Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 1 | // Copyright 2013 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include <stdio.h> |
| 16 | #include <stdlib.h> |
| 17 | #include <string.h> |
| 18 | #include <math.h> |
| 19 | #include <pthread.h> |
| 20 | |
| 21 | #define MAX_STRING 100 |
| 22 | #define EXP_TABLE_SIZE 1000 |
| 23 | #define MAX_EXP 6 |
| 24 | #define MAX_SENTENCE_LENGTH 1000 |
| 25 | #define MAX_CODE_LENGTH 40 |
| 26 | |
| 27 | const int vocab_hash_size = 30000000; // Maximum 30 * 0.7 = 21M words in the vocabulary |
| 28 | |
| 29 | typedef float real; // Precision of float numbers |
| 30 | |
| 31 | struct vocab_word { |
| 32 | long long cn; |
| 33 | int *point; |
| 34 | char *word, *code, codelen; |
| 35 | }; |
| 36 | |
| 37 | char train_file[MAX_STRING], output_file[MAX_STRING]; |
| 38 | char save_vocab_file[MAX_STRING], read_vocab_file[MAX_STRING]; |
| 39 | char save_net_file[MAX_STRING], read_net_file[MAX_STRING]; |
| 40 | struct vocab_word *vocab; |
| 41 | int binary = 0, type = 1, debug_mode = 2, window = 5, min_count = 5, |
| 42 | num_threads = 12, min_reduce = 1; |
| 43 | int *vocab_hash; |
| 44 | long long vocab_max_size = 1000, vocab_size = 0, layer1_size = 100; |
| 45 | long long train_words = 0, word_count_actual = 0, iter = 5, file_size = 0, |
| 46 | classes = 0; |
| 47 | real alpha = 0.025, starting_alpha, sample = 1e-3; |
| 48 | real *syn0, *syn1, *syn1neg, *syn1nce, *expTable; |
| 49 | clock_t start; |
| 50 | |
| 51 | real *syn1_window, *syn1neg_window, *syn1nce_window; |
| 52 | int w_offset, window_layer_size; |
| 53 | |
| 54 | int window_hidden_size = 500; |
| 55 | real *syn_window_hidden, *syn_hidden_word, *syn_hidden_word_neg, |
| 56 | *syn_hidden_word_nce; |
| 57 | |
| 58 | int hs = 0, negative = 5; |
| 59 | const int table_size = 1e8; |
| 60 | int *table; |
| 61 | |
| 62 | //constrastive negative sampling |
| 63 | char negative_classes_file[MAX_STRING]; |
| 64 | int *word_to_group; |
| 65 | int *group_to_table; //group_size*table_size |
| 66 | int class_number; |
| 67 | |
| 68 | //nce |
| 69 | real* noise_distribution; |
| 70 | int nce = 0; |
| 71 | |
| 72 | //param caps |
| 73 | real CAP_VALUE = 50; |
| 74 | int cap = 0; |
| 75 | |
| 76 | void capParam(real* array, int index) { |
| 77 | if (array[index] > CAP_VALUE) |
| 78 | array[index] = CAP_VALUE; |
| 79 | else if (array[index] < -CAP_VALUE) |
| 80 | array[index] = -CAP_VALUE; |
| 81 | } |
| 82 | |
| 83 | real hardTanh(real x) { |
| 84 | if (x >= 1) { |
| 85 | return 1; |
| 86 | } else if (x <= -1) { |
| 87 | return -1; |
| 88 | } else { |
| 89 | return x; |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | real dHardTanh(real x, real g) { |
| 94 | if (x > 1 && g > 0) { |
| 95 | return 0; |
| 96 | } |
| 97 | if (x < -1 && g < 0) { |
| 98 | return 0; |
| 99 | } |
| 100 | return 1; |
| 101 | } |
| 102 | |
| 103 | void InitUnigramTable() { |
| 104 | int a, i; |
| 105 | long long train_words_pow = 0; |
| 106 | real d1, power = 0.75; |
| 107 | table = (int *) malloc(table_size * sizeof(int)); |
| 108 | for (a = 0; a < vocab_size; a++) |
| 109 | train_words_pow += pow(vocab[a].cn, power); |
