layer1_size, fnet); |
| 647 | if(read != vocab_size * layer1_size) { |
| 648 | fprintf(stderr, "read-net failed %lld\n", read); |
| 649 | exit(-1); |
| 650 | } |
| 651 | read = fread(syn1neg_window, sizeof(real), vocab_size * window_layer_size, fnet); |
| 652 | if(read != (long long) vocab_size * window_layer_size) { |
| 653 | fprintf(stderr, "read-net failed, read %lld, expected: %lld\n", read , |
| 654 | (long long) sizeof(real) * vocab_size * window_layer_size); |
| 655 | exit(-1); |
| 656 | } |
| 657 | fgetc(fnet); |
| 658 | if(!feof(fnet)) { |
| 659 | fprintf(stderr, "Remaining bytes in net-file after read-net. File position: %ld\n", ftell(fnet)); |
| 660 | exit(-1); |
| 661 | } |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 662 | fclose(fnet); |
Marc Kupietz | 313fcc5 | 2016-03-16 16:43:37 +0100 | [diff] [blame] | 663 | } else { |
| 664 | fprintf(stderr, "read-net only supported for type 3 with negative sampling\n"); |
| 665 | exit(-1); |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 666 | } |
| 667 | |
| 668 | CreateBinaryTree(); |
| 669 | } |
| 670 | |
| 671 | void *TrainModelThread(void *id) { |
| 672 | long long a, b, d, cw, word, last_word, sentence_length = 0, |
| 673 | sentence_position = 0; |
| 674 | long long word_count = 0, last_word_count = 0, sen[MAX_SENTENCE_LENGTH + 1]; |
| 675 | long long l1, l2, c, target, label, local_iter = iter; |
| 676 | unsigned long long next_random = (long long) id; |
| 677 | real f, g; |
| 678 | clock_t now; |
| 679 | int input_len_1 = layer1_size; |
| 680 | int window_offset = -1; |
| 681 | if (type == 2 || type == 4) { |
| 682 | input_len_1 = window_layer_size; |
| 683 | } |
| 684 | real *neu1 = (real *) calloc(input_len_1, sizeof(real)); |
| 685 | real *neu1e = (real *) calloc(input_len_1, sizeof(real)); |
| 686 | |
| 687 | int input_len_2 = 0; |
| 688 | if (type == 4) { |
| 689 | input_len_2 = window_hidden_size; |
| 690 | } |
| 691 | real *neu2 = (real *) calloc(input_len_2, sizeof(real)); |
| 692 | real *neu2e = (real *) calloc(input_len_2, sizeof(real)); |
| 693 | |
| 694 | FILE *fi = fopen(train_file, "rb"); |
| 695 | fseek(fi, file_size / (long long) num_threads * (long long) id, SEEK_SET); |
| 696 | while (1) { |
| 697 | if (word_count - last_word_count > 10000) { |
| 698 | word_count_actual += word_count - last_word_count; |
| 699 | last_word_count = word_count; |
| 700 | if ((debug_mode > 1)) { |
| 701 | now = clock(); |
| 702 | printf( |
| 703 | "%cAlpha: %f Progress: %.2f%% Words/thread/sec: %.2fk ", |
| 704 | 13, alpha, |
| 705 | word_count_actual / (real) (iter * train_words + 1) |
| 706 | * 100, |
| 707 | word_count_actual |
| 708 | / ((real) (now - start + 1) |
| 709 | / (real) CLOCKS_PER_SEC * 1000)); |
| 710 | fflush(stdout); |
| 711 | } |
| 712 | alpha = starting_alpha |
| 713 | * (1 - word_count_actual / (real) (iter * train_words + 1)); |
| 714 | if (alpha < starting_alpha * 0.0001) |
| 715 | alpha = starting_alpha * 0.0001; |
| 716 | } |
| 717 | if (sentence_length == 0) { |
| 718 | while (1) { |
| 719 | word = ReadWordIndex(fi); |
| 720 | if (feof(fi)) |
| 721 | break; |
| 722 | if (word == -1) |
| 723 | continue; |
| 724 | word_count++; |
| 725 | if (word == 0) |
| 726 | break; |
| 727 | // The subsampling randomly discards frequent words while keeping the ranking same |
| 728 | if (sample > 0) { |
| 729 | real ran = (sqrt(vocab[word].cn / (sample * train_words)) |
| 730 | + 1) * (sample * train_words) / vocab[word].cn; |
| 731 | next_random = next_random * (unsigned long long) 25214903917 |
| 732 | + 11; |
Marc Kupietz | ab4e5af | 2016-03-22 14:24:03 +0100 | [diff] [blame^] | 733 | if (ran < (next_random & 0xFFFF) / (real) 65536) { |
| 734 | if(type == 3) // in structured skipgrams |
| 735 | word = -2; // keep the window position correct |
| 736 | else |
| 737 | continue; |
| 738 | } |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 739 | } |
| 740 | sen[sentence_length] = word; |
| 741 | sentence_length++; |
| 742 | if (sentence_length >= MAX_SENTENCE_LENGTH) |
| 743 | break; |
| 744 | } |
| 745 | sentence_position = 0; |
| 746 | } |
| 747 | if (feof(fi) || (word_count > train_words / num_threads)) { |
| 748 | word_count_actual += word_count - last_word_count; |
| 749 | local_iter--; |
| 750 | if (local_iter == 0) |
| 751 | break; |
| 752 | word_count = 0; |
| 753 | last_word_count = 0; |
| 754 | sentence_length = 0; |
| 755 | fseek(fi, file_size / (long long) num_threads * (long long) id, |
| 756 | SEEK_SET); |
| 757 | continue; |
| 758 | } |
| 759 | word = sen[sentence_position]; |
Marc Kupietz | ab4e5af | 2016-03-22 14:24:03 +0100 | [diff] [blame^] | 760 | if (word == -2) |
| 761 | word = sen[++sentence_position]; |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 762 | if (word == -1) |
| 763 | continue; |
| 764 | for (c = 0; c < input_len_1; c++) |
| 765 | neu1[c] = 0; |
| 766 | for (c = 0; c < input_len_1; c++) |
| 767 | neu1e[c] = 0; |
| 768 | for (c = 0; c < input_len_2; c++) |
| 769 | neu2[c] = 0; |
| 770 | for (c = 0; c < input_len_2; c++) |
| 771 | neu2e[c] = 0; |
| 772 | next_random = next_random * (unsigned long long) 25214903917 + 11; |
| 773 | b = next_random % window; |
| 774 | if (type == 0) { //train the cbow architecture |
| 775 | // in -> hidden |
| 776 | cw = 0; |
| 777 | for (a = b; a < window * 2 + 1 - b; a++) |
| 778 | if (a != window) { |
| 779 | c = sentence_position - window + a; |
| 780 | if (c < 0) |
| 781 | continue; |
| 782 | if (c >= sentence_length) |
| 783 | continue; |
| 784 | last_word = sen[c]; |
| 785 | if (last_word == -1) |
| 786 | continue; |
| 787 | for (c = 0; c < layer1_size; c++) |
| 788 | neu1[c] += syn0[c + last_word * layer1_size]; |
| 789 | cw++; |
| 790 | } |
| 791 | if (cw) { |
| 792 | for (c = 0; c < layer1_size; c++) |
| 793 | neu1[c] /= cw; |
| 794 | if (hs) |
| 795 | for (d = 0; d < vocab[word].codelen; d++) { |
| 796 | f = 0; |
| 797 | l2 = vocab[word].point[d] * layer1_size; |
| 798 | // Propagate hidden -> output |
| 799 | for (c = 0; c < layer1_size; c++) |
| 800 | f += neu1[c] * syn1[c + l2]; |
| 801 | if (f <= -MAX_EXP) |
| 802 | continue; |
| 803 | else if (f >= MAX_EXP) |
| 804 | continue; |
| 805 | else |
| 806 | f = expTable[(int) ((f + MAX_EXP) |
| 807 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 808 | // 'g' is the gradient multiplied by the learning rate |
| 809 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 810 | // Propagate errors output -> hidden |
| 811 | for (c = 0; c < layer1_size; c++) |
| 812 | neu1e[c] += g * syn1[c + l2]; |
| 813 | // Learn weights hidden -> output |
| 814 | for (c = 0; c < layer1_size; c++) |
| 815 | syn1[c + l2] += g * neu1[c]; |
| 816 | if (cap == 1) |
| 817 | for (c = 0; c < layer1_size; c++) |
| 818 | capParam(syn1, c + l2); |
| 819 | } |
| 820 | // NEGATIVE SAMPLING |
| 821 | if (negative > 0) |
| 822 | for (d = 0; d < negative + 1; d++) { |
| 823 | if (d == 0) { |
| 824 | target = word; |
| 825 | label = 1; |
| 826 | } else { |
| 827 | next_random = next_random |
| 828 | * (unsigned long long) 25214903917 + 11; |
| 829 | if (word_to_group != NULL |
| 830 | && word_to_group[word] != -1) { |
| 831 | target = word; |
| 832 | while (target == word) { |
| 833 | target = group_to_table[word_to_group[word] |
| 834 | * table_size |
| 835 | + (next_random >> 16) % table_size]; |
| 836 | next_random = next_random |
| 837 | * (unsigned long long) 25214903917 |
| 838 | + 11; |
| 839 | } |
| 840 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 841 | } else { |
| 842 | target = |
| 843 | table[(next_random >> 16) % table_size]; |
| 844 | } |
| 845 | if (target == 0) |
| 846 | target = next_random % (vocab_size - 1) + 1; |
| 847 | if (target == word) |
| 848 | continue; |
| 849 | label = 0; |
| 850 | } |
| 851 | l2 = target * layer1_size; |
| 852 | f = 0; |
| 853 | for (c = 0; c < layer1_size; c++) |
| 854 | f += neu1[c] * syn1neg[c + l2]; |
| 855 | if (f > MAX_EXP) |
| 856 | g = (label - 1) * alpha; |
| 857 | else if (f < -MAX_EXP) |
| 858 | g = (label - 0) * alpha; |
| 859 | else |
| 860 | g = (label |
| 861 | - expTable[(int) ((f + MAX_EXP) |
| 862 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]) |
| 863 | * alpha; |
| 864 | for (c = 0; c < layer1_size; c++) |
| 865 | neu1e[c] += g * syn1neg[c + l2]; |
| 866 | for (c = 0; c < layer1_size; c++) |
| 867 | syn1neg[c + l2] += g * neu1[c]; |
| 868 | if (cap == 1) |
| 869 | for (c = 0; c < layer1_size; c++) |
| 870 | capParam(syn1neg, c + l2); |
| 871 | } |
| 872 | // Noise Contrastive Estimation |
| 873 | if (nce > 0) |
| 874 | for (d = 0; d < nce + 1; d++) { |
| 875 | if (d == 0) { |
| 876 | target = word; |
| 877 | label = 1; |
| 878 | } else { |
| 879 | next_random = next_random |
| 880 | * (unsigned long long) 25214903917 + 11; |
| 881 | if (word_to_group != NULL |
| 882 | && word_to_group[word] != -1) { |
| 883 | target = word; |
| 884 | while (target == word) { |
| 885 | target = group_to_table[word_to_group[word] |
| 886 | * table_size |
| 887 | + (next_random >> 16) % table_size]; |
| 888 | next_random = next_random |
| 889 | * (unsigned long long) 25214903917 |
| 890 | + 11; |
| 891 | } |
| 892 | } else { |
| 893 | target = |
| 894 | table[(next_random >> 16) % table_size]; |
| 895 | } |
| 896 | if (target == 0) |
| 897 | target = next_random % (vocab_size - 1) + 1; |
| 898 | if (target == word) |
| 899 | continue; |
| 900 | label = 0; |
| 901 | } |
| 902 | l2 = target * layer1_size; |
| 903 | f = 0; |
| 904 | |
| 905 | for (c = 0; c < layer1_size; c++) |
| 906 | f += neu1[c] * syn1nce[c + l2]; |
| 907 | if (f > MAX_EXP) |
| 908 | g = (label - 1) * alpha; |
| 909 | else if (f < -MAX_EXP) |
| 910 | g = (label - 0) * alpha; |
| 911 | else { |
| 912 | f = exp(f); |
| 913 | g = |
| 914 | (label |
| 915 | - f |
| 916 | / (noise_distribution[target] |
| 917 | * nce + f)) * alpha; |
| 918 | } |
| 919 | for (c = 0; c < layer1_size; c++) |
| 920 | neu1e[c] += g * syn1nce[c + l2]; |
| 921 | for (c = 0; c < layer1_size; c++) |
| 922 | syn1nce[c + l2] += g * neu1[c]; |
| 923 | if (cap == 1) |
| 924 | for (c = 0; c < layer1_size; c++) |
| 925 | capParam(syn1nce, c + l2); |
| 926 | } |
| 927 | // hidden -> in |
| 928 | for (a = b; a < window * 2 + 1 - b; a++) |
| 929 | if (a != window) { |
| 930 | c = sentence_position - window + a; |
| 931 | if (c < 0) |
| 932 | continue; |
| 933 | if (c >= sentence_length) |
| 934 | continue; |
| 935 | last_word = sen[c]; |
| 936 | if (last_word == -1) |
| 937 | continue; |
| 938 | for (c = 0; c < layer1_size; c++) |
| 939 | syn0[c + last_word * layer1_size] += neu1e[c]; |
| 940 | } |
| 941 | } |
| 942 | } else if (type == 1) { //train skip-gram |
| 943 | for (a = b; a < window * 2 + 1 - b; a++) |
| 944 | if (a != window) { |
| 945 | c = sentence_position - window + a; |
| 946 | if (c < 0) |
| 947 | continue; |
| 948 | if (c >= sentence_length) |
| 949 | continue; |
| 950 | last_word = sen[c]; |
| 951 | if (last_word == -1) |
| 952 | continue; |
| 953 | l1 = last_word * layer1_size; |
| 954 | for (c = 0; c < layer1_size; c++) |
| 955 | neu1e[c] = 0; |
| 956 | // HIERARCHICAL SOFTMAX |
| 957 | if (hs) |
| 958 | for (d = 0; d < vocab[word].codelen; d++) { |
| 959 | f = 0; |
| 960 | l2 = vocab[word].point[d] * layer1_size; |
| 961 | // Propagate hidden -> output |
| 962 | for (c = 0; c < layer1_size; c++) |
| 963 | f += syn0[c + l1] * syn1[c + l2]; |
| 964 | if (f <= -MAX_EXP) |
| 965 | continue; |
| 966 | else if (f >= MAX_EXP) |
| 967 | continue; |
| 968 | else |
| 969 | f = expTable[(int) ((f + MAX_EXP) |
| 970 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 971 | // 'g' is the gradient multiplied by the learning rate |
| 972 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 973 | // Propagate errors output -> hidden |
| 974 | for (c = 0; c < layer1_size; c++) |
| 975 | neu1e[c] += g * syn1[c + l2]; |
| 976 | // Learn weights hidden -> output |
| 977 | for (c = 0; c < layer1_size; c++) |
| 978 | syn1[c + l2] += g * syn0[c + l1]; |
| 979 | if (cap == 1) |
| 980 | for (c = 0; c < layer1_size; c++) |
| 981 | capParam(syn1, c + l2); |
| 982 | } |
| 983 | // NEGATIVE SAMPLING |
| 984 | if (negative > 0) |
| 985 | for (d = 0; d < negative + 1; d++) { |
| 986 | if (d == 0) { |
| 987 | target = word; |
| 988 | label = 1; |
| 989 | } else { |
| 990 | next_random = next_random |