| 110 | i = 0; |
| 111 | d1 = pow(vocab[i].cn, power) / (real) train_words_pow; |
| 112 | for (a = 0; a < table_size; a++) { |
| 113 | table[a] = i; |
| 114 | if (a / (real) table_size > d1) { |
| 115 | i++; |
| 116 | d1 += pow(vocab[i].cn, power) / (real) train_words_pow; |
| 117 | } |
| 118 | if (i >= vocab_size) |
| 119 | i = vocab_size - 1; |
| 120 | } |
| 121 | |
| 122 | noise_distribution = (real *) calloc(vocab_size, sizeof(real)); |
| 123 | for (a = 0; a < vocab_size; a++) |
| 124 | noise_distribution[a] = pow(vocab[a].cn, power) |
| 125 | / (real) train_words_pow; |
| 126 | } |
| 127 | |
| 128 | // Reads a single word from a file, assuming space + tab + EOL to be word boundaries |
| 129 | void ReadWord(char *word, FILE *fin) { |
| 130 | int a = 0, ch; |
| 131 | while (!feof(fin)) { |
| 132 | ch = fgetc(fin); |
| 133 | if (ch == 13) |
| 134 | continue; |
| 135 | if ((ch == ' ') || (ch == '\t') || (ch == '\n')) { |
| 136 | if (a > 0) { |
| 137 | if (ch == '\n') |
| 138 | ungetc(ch, fin); |
| 139 | break; |
| 140 | } |
| 141 | if (ch == '\n') { |
| 142 | strcpy(word, (char *) "</s>"); |
| 143 | return; |
| 144 | } else |
| 145 | continue; |
| 146 | } |
| 147 | word[a] = ch; |
| 148 | a++; |
| 149 | if (a >= MAX_STRING - 1) |
| 150 | a--; // Truncate too long words |
| 151 | } |
| 152 | word[a] = 0; |
| 153 | } |
| 154 | |
| 155 | // Returns hash value of a word |
| 156 | int GetWordHash(char *word) { |
| 157 | unsigned long long a, hash = 0; |
| 158 | for (a = 0; a < strlen(word); a++) |
| 159 | hash = hash * 257 + word[a]; |
| 160 | hash = hash % vocab_hash_size; |
| 161 | return hash; |
| 162 | } |
| 163 | |
| 164 | // Returns position of a word in the vocabulary; if the word is not found, returns -1 |
| 165 | int SearchVocab(char *word) { |
| 166 | unsigned int hash = GetWordHash(word); |
| 167 | while (1) { |
| 168 | if (vocab_hash[hash] == -1) |
| 169 | return -1; |
| 170 | if (!strcmp(word, vocab[vocab_hash[hash]].word)) |
| 171 | return vocab_hash[hash]; |
| 172 | hash = (hash + 1) % vocab_hash_size; |
| 173 | } |
| 174 | return -1; |
| 175 | } |
| 176 | |
| 177 | // Reads a word and returns its index in the vocabulary |
| 178 | int ReadWordIndex(FILE *fin) { |
| 179 | char word[MAX_STRING]; |
| 180 | ReadWord(word, fin); |
| 181 | if (feof(fin)) |
| 182 | return -1; |
| 183 | return SearchVocab(word); |
| 184 | } |
| 185 | |
| 186 | // Adds a word to the vocabulary |
| 187 | int AddWordToVocab(char *word) { |
| 188 | unsigned int hash, length = strlen(word) + 1; |
| 189 | if (length > MAX_STRING) |
| 190 | length = MAX_STRING; |
| 191 | vocab[vocab_size].word = (char *) calloc(length, sizeof(char)); |
| 192 | strcpy(vocab[vocab_size].word, word); |
| 193 | vocab[vocab_size].cn = 0; |
| 194 | vocab_size++; |
| 195 | // Reallocate memory if needed |
| 196 | if (vocab_size + 2 >= vocab_max_size) { |
| 197 | vocab_max_size += 1000; |
| 198 | vocab = (struct vocab_word *) realloc(vocab, |
| 199 | vocab_max_size * sizeof(struct vocab_word)); |
| 200 | } |
| 201 | hash = GetWordHash(word); |
| 202 | while (vocab_hash[hash] != -1) |
| 203 | hash = (hash + 1) % vocab_hash_size; |
| 204 | vocab_hash[hash] = vocab_size - 1; |
| 205 | return vocab_size - 1; |
| 206 | } |
| 207 | |
| 208 | // Used later for sorting by word counts |
| 209 | int VocabCompare(const void *a, const void *b) { |
| 210 | return ((struct vocab_word *) b)->cn - ((struct vocab_word *) a)->cn; |
| 211 | } |
| 212 | |
| 213 | // Sorts the vocabulary by frequency using word counts |
| 214 | void SortVocab() { |
| 215 | int a, size; |
| 216 | unsigned int hash; |
| 217 | // Sort the vocabulary and keep </s> at the first position |
| 218 | qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare); |
| 219 | for (a = 0; a < vocab_hash_size; a++) |
| 220 | vocab_hash[a] = -1; |
| 221 | size = vocab_size; |
| 222 | train_words = 0; |
| 223 | for (a = 0; a < size; a++) { |
| 224 | // Words occuring less than min_count times will be discarded from the vocab |
| 225 | if ((vocab[a].cn < min_count) && (a != 0)) { |
| 226 | vocab_size--; |
| 227 | free(vocab[a].word); |
| 228 | } else { |
| 229 | // Hash will be re-computed, as after the sorting it is not actual |
| 230 | hash = GetWordHash(vocab[a].word); |
| 231 | while (vocab_hash[hash] != -1) |
| 232 | hash = (hash + 1) % vocab_hash_size; |
| 233 | vocab_hash[hash] = a; |
| 234 | train_words += vocab[a].cn; |
| 235 | } |
| 236 | } |
| 237 | vocab = (struct vocab_word *) realloc(vocab, |
| 238 | (vocab_size + 1) * sizeof(struct vocab_word)); |
| 239 | // Allocate memory for the binary tree construction |
| 240 | for (a = 0; a < vocab_size; a++) { |
| 241 | vocab[a].code = (char *) calloc(MAX_CODE_LENGTH, sizeof(char)); |
| 242 | vocab[a].point = (int *) calloc(MAX_CODE_LENGTH, sizeof(int)); |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | // Reduces the vocabulary by removing infrequent tokens |
| 247 | void ReduceVocab() { |
| 248 | int a, b = 0; |
| 249 | unsigned int hash; |
| 250 | for (a = 0; a < vocab_size; a++) |
| 251 | if (vocab[a].cn > min_reduce) { |
| 252 | vocab[b].cn = vocab[a].cn; |
| 253 | vocab[b].word = vocab[a].word; |
| 254 | b++; |
| 255 | } else |
| 256 | free(vocab[a].word); |
| 257 | vocab_size = b; |
| 258 | for (a = 0; a < vocab_hash_size; a++) |
| 259 | vocab_hash[a] = -1; |
| 260 | for (a = 0; a < vocab_size; a++) { |
| 261 | // Hash will be re-computed, as it is not actual |
| 262 | hash = GetWordHash(vocab[a].word); |
| 263 | while (vocab_hash[hash] != -1) |
| 264 | hash = (hash + 1) % vocab_hash_size; |
| 265 | vocab_hash[hash] = a; |
| 266 | } |
| 267 | fflush(stdout); |
| 268 | min_reduce++; |
| 269 | } |
| 270 | |
| 271 | // Create binary Huffman tree using the word counts |
| 272 | // Frequent words will have short uniqe binary codes |
| 273 | void CreateBinaryTree() { |
| 274 | long long a, b, i, min1i, min2i, pos1, pos2, point[MAX_CODE_LENGTH]; |
| 275 | char code[MAX_CODE_LENGTH]; |
| 276 | long long *count = (long long *) calloc(vocab_size * 2 + 1, |
| 277 | sizeof(long long)); |
| 278 | long long *binary = (long long *) calloc(vocab_size * 2 + 1, |
| 279 | sizeof(long long)); |
| 280 | long long *parent_node = (long long *) calloc(vocab_size * 2 + 1, |
| 281 | sizeof(long long)); |
| 282 | for (a = 0; a < vocab_size; a++) |