| 991 | * (unsigned long long) 25214903917 + 11; |
| 992 | if (word_to_group != NULL |
| 993 | && word_to_group[word] != -1) { |
| 994 | target = word; |
| 995 | while (target == word) { |
| 996 | target = |
| 997 | group_to_table[word_to_group[word] |
| 998 | * table_size |
| 999 | + (next_random >> 16) |
| 1000 | % table_size]; |
| 1001 | next_random = |
| 1002 | next_random |
| 1003 | * (unsigned long long) 25214903917 |
| 1004 | + 11; |
| 1005 | } |
| 1006 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1007 | } else { |
| 1008 | target = table[(next_random >> 16) |
| 1009 | % table_size]; |
| 1010 | } |
| 1011 | if (target == 0) |
| 1012 | target = next_random % (vocab_size - 1) + 1; |
| 1013 | if (target == word) |
| 1014 | continue; |
| 1015 | label = 0; |
| 1016 | } |
| 1017 | l2 = target * layer1_size; |
| 1018 | f = 0; |
| 1019 | for (c = 0; c < layer1_size; c++) |
| 1020 | f += syn0[c + l1] * syn1neg[c + l2]; |
| 1021 | if (f > MAX_EXP) |
| 1022 | g = (label - 1) * alpha; |
| 1023 | else if (f < -MAX_EXP) |
| 1024 | g = (label - 0) * alpha; |
| 1025 | else |
| 1026 | g = |
| 1027 | (label |
| 1028 | - expTable[(int) ((f + MAX_EXP) |
| 1029 | * (EXP_TABLE_SIZE |
| 1030 | / MAX_EXP / 2))]) |
| 1031 | * alpha; |
| 1032 | for (c = 0; c < layer1_size; c++) |
| 1033 | neu1e[c] += g * syn1neg[c + l2]; |
| 1034 | for (c = 0; c < layer1_size; c++) |
| 1035 | syn1neg[c + l2] += g * syn0[c + l1]; |
| 1036 | if (cap == 1) |
| 1037 | for (c = 0; c < layer1_size; c++) |
| 1038 | capParam(syn1neg, c + l2); |
| 1039 | } |
| 1040 | //Noise Contrastive Estimation |
| 1041 | if (nce > 0) |
| 1042 | for (d = 0; d < nce + 1; d++) { |
| 1043 | if (d == 0) { |
| 1044 | target = word; |
| 1045 | label = 1; |
| 1046 | } else { |
| 1047 | next_random = next_random |
| 1048 | * (unsigned long long) 25214903917 + 11; |
| 1049 | if (word_to_group != NULL |
| 1050 | && word_to_group[word] != -1) { |
| 1051 | target = word; |
| 1052 | while (target == word) { |
| 1053 | target = |
| 1054 | group_to_table[word_to_group[word] |
| 1055 | * table_size |
| 1056 | + (next_random >> 16) |
| 1057 | % table_size]; |
| 1058 | next_random = |
| 1059 | next_random |
| 1060 | * (unsigned long long) 25214903917 |
| 1061 | + 11; |
| 1062 | } |
| 1063 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1064 | } else { |
| 1065 | target = table[(next_random >> 16) |
| 1066 | % table_size]; |
| 1067 | } |
| 1068 | if (target == 0) |
| 1069 | target = next_random % (vocab_size - 1) + 1; |
| 1070 | if (target == word) |
| 1071 | continue; |
| 1072 | label = 0; |
| 1073 | } |
| 1074 | l2 = target * layer1_size; |
| 1075 | f = 0; |
| 1076 | for (c = 0; c < layer1_size; c++) |
| 1077 | f += syn0[c + l1] * syn1nce[c + l2]; |
| 1078 | if (f > MAX_EXP) |
| 1079 | g = (label - 1) * alpha; |
| 1080 | else if (f < -MAX_EXP) |
| 1081 | g = (label - 0) * alpha; |
| 1082 | else { |
| 1083 | f = exp(f); |
| 1084 | g = (label |
| 1085 | - f |
| 1086 | / (noise_distribution[target] |
| 1087 | * nce + f)) * alpha; |
| 1088 | } |
| 1089 | for (c = 0; c < layer1_size; c++) |
| 1090 | neu1e[c] += g * syn1nce[c + l2]; |
| 1091 | for (c = 0; c < layer1_size; c++) |
| 1092 | syn1nce[c + l2] += g * syn0[c + l1]; |
| 1093 | if (cap == 1) |
| 1094 | for (c = 0; c < layer1_size; c++) |
| 1095 | capParam(syn1nce, c + l2); |
| 1096 | } |
| 1097 | // Learn weights input -> hidden |
| 1098 | for (c = 0; c < layer1_size; c++) |
| 1099 | syn0[c + l1] += neu1e[c]; |
| 1100 | } |
| 1101 | } else if (type == 2) { //train the cwindow architecture |
| 1102 | // in -> hidden |
| 1103 | cw = 0; |
| 1104 | for (a = 0; a < window * 2 + 1; a++) |
| 1105 | if (a != window) { |
| 1106 | c = sentence_position - window + a; |
| 1107 | if (c < 0) |
| 1108 | continue; |
| 1109 | if (c >= sentence_length) |
| 1110 | continue; |
| 1111 | last_word = sen[c]; |
| 1112 | if (last_word == -1) |
| 1113 | continue; |
| 1114 | window_offset = a * layer1_size; |
| 1115 | if (a > window) |
| 1116 | window_offset -= layer1_size; |
| 1117 | for (c = 0; c < layer1_size; c++) |
| 1118 | neu1[c + window_offset] += syn0[c |
| 1119 | + last_word * layer1_size]; |
| 1120 | cw++; |
| 1121 | } |
| 1122 | if (cw) { |
| 1123 | if (hs) |
| 1124 | for (d = 0; d < vocab[word].codelen; d++) { |
| 1125 | f = 0; |
| 1126 | l2 = vocab[word].point[d] * window_layer_size; |
| 1127 | // Propagate hidden -> output |
| 1128 | for (c = 0; c < window_layer_size; c++) |
| 1129 | f += neu1[c] * syn1_window[c + l2]; |
| 1130 | if (f <= -MAX_EXP) |
| 1131 | continue; |
| 1132 | else if (f >= MAX_EXP) |
| 1133 | continue; |
| 1134 | else |
| 1135 | f = expTable[(int) ((f + MAX_EXP) |
| 1136 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 1137 | // 'g' is the gradient multiplied by the learning rate |
| 1138 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 1139 | // Propagate errors output -> hidden |
| 1140 | for (c = 0; c < window_layer_size; c++) |
| 1141 | neu1e[c] += g * syn1_window[c + l2]; |
| 1142 | // Learn weights hidden -> output |
| 1143 | for (c = 0; c < window_layer_size; c++) |
| 1144 | syn1_window[c + l2] += g * neu1[c]; |
| 1145 | if (cap == 1) |
| 1146 | for (c = 0; c < window_layer_size; c++) |
| 1147 | capParam(syn1_window, c + l2); |
| 1148 | } |
| 1149 | // NEGATIVE SAMPLING |
| 1150 | if (negative > 0) |
| 1151 | for (d = 0; d < negative + 1; d++) { |
| 1152 | if (d == 0) { |
| 1153 | target = word; |
| 1154 | label = 1; |
| 1155 | } else { |
| 1156 | next_random = next_random |
| 1157 | * (unsigned long long) 25214903917 + 11; |
| 1158 | if (word_to_group != NULL |
| 1159 | && word_to_group[word] != -1) { |
| 1160 | target = word; |
| 1161 | while (target == word) { |
| 1162 | target = group_to_table[word_to_group[word] |
| 1163 | * table_size |
| 1164 | + (next_random >> 16) % table_size]; |
| 1165 | next_random = next_random |
| 1166 | * (unsigned long long) 25214903917 |
| 1167 | + 11; |
| 1168 | } |
| 1169 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1170 | } else { |
| 1171 | target = |
| 1172 | table[(next_random >> 16) % table_size]; |
| 1173 | } |
| 1174 | if (target == 0) |
| 1175 | target = next_random % (vocab_size - 1) + 1; |
| 1176 | if (target == word) |
| 1177 | continue; |
| 1178 | label = 0; |
| 1179 | } |
| 1180 | l2 = target * window_layer_size; |
| 1181 | f = 0; |
| 1182 | for (c = 0; c < window_layer_size; c++) |
| 1183 | f += neu1[c] * syn1neg_window[c + l2]; |
| 1184 | if (f > MAX_EXP) |
| 1185 | g = (label - 1) * alpha; |
| 1186 | else if (f < -MAX_EXP) |
| 1187 | g = (label - 0) * alpha; |
| 1188 | else |
| 1189 | g = (label |
| 1190 | - expTable[(int) ((f + MAX_EXP) |
| 1191 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]) |
| 1192 | * alpha; |
| 1193 | for (c = 0; c < window_layer_size; c++) |
| 1194 | neu1e[c] += g * syn1neg_window[c + l2]; |
| 1195 | for (c = 0; c < window_layer_size; c++) |
| 1196 | syn1neg_window[c + l2] += g * neu1[c]; |
| 1197 | if (cap == 1) |
| 1198 | for (c = 0; c < window_layer_size; c++) |
| 1199 | capParam(syn1neg_window, c + l2); |
| 1200 | } |
| 1201 | // Noise Contrastive Estimation |
| 1202 | if (nce > 0) |
| 1203 | for (d = 0; d < nce + 1; d++) { |
| 1204 | if (d == 0) { |
| 1205 | target = word; |
| 1206 | label = 1; |
| 1207 | } else { |
| 1208 | next_random = next_random |
| 1209 | * (unsigned long long) 25214903917 + 11; |
| 1210 | if (word_to_group != NULL |
| 1211 | && word_to_group[word] != -1) { |
| 1212 | target = word; |
| 1213 | while (target == word) { |
| 1214 | target = group_to_table[word_to_group[word] |
| 1215 | * table_size |
| 1216 | + (next_random >> 16) % table_size]; |
| 1217 | next_random = next_random |
| 1218 | * (unsigned long long) 25214903917 |
| 1219 | + 11; |
| 1220 | } |
| 1221 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1222 | } else { |
| 1223 | target = |
| 1224 | table[(next_random >> 16) % table_size]; |
| 1225 | } |
| 1226 | if (target == 0) |
| 1227 | target = next_random % (vocab_size - 1) + 1; |
| 1228 | if (target == word) |
| 1229 | continue; |
| 1230 | label = 0; |
| 1231 | } |
| 1232 | l2 = target * window_layer_size; |
| 1233 | f = 0; |
| 1234 | for (c = 0; c < window_layer_size; c++) |
| 1235 | f += neu1[c] * syn1nce_window[c + l2]; |
| 1236 | if (f > MAX_EXP) |
| 1237 | g = (label - 1) * alpha; |
| 1238 | else if (f < -MAX_EXP) |
| 1239 | g = (label - 0) * alpha; |
| 1240 | else { |
| 1241 | f = exp(f); |
| 1242 | g = |
| 1243 | (label |
| 1244 | - f |
| 1245 | / (noise_distribution[target] |
| 1246 | * nce + f)) * alpha; |
| 1247 | } |
| 1248 | for (c = 0; c < window_layer_size; c++) |
| 1249 | neu1e[c] += g * syn1nce_window[c + l2]; |
| 1250 | for (c = 0; c < window_layer_size; c++) |
| 1251 | syn1nce_window[c + l2] += g * neu1[c]; |
| 1252 | if (cap == 1) |
| 1253 | for (c = 0; c < window_layer_size; c++) |
| 1254 | capParam(syn1nce_window, c + l2); |
| 1255 | } |
| 1256 | // hidden -> in |
| 1257 | for (a = 0; a < window * 2 + 1; a++) |
| 1258 | if (a != window) { |
| 1259 | c = sentence_position - window + a; |
| 1260 | if (c < 0) |
| 1261 | continue; |
| 1262 | if (c >= sentence_length) |
| 1263 | continue; |
| 1264 | last_word = sen[c]; |
| 1265 | if (last_word == -1) |
| 1266 | continue; |
| 1267 | window_offset = a * layer1_size; |
| 1268 | if (a > window) |
| 1269 | window_offset -= layer1_size; |
| 1270 | for (c = 0; c < layer1_size; c++) |
| 1271 | syn0[c + last_word * layer1_size] += neu1e[c |
| 1272 | + window_offset]; |
| 1273 | } |
| 1274 | } |
| 1275 | } else if (type == 3) { //train structured skip-gram |
| 1276 | for (a = 0; a < window * 2 + 1; a++) |
| 1277 | if (a != window) { |
| 1278 | c = sentence_position - window + a; |
| 1279 | if (c < 0) |
| 1280 | continue; |
Marc Kupietz | ab4e5af | 2016-03-22 14:24:03 +0100 | [diff] [blame^] | 1281 | if(sen[c] == -2) |
| 1282 | continue; |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 1283 | if (c >= sentence_length) |
| 1284 | continue; |
| 1285 | last_word = sen[c]; |
| 1286 | if (last_word == -1) |
| 1287 | continue; |
| 1288 | l1 = last_word * layer1_size; |
| 1289 | window_offset = a * layer1_size; |
| 1290 | if (a > window) |
| 1291 | window_offset -= layer1_size; |
| 1292 | for (c = 0; c < layer1_size; c++) |
| 1293 | neu1e[c] = 0; |
| 1294 | // HIERARCHICAL SOFTMAX |
| 1295 | if (hs) |
| 1296 | for (d = 0; d < vocab[word].codelen; d++) { |
| 1297 | f = 0; |
| 1298 | l2 = vocab[word].point[d] * window_layer_size; |
| 1299 | // Propagate hidden -> output |
| 1300 | for (c = 0; c < layer1_size; c++) |
| 1301 | f += syn0[c + l1] |
| 1302 | * syn1_window[c + l2 + window_offset]; |
| 1303 | if (f <= -MAX_EXP) |
| 1304 | continue; |
| 1305 | else if (f >= MAX_EXP) |
| 1306 | continue; |
| 1307 | else |
| 1308 | f = expTable[(int) ((f + MAX_EXP) |
| 1309 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 1310 | // 'g' is the gradient multiplied by the learning rate |
| 1311 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 1312 | // Propagate errors output -> hidden |
| 1313 | for (c = 0; c < layer1_size; c++) |
| 1314 | neu1e[c] += g |
| 1315 | * syn1_window[c + l2 + window_offset]; |
| 1316 | // Learn weights hidden -> output |
| 1317 | for (c = 0; c < layer1_size; c++) |
| 1318 | syn1[c + l2 + window_offset] += g |
| 1319 | * syn0[c + l1]; |
| 1320 | if (cap == 1) |
| 1321 | for (c = 0; c < layer1_size; c++) |
| 1322 | capParam(syn1, c + l2 + window_offset); |
| 1323 | } |
| 1324 | // NEGATIVE SAMPLING |
| 1325 | if (negative > 0) |
| 1326 | for (d = 0; d < negative + 1; d++) { |
| 1327 | if (d == 0) { |
| 1328 | target = word; |
| 1329 | label = 1; |
| 1330 | } else { |
| 1331 | next_random = next_random |
| 1332 | * (unsigned long long) 25214903917 + 11; |
| 1333 | if (word_to_group != NULL |
| 1334 | && word_to_group[word] != -1) { |
| 1335 | target = word; |
| 1336 | while (target == word) { |
| 1337 | target = |
| 1338 | group_to_table[word_to_group[word] |
| 1339 | * table_size |
| 1340 | + (next_random >> 16) |
| 1341 | % table_size]; |
| 1342 | next_random = |
| 1343 | next_random |
| 1344 | * (unsigned long long) 25214903917 |
| 1345 | + 11; |
| 1346 | } |
| 1347 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1348 | } else { |
| 1349 | target = table[(next_random >> 16) |
| 1350 | % table_size]; |
| 1351 | } |
| 1352 | if (target == 0) |
| 1353 | target = next_random % (vocab_size - 1) + 1; |
| 1354 | if (target == word) |
| 1355 | continue; |
| 1356 | label = 0; |
| 1357 | } |
| 1358 | l2 = target * window_layer_size; |
| 1359 | f = 0; |
| 1360 | for (c = 0; c < layer1_size; c++) |
| 1361 | f += |
| 1362 | syn0[c + l1] |
| 1363 | * syn1neg_window[c + l2 |
| 1364 | + window_offset]; |
| 1365 | if (f > MAX_EXP) |
| 1366 | g = (label - 1) * alpha; |
| 1367 | else if (f < -MAX_EXP) |
| 1368 | g = (label - 0) * alpha; |
| 1369 | else |
| 1370 | g = |
| 1371 | (label |
| 1372 | - expTable[(int) ((f + MAX_EXP) |
| 1373 | * (EXP_TABLE_SIZE |
| 1374 | / MAX_EXP / 2))]) |
| 1375 | * alpha; |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 1376 | if(debug_mode > 2 && ((long long) id) == 0) { |
| 1377 | printf("negative sampling %lld for input (word) %s (#%lld), target (last word) %s returned %s (#%lld), ", d, vocab[word].word, word, vocab[last_word].word, vocab[target].word, target); |
| 1378 | printf("label %lld, a %lld, gain %.4f\n", label, a-window, g); |
| 1379 | } |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 1380 | for (c = 0; c < layer1_size; c++) |
| 1381 | neu1e[c] += |
| 1382 | g |
| 1383 | * syn1neg_window[c + l2 |
| 1384 | + window_offset]; |
| 1385 | for (c = 0; c < layer1_size; c++) |
| 1386 | syn1neg_window[c + l2 + window_offset] += g |
| 1387 | * syn0[c + l1]; |
| 1388 | if (cap == 1) |
| 1389 | for (c = 0; c < layer1_size; c++) |
| 1390 | capParam(syn1neg_window, |
| 1391 | c + l2 + window_offset); |
| 1392 | } |
| 1393 | // Noise Constrastive Estimation |
| 1394 | if (nce > 0) |
| 1395 | for (d = 0; d < nce + 1; d++) { |
| 1396 | if (d == 0) { |
| 1397 | target = word; |
| 1398 | label = 1; |
| 1399 | } else { |
| 1400 | next_random = next_random |
| 1401 | * (unsigned long long) 25214903917 + 11; |
| 1402 | if (word_to_group != NULL |
| 1403 | && word_to_group[word] != -1) { |
| 1404 | target = word; |
| 1405 | while (target == word) { |
| 1406 | target = |
| 1407 | group_to_table[word_to_group[word] |
| 1408 | * table_size |
| 1409 | + (next_random >> 16) |
| 1410 | % table_size]; |
| 1411 | next_random = |
| 1412 | next_random |
| 1413 | * (unsigned long long) 25214903917 |
| 1414 | + 11; |
| 1415 | } |
| 1416 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1417 | } else { |
| 1418 | target = table[(next_random >> 16) |
| 1419 | % table_size]; |
| 1420 | } |
| 1421 | if (target == 0) |
| 1422 | target = next_random % (vocab_size - 1) + 1; |
| 1423 | if (target == word) |
| 1424 | continue; |
| 1425 | label = 0; |
| 1426 | } |
| 1427 | l2 = target * window_layer_size; |
| 1428 | f = 0; |
| 1429 | for (c = 0; c < layer1_size; c++) |
| 1430 | f += |
| 1431 | syn0[c + l1] |
| 1432 | * syn1nce_window[c + l2 |
| 1433 | + window_offset]; |
| 1434 | if (f > MAX_EXP) |
| 1435 | g = (label - 1) * alpha; |
| 1436 | else if (f < -MAX_EXP) |
| 1437 | g = (label - 0) * alpha; |
| 1438 | else { |
| 1439 | f = exp(f); |
| 1440 | g = (label |
| 1441 | - f |
| 1442 | / (noise_distribution[target] |
| 1443 | * nce + f)) * alpha; |
| 1444 | } |
| 1445 | for (c = 0; c < layer1_size; c++) |
| 1446 | neu1e[c] += |
| 1447 | g |
| 1448 | * syn1nce_window[c + l2 |
| 1449 | + window_offset]; |
| 1450 | for (c = 0; c < layer1_size; c++) |
| 1451 | syn1nce_window[c + l2 + window_offset] += g |
| 1452 | * syn0[c + l1]; |
| 1453 | if (cap == 1) |
| 1454 | for (c = 0; c < layer1_size; c++) |
| 1455 | capParam(syn1nce_window, |
| 1456 | c + l2 + window_offset); |
| 1457 | } |
| 1458 | // Learn weights input -> hidden |
| 1459 | for (c = 0; c < layer1_size; c++) { |
| 1460 | syn0[c + l1] += neu1e[c]; |
| 1461 | if (syn0[c + l1] > 50) |
| 1462 | syn0[c + l1] = 50; |
| 1463 | if (syn0[c + l1] < -50) |
| 1464 | syn0[c + l1] = -50; |
| 1465 | } |
| 1466 | } |
| 1467 | } else if (type == 4) { //training senna |
| 1468 | // in -> hidden |
| 1469 | cw = 0; |
| 1470 | for (a = 0; a < window * 2 + 1; a++) |
| 1471 | if (a != window) { |
| 1472 | c = sentence_position - window + a; |
| 1473 | if (c < 0) |
| 1474 | continue; |
| 1475 | if (c >= sentence_length) |
| 1476 | continue; |
| 1477 | last_word = sen[c]; |
| 1478 | if (last_word == -1) |
| 1479 | continue; |
| 1480 | window_offset = a * layer1_size; |
| 1481 | if (a > window) |
| 1482 | window_offset -= layer1_size; |
| 1483 | for (c = 0; c < layer1_size; c++) |
| 1484 | neu1[c + window_offset] += syn0[c |
| 1485 | + last_word * layer1_size]; |
| 1486 | cw++; |
| 1487 | } |
| 1488 | if (cw) { |
| 1489 | for (a = 0; a < window_hidden_size; a++) { |
| 1490 | c = a * window_layer_size; |
| 1491 | for (b = 0; b < window_layer_size; b++) { |
| 1492 | neu2[a] += syn_window_hidden[c + b] * neu1[b]; |
| 1493 | } |
| 1494 | } |
| 1495 | if (hs) |
| 1496 | for (d = 0; d < vocab[word].codelen; d++) { |
| 1497 | f = 0; |
| 1498 | l2 = vocab[word].point[d] * window_hidden_size; |
| 1499 | // Propagate hidden -> output |
| 1500 | for (c = 0; c < window_hidden_size; c++) |
| 1501 | f += hardTanh(neu2[c]) * syn_hidden_word[c + l2]; |
| 1502 | if (f <= -MAX_EXP) |
| 1503 | continue; |
| 1504 | else if (f >= MAX_EXP) |
| 1505 | continue; |
| 1506 | else |
| 1507 | f = expTable[(int) ((f + MAX_EXP) |
| 1508 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 1509 | // 'g' is the gradient multiplied by the learning rate |
| 1510 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 1511 | // Propagate errors output -> hidden |
| 1512 | for (c = 0; c < window_hidden_size; c++) |
| 1513 | neu2e[c] += dHardTanh(neu2[c], g) * g |
| 1514 | * syn_hidden_word[c + l2]; |
| 1515 | // Learn weights hidden -> output |
| 1516 | for (c = 0; c < window_hidden_size; c++) |
| 1517 | syn_hidden_word[c + l2] += dHardTanh(neu2[c], g) * g |
| 1518 | * neu2[c]; |
| 1519 | } |
| 1520 | // NEGATIVE SAMPLING |
| 1521 | if (negative > 0) |
| 1522 | for (d = 0; d < negative + 1; d++) { |
| 1523 | if (d == 0) { |
| 1524 | target = word; |
| 1525 | label = 1; |
| 1526 | } else { |
| 1527 | next_random = next_random |
| 1528 | * (unsigned long long) 25214903917 + 11; |
| 1529 | if (word_to_group != NULL |
| 1530 | && word_to_group[word] != -1) { |
| 1531 | target = word; |
| 1532 | while (target == word) { |
| 1533 | target = group_to_table[word_to_group[word] |
| 1534 | * table_size |
| 1535 | + (next_random >> 16) % table_size]; |
| 1536 | next_random = next_random |
| 1537 | * (unsigned long long) 25214903917 |
| 1538 | + 11; |
| 1539 | } |
| 1540 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1541 | } else { |
| 1542 | target = |
| 1543 | table[(next_random >> 16) % table_size]; |
| 1544 | } |
| 1545 | if (target == 0) |
| 1546 | target = next_random % (vocab_size - 1) + 1; |
| 1547 | if (target == word) |
| 1548 | continue; |
| 1549 | label = 0; |
| 1550 | } |
| 1551 | l2 = target * window_hidden_size; |
| 1552 | f = 0; |
| 1553 | for (c = 0; c < window_hidden_size; c++) |
| 1554 | f += hardTanh(neu2[c]) |
| 1555 | * syn_hidden_word_neg[c + l2]; |
| 1556 | if (f > MAX_EXP) |
| 1557 | g = (label - 1) * alpha / negative; |
| 1558 | else if (f < -MAX_EXP) |
| 1559 | g = (label - 0) * alpha / negative; |
| 1560 | else |
| 1561 | g = (label |
| 1562 | - expTable[(int) ((f + MAX_EXP) |
| 1563 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]) |
| 1564 | * alpha / negative; |
| 1565 | for (c = 0; c < window_hidden_size; c++) |
| 1566 | neu2e[c] += dHardTanh(neu2[c], g) * g |
| 1567 | * syn_hidden_word_neg[c + l2]; |
| 1568 | for (c = 0; c < window_hidden_size; c++) |
| 1569 | syn_hidden_word_neg[c + l2] += dHardTanh(neu2[c], g) |
| 1570 | * g * neu2[c]; |
| 1571 | } |
| 1572 | for (a = 0; a < window_hidden_size; a++) |
| 1573 | for (b = 0; b < window_layer_size; b++) |
| 1574 | neu1e[b] += neu2e[a] |
| 1575 | * syn_window_hidden[a * window_layer_size + b]; |
| 1576 | for (a = 0; a < window_hidden_size; a++) |
| 1577 | for (b = 0; b < window_layer_size; b++) |
| 1578 | syn_window_hidden[a * window_layer_size + b] += neu2e[a] |
| 1579 | * neu1[b]; |
| 1580 | // hidden -> in |
| 1581 | for (a = 0; a < window * 2 + 1; a++) |
| 1582 | if (a != window) { |
| 1583 | c = sentence_position - window + a; |
| 1584 | if (c < 0) |
| 1585 | continue; |
| 1586 | if (c >= sentence_length) |
| 1587 | continue; |
| 1588 | last_word = sen[c]; |
| 1589 | if (last_word == -1) |
| 1590 | continue; |
| 1591 | window_offset = a * layer1_size; |
| 1592 | if (a > window) |
| 1593 | window_offset -= layer1_size; |
| 1594 | for (c = 0; c < layer1_size; c++) |
| 1595 | syn0[c + last_word * layer1_size] += neu1e[c |
| 1596 | + window_offset]; |
| 1597 | } |
| 1598 | } |
| 1599 | } else { |
| 1600 | printf("unknown type %i", type); |
| 1601 | exit(0); |
| 1602 | } |
| 1603 | sentence_position++; |
| 1604 | if (sentence_position >= sentence_length) { |
| 1605 | sentence_length = 0; |
| 1606 | continue; |
| 1607 | } |
| 1608 | } |
| 1609 | fclose(fi); |
| 1610 | free(neu1); |
| 1611 | free(neu1e); |
| 1612 | pthread_exit(NULL); |
| 1613 | } |
| 1614 | |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 1615 | void ShowCollocations() { |
Marc Kupietz | 71996e7 | 2016-03-18 13:40:24 +0100 | [diff] [blame] | 1616 | long a, b, c, d, e, window_offset, target, max_target=0, maxmax_target; |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 1617 | real f, max_f, maxmax_f; |
Marc Kupietz | 71996e7 | 2016-03-18 13:40:24 +0100 | [diff] [blame] | 1618 | real *target_sums, bestf[MAX_CC], worstbest; |
| 1619 | long besti[MAX_CC]; |
Marc Kupietz | 79fd83d | 2016-03-18 14:09:07 +0100 | [diff] [blame] | 1620 | int N = 10, bestp[MAX_CC]; |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 1621 | a = posix_memalign((void **) &target_sums, 128, vocab_size * sizeof(real)); |
| 1622 | |
| 1623 | for (d = cc; d < vocab_size; d++) { |
| 1624 | for (b = 0; b < vocab_size; b++) |
| 1625 | target_sums[b]=0; |
Marc Kupietz | 71996e7 | 2016-03-18 13:40:24 +0100 | [diff] [blame] | 1626 | for (b = 0; b < N; b++) |
| 1627 | bestf[b]=-1; |
| 1628 | worstbest = -1; |
| 1629 | |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 1630 | maxmax_f = -1; |
| 1631 | maxmax_target = 0; |
Marc Kupietz | 0a664c1 | 2016-03-18 13:18:22 +0100 | [diff] [blame] | 1632 | for (a = window * 2 + 1; a >=0; a--) { |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 1633 | if (a != window) { |
| 1634 | max_f = -1; |
| 1635 | window_offset = a * layer1_size; |
| 1636 | if (a > window) |
| 1637 | window_offset -= layer1_size; |
| 1638 | for(target = 0; target < vocab_size; target ++) { |
| 1639 | if(target == d) |
| 1640 | continue; |
| 1641 | f = 0; |
| 1642 | for (c = 0; c < layer1_size; c++) |
| 1643 | f += syn0[d* layer1_size + c] * syn1neg_window[target * window_layer_size + window_offset + c]; |
| 1644 | if (f < -MAX_EXP) |
| 1645 | continue; |
| 1646 | else if (f > MAX_EXP) |
| 1647 | continue; |
| 1648 | else |
| 1649 | f = expTable[(int) ((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 1650 | if(f > max_f) { |
| 1651 | max_f = f; |
| 1652 | max_target = target; |
| 1653 | } |
Marc Kupietz | 0fb5d61 | 2016-03-18 11:01:21 +0100 | [diff] [blame] | 1654 | target_sums[target] += (1-target_sums[target]) * f; |
Marc Kupietz | 71996e7 | 2016-03-18 13:40:24 +0100 | [diff] [blame] | 1655 | if(f > worstbest) { |
| 1656 | for (b = 0; b < N; b++) { |
| 1657 | if (f > bestf[b]) { |
| 1658 | for (e = N - 1; e > b; e--) { |
| 1659 | bestf[e] = bestf[e - 1]; |
| 1660 | besti[e] = besti[e - 1]; |
Marc Kupietz | 79fd83d | 2016-03-18 14:09:07 +0100 | [diff] [blame] | 1661 | bestp[e] = bestp[e - 1]; |
Marc Kupietz | 71996e7 | 2016-03-18 13:40:24 +0100 | [diff] [blame] | 1662 | } |
| 1663 | bestf[b] = f; |
| 1664 | besti[b] = target; |
Marc Kupietz | 79fd83d | 2016-03-18 14:09:07 +0100 | [diff] [blame] | 1665 | bestp[b] = window-a; |
Marc Kupietz | 71996e7 | 2016-03-18 13:40:24 +0100 | [diff] [blame] | 1666 | break; |
| 1667 | } |
| 1668 | } |
| 1669 | worstbest = bestf[N-1]; |
| 1670 | } |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 1671 | } |
| 1672 | printf("%s (%.2f) ", vocab[max_target].word, max_f); |
| 1673 | if(max_f > maxmax_f) { |
| 1674 | maxmax_f = max_f; |
| 1675 | maxmax_target = max_target; |
| 1676 | } |
| 1677 | } else { |
| 1678 | printf("\x1b[1m%s\x1b[0m ", vocab[d].word); |
| 1679 | } |
| 1680 | } |
| 1681 | max_f = -1; |
| 1682 | for (b = 0; b < vocab_size; b++) { |
| 1683 | if(target_sums[b] > max_f) { |
| 1684 | max_f = target_sums[b]; |
| 1685 | max_target = b; |
| 1686 | } |
| 1687 | } |
| 1688 | printf(" – max sum: %s (%.2f), max resp.: \x1b[1m%s\x1b[0m (%.2f)\n", |
Marc Kupietz | 0fb5d61 | 2016-03-18 11:01:21 +0100 | [diff] [blame] | 1689 | vocab[max_target].word, max_f, |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 1690 | vocab[maxmax_target].word, maxmax_f); |
Marc Kupietz | 71996e7 | 2016-03-18 13:40:24 +0100 | [diff] [blame] | 1691 | for(b=0; b<N && bestf[b]>-1; b++) |
Marc Kupietz | 79fd83d | 2016-03-18 14:09:07 +0100 | [diff] [blame] | 1692 | printf("%-32s %.2f %d\n", vocab[besti[b]].word, bestf[b], bestp[b]); |
Marc Kupietz | 71996e7 | 2016-03-18 13:40:24 +0100 | [diff] [blame] | 1693 | printf("\n"); |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 1694 | } |
| 1695 | } |
| 1696 | |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 1697 | void TrainModel() { |
| 1698 | long a, b, c, d; |
| 1699 | FILE *fo; |
| 1700 | pthread_t *pt = (pthread_t *) malloc(num_threads * sizeof(pthread_t)); |
| 1701 | printf("Starting training using file %s\n", train_file); |
| 1702 | starting_alpha = alpha; |
| 1703 | if (read_vocab_file[0] != 0) |
| 1704 | ReadVocab(); |
| 1705 | else |
| 1706 | LearnVocabFromTrainFile(); |
| 1707 | if (save_vocab_file[0] != 0) |
| 1708 | SaveVocab(); |
| 1709 | if (output_file[0] == 0) |
| 1710 | return; |
| 1711 | InitNet(); |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 1712 | if(cc > 0) |
| 1713 | ShowCollocations(); |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 1714 | if (negative > 0 || nce > 0) |
| 1715 | InitUnigramTable(); |
| 1716 | if (negative_classes_file[0] != 0) |
| 1717 | InitClassUnigramTable(); |
| 1718 | start = clock(); |
| 1719 | for (a = 0; a < num_threads; a++) |
| 1720 | pthread_create(&pt[a], NULL, TrainModelThread, (void *) a); |
| 1721 | for (a = 0; a < num_threads; a++) |
| 1722 | pthread_join(pt[a], NULL); |
| 1723 | fo = fopen(output_file, "wb"); |
| 1724 | if (classes == 0) { |
| 1725 | // Save the word vectors |
| 1726 | fprintf(fo, "%lld %lld\n", vocab_size, layer1_size); |
| 1727 | for (a = 0; a < vocab_size; a++) { |
| 1728 | fprintf(fo, "%s ", vocab[a].word); |
| 1729 | if (binary) |
| 1730 | for (b = 0; b < layer1_size; b++) |
| 1731 | fwrite(&syn0[a * layer1_size + b], sizeof(real), 1, fo); |
| 1732 | else |
| 1733 | for (b = 0; b < layer1_size; b++) |
| 1734 | fprintf(fo, "%lf ", syn0[a * layer1_size + b]); |
| 1735 | fprintf(fo, "\n"); |
| 1736 | } |
| 1737 | } else { |
| 1738 | // Run K-means on the word vectors |
| 1739 | int clcn = classes, iter = 10, closeid; |
| 1740 | int *centcn = (int *) malloc(classes * sizeof(int)); |
| 1741 | int *cl = (int *) calloc(vocab_size, sizeof(int)); |
| 1742 | real closev, x; |
| 1743 | real *cent = (real *) calloc(classes * layer1_size, sizeof(real)); |
| 1744 | for (a = 0; a < vocab_size; a++) |
| 1745 | cl[a] = a % clcn; |
| 1746 | for (a = 0; a < iter; a++) { |
| 1747 | for (b = 0; b < clcn * layer1_size; b++) |
| 1748 | cent[b] = 0; |
| 1749 | for (b = 0; b < clcn; b++) |
| 1750 | centcn[b] = 1; |
| 1751 | for (c = 0; c < vocab_size; c++) { |
| 1752 | for (d = 0; d < layer1_size; d++) |
| 1753 | cent[layer1_size * cl[c] + d] += syn0[c * layer1_size + d]; |
| 1754 | centcn[cl[c]]++; |
| 1755 | } |
| 1756 | for (b = 0; b < clcn; b++) { |
| 1757 | closev = 0; |
| 1758 | for (c = 0; c < layer1_size; c++) { |
| 1759 | cent[layer1_size * b + c] /= centcn[b]; |
| 1760 | closev += cent[layer1_size * b + c] |
| 1761 | * cent[layer1_size * b + c]; |
| 1762 | } |
| 1763 | closev = sqrt(closev); |
| 1764 | for (c = 0; c < layer1_size; c++) |
| 1765 | cent[layer1_size * b + c] /= closev; |
| 1766 | } |
| 1767 | for (c = 0; c < vocab_size; c++) { |
| 1768 | closev = -10; |
| 1769 | closeid = 0; |
| 1770 | for (d = 0; d < clcn; d++) { |
| 1771 | x = 0; |
| 1772 | for (b = 0; b < layer1_size; b++) |
| 1773 | x += cent[layer1_size * d + b] |
| 1774 | * syn0[c * layer1_size + b]; |
| 1775 | if (x > closev) { |
| 1776 | closev = x; |
| 1777 | closeid = d; |
| 1778 | } |
| 1779 | } |
| 1780 | cl[c] = closeid; |
| 1781 | } |
| 1782 | } |
| 1783 | // Save the K-means classes |
| 1784 | for (a = 0; a < vocab_size; a++) |
| 1785 | fprintf(fo, "%s %d\n", vocab[a].word, cl[a]); |
| 1786 | free(centcn); |
| 1787 | free(cent); |
| 1788 | free(cl); |
| 1789 | } |
| 1790 | fclose(fo); |
| 1791 | if (save_net_file[0] != 0) |
| 1792 | SaveNet(); |
| 1793 | } |
| 1794 | |
| 1795 | int ArgPos(char *str, int argc, char **argv) { |
| 1796 | int a; |
| 1797 | for (a = 1; a < argc; a++) |
| 1798 | if (!strcmp(str, argv[a])) { |
| 1799 | if (a == argc - 1) { |
| 1800 | printf("Argument missing for %s\n", str); |
| 1801 | exit(1); |
| 1802 | } |
| 1803 | return a; |
| 1804 | } |
| 1805 | return -1; |
| 1806 | } |
| 1807 | |
| 1808 | int main(int argc, char **argv) { |
| 1809 | int i; |
| 1810 | if (argc == 1) { |
| 1811 | printf("WORD VECTOR estimation toolkit v 0.1c\n\n"); |
| 1812 | printf("Options:\n"); |
| 1813 | printf("Parameters for training:\n"); |
| 1814 | printf("\t-train <file>\n"); |
| 1815 | printf("\t\tUse text data from <file> to train the model\n"); |
| 1816 | printf("\t-output <file>\n"); |
| 1817 | printf( |
| 1818 | "\t\tUse <file> to save the resulting word vectors / word clusters\n"); |
| 1819 | printf("\t-size <int>\n"); |
| 1820 | printf("\t\tSet size of word vectors; default is 100\n"); |
| 1821 | printf("\t-window <int>\n"); |
| 1822 | printf("\t\tSet max skip length between words; default is 5\n"); |
| 1823 | printf("\t-sample <float>\n"); |
| 1824 | printf( |
| 1825 | "\t\tSet threshold for occurrence of words. Those that appear with higher frequency in the training data\n"); |
| 1826 | printf( |
| 1827 | "\t\twill be randomly down-sampled; default is 1e-3, useful range is (0, 1e-5)\n"); |
| 1828 | printf("\t-hs <int>\n"); |
| 1829 | printf("\t\tUse Hierarchical Softmax; default is 0 (not used)\n"); |
| 1830 | printf("\t-negative <int>\n"); |
| 1831 | printf( |
| 1832 | "\t\tNumber of negative examples; default is 5, common values are 3 - 10 (0 = not used)\n"); |
| 1833 | printf("\t-negative-classes <file>\n"); |
| 1834 | printf("\t\tNegative classes to sample from\n"); |
| 1835 | printf("\t-nce <int>\n"); |
| 1836 | printf( |
| 1837 | "\t\tNumber of negative examples for nce; default is 0, common values are 3 - 10 (0 = not used)\n"); |
| 1838 | printf("\t-threads <int>\n"); |
| 1839 | printf("\t\tUse <int> threads (default 12)\n"); |
| 1840 | printf("\t-iter <int>\n"); |
| 1841 | printf("\t\tRun more training iterations (default 5)\n"); |
| 1842 | printf("\t-min-count <int>\n"); |
| 1843 | printf( |
| 1844 | "\t\tThis will discard words that appear less than <int> times; default is 5\n"); |
| 1845 | printf("\t-alpha <float>\n"); |
| 1846 | printf( |
| 1847 | "\t\tSet the starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW\n"); |
| 1848 | printf("\t-classes <int>\n"); |
| 1849 | printf( |
| 1850 | "\t\tOutput word classes rather than word vectors; default number of classes is 0 (vectors are written)\n"); |
| 1851 | printf("\t-debug <int>\n"); |
| 1852 | printf( |
| 1853 | "\t\tSet the debug mode (default = 2 = more info during training)\n"); |
| 1854 | printf("\t-binary <int>\n"); |
| 1855 | printf( |
| 1856 | "\t\tSave the resulting vectors in binary moded; default is 0 (off)\n"); |
| 1857 | printf("\t-save-vocab <file>\n"); |
| 1858 | printf("\t\tThe vocabulary will be saved to <file>\n"); |
| 1859 | printf("\t-read-vocab <file>\n"); |
| 1860 | printf( |
| 1861 | "\t\tThe vocabulary will be read from <file>, not constructed from the training data\n"); |
| 1862 | printf("\t-read-net <file>\n"); |
| 1863 | printf( |
| 1864 | "\t\tThe net parameters will be read from <file>, not initialized randomly\n"); |
| 1865 | printf("\t-save-net <file>\n"); |
| 1866 | printf("\t\tThe net parameters will be saved to <file>\n"); |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 1867 | printf("\t-show-cc <int>\n"); |
| 1868 | printf("\t\tShow words with their collocators starting from word rank <int>. Depends on -read-vocab and -read-net.\n"); |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 1869 | printf("\t-type <int>\n"); |
| 1870 | printf( |
| 1871 | "\t\tType of embeddings (0 for cbow, 1 for skipngram, 2 for cwindow, 3 for structured skipngram, 4 for senna type)\n"); |
| 1872 | printf("\t-cap <int>\n"); |
| 1873 | printf( |
| 1874 | "\t\tlimit the parameter values to the range [-50, 50]; default is 0 (off)\n"); |
| 1875 | printf("\nExamples:\n"); |
| 1876 | printf( |
| 1877 | "./word2vec -train data.txt -output vec.txt -size 200 -window 5 -sample 1e-4 -negative 5 -hs 0 -binary 0 -type 1 -iter 3\n\n"); |
| 1878 | return 0; |
| 1879 | } |
| 1880 | output_file[0] = 0; |
| 1881 | save_vocab_file[0] = 0; |
| 1882 | read_vocab_file[0] = 0; |
| 1883 | save_net_file[0] = 0; |
| 1884 | read_net_file[0] = 0; |
| 1885 | negative_classes_file[0] = 0; |
| 1886 | if ((i = ArgPos((char *) "-size", argc, argv)) > 0) |
| 1887 | layer1_size = atoi(argv[i + 1]); |
| 1888 | if ((i = ArgPos((char *) "-train", argc, argv)) > 0) |
| 1889 | strcpy(train_file, argv[i + 1]); |
| 1890 | if ((i = ArgPos((char *) "-save-vocab", argc, argv)) > 0) |
| 1891 | strcpy(save_vocab_file, argv[i + 1]); |
| 1892 | if ((i = ArgPos((char *) "-read-vocab", argc, argv)) > 0) |
| 1893 | strcpy(read_vocab_file, argv[i + 1]); |
| 1894 | if ((i = ArgPos((char *) "-save-net", argc, argv)) > 0) |
| 1895 | strcpy(save_net_file, argv[i + 1]); |
| 1896 | if ((i = ArgPos((char *) "-read-net", argc, argv)) > 0) |
| 1897 | strcpy(read_net_file, argv[i + 1]); |
| 1898 | if ((i = ArgPos((char *) "-debug", argc, argv)) > 0) |
| 1899 | debug_mode = atoi(argv[i + 1]); |
| 1900 | if ((i = ArgPos((char *) "-binary", argc, argv)) > 0) |
| 1901 | binary = atoi(argv[i + 1]); |
Marc Kupietz | 6b1f2ba | 2016-03-17 21:17:42 +0100 | [diff] [blame] | 1902 | if ((i = ArgPos((char *) "-show-cc", argc, argv)) > 0) |
| 1903 | cc = atoi(argv[i + 1]); |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 1904 | if ((i = ArgPos((char *) "-type", argc, argv)) > 0) |
| 1905 | type = atoi(argv[i + 1]); |
| 1906 | if ((i = ArgPos((char *) "-output", argc, argv)) > 0) |
| 1907 | strcpy(output_file, argv[i + 1]); |
| 1908 | if ((i = ArgPos((char *) "-window", argc, argv)) > 0) |
| 1909 | window = atoi(argv[i + 1]); |
| 1910 | if ((i = ArgPos((char *) "-sample", argc, argv)) > 0) |
| 1911 | sample = atof(argv[i + 1]); |
| 1912 | if ((i = ArgPos((char *) "-hs", argc, argv)) > 0) |
| 1913 | hs = atoi(argv[i + 1]); |
| 1914 | if ((i = ArgPos((char *) "-negative", argc, argv)) > 0) |
| 1915 | negative = atoi(argv[i + 1]); |
| 1916 | if ((i = ArgPos((char *) "-negative-classes", argc, argv)) > 0) |
| 1917 | strcpy(negative_classes_file, argv[i + 1]); |
| 1918 | if ((i = ArgPos((char *) "-nce", argc, argv)) > 0) |
| 1919 | nce = atoi(argv[i + 1]); |
| 1920 | if ((i = ArgPos((char *) "-threads", argc, argv)) > 0) |
| 1921 | num_threads = atoi(argv[i + 1]); |
| 1922 | if ((i = ArgPos((char *) "-iter", argc, argv)) > 0) |
| 1923 | iter = atoi(argv[i + 1]); |
| 1924 | if ((i = ArgPos((char *) "-min-count", argc, argv)) > 0) |
| 1925 | min_count = atoi(argv[i + 1]); |
| 1926 | if ((i = ArgPos((char *) "-classes", argc, argv)) > 0) |
| 1927 | classes = atoi(argv[i + 1]); |
| 1928 | if ((i = ArgPos((char *) "-cap", argc, argv)) > 0) |
| 1929 | cap = atoi(argv[i + 1]); |
| 1930 | if (type == 0 || type == 2 || type == 4) |
| 1931 | alpha = 0.05; |
| 1932 | if ((i = ArgPos((char *) "-alpha", argc, argv)) > 0) |
| 1933 | alpha = atof(argv[i + 1]); |
| 1934 | vocab = (struct vocab_word *) calloc(vocab_max_size, |
| 1935 | sizeof(struct vocab_word)); |
| 1936 | vocab_hash = (int *) calloc(vocab_hash_size, sizeof(int)); |
| 1937 | expTable = (real *) malloc((EXP_TABLE_SIZE + 1) * sizeof(real)); |
| 1938 | for (i = 0; i < EXP_TABLE_SIZE; i++) { |
| 1939 | expTable[i] = exp((i / (real) EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table |
| 1940 | expTable[i] = expTable[i] / (expTable[i] + 1); // Precompute f(x) = x / (x + 1) |
| 1941 | } |
| 1942 | TrainModel(); |
| 1943 | return 0; |
| 1944 | } |
| 1945 | |