| 283 | count[a] = vocab[a].cn; |
| 284 | for (a = vocab_size; a < vocab_size * 2; a++) |
| 285 | count[a] = 1e15; |
| 286 | pos1 = vocab_size - 1; |
| 287 | pos2 = vocab_size; |
| 288 | // Following algorithm constructs the Huffman tree by adding one node at a time |
| 289 | for (a = 0; a < vocab_size - 1; a++) { |
| 290 | // First, find two smallest nodes 'min1, min2' |
| 291 | if (pos1 >= 0) { |
| 292 | if (count[pos1] < count[pos2]) { |
| 293 | min1i = pos1; |
| 294 | pos1--; |
| 295 | } else { |
| 296 | min1i = pos2; |
| 297 | pos2++; |
| 298 | } |
| 299 | } else { |
| 300 | min1i = pos2; |
| 301 | pos2++; |
| 302 | } |
| 303 | if (pos1 >= 0) { |
| 304 | if (count[pos1] < count[pos2]) { |
| 305 | min2i = pos1; |
| 306 | pos1--; |
| 307 | } else { |
| 308 | min2i = pos2; |
| 309 | pos2++; |
| 310 | } |
| 311 | } else { |
| 312 | min2i = pos2; |
| 313 | pos2++; |
| 314 | } |
| 315 | count[vocab_size + a] = count[min1i] + count[min2i]; |
| 316 | parent_node[min1i] = vocab_size + a; |
| 317 | parent_node[min2i] = vocab_size + a; |
| 318 | binary[min2i] = 1; |
| 319 | } |
| 320 | // Now assign binary code to each vocabulary word |
| 321 | for (a = 0; a < vocab_size; a++) { |
| 322 | b = a; |
| 323 | i = 0; |
| 324 | while (1) { |
| 325 | code[i] = binary[b]; |
| 326 | point[i] = b; |
| 327 | i++; |
| 328 | b = parent_node[b]; |
| 329 | if (b == vocab_size * 2 - 2) |
| 330 | break; |
| 331 | } |
| 332 | vocab[a].codelen = i; |
| 333 | vocab[a].point[0] = vocab_size - 2; |
| 334 | for (b = 0; b < i; b++) { |
| 335 | vocab[a].code[i - b - 1] = code[b]; |
| 336 | vocab[a].point[i - b] = point[b] - vocab_size; |
| 337 | } |
| 338 | } |
| 339 | free(count); |
| 340 | free(binary); |
| 341 | free(parent_node); |
| 342 | } |
| 343 | |
| 344 | void LearnVocabFromTrainFile() { |
| 345 | char word[MAX_STRING]; |
| 346 | FILE *fin; |
| 347 | long long a, i; |
| 348 | for (a = 0; a < vocab_hash_size; a++) |
| 349 | vocab_hash[a] = -1; |
| 350 | fin = fopen(train_file, "rb"); |
| 351 | if (fin == NULL) { |
| 352 | printf("ERROR: training data file not found!\n"); |
| 353 | exit(1); |
| 354 | } |
| 355 | vocab_size = 0; |
| 356 | AddWordToVocab((char *) "</s>"); |
| 357 | while (1) { |
| 358 | ReadWord(word, fin); |
| 359 | if (feof(fin)) |
| 360 | break; |
| 361 | train_words++; |
| 362 | if ((debug_mode > 1) && (train_words % 100000 == 0)) { |
| 363 | printf("%lldK%c", train_words / 1000, 13); |
| 364 | fflush(stdout); |
| 365 | } |
| 366 | i = SearchVocab(word); |
| 367 | if (i == -1) { |
| 368 | a = AddWordToVocab(word); |
| 369 | vocab[a].cn = 1; |
| 370 | } else |
| 371 | vocab[i].cn++; |
| 372 | if (vocab_size > vocab_hash_size * 0.7) |
| 373 | ReduceVocab(); |
| 374 | } |
| 375 | SortVocab(); |
| 376 | if (debug_mode > 0) { |
| 377 | printf("Vocab size: %lld\n", vocab_size); |
| 378 | printf("Words in train file: %lld\n", train_words); |
| 379 | } |
| 380 | file_size = ftell(fin); |
| 381 | fclose(fin); |
| 382 | } |
| 383 | |
| 384 | void SaveVocab() { |
| 385 | long long i; |
| 386 | FILE *fo = fopen(save_vocab_file, "wb"); |
| 387 | for (i = 0; i < vocab_size; i++) |
| 388 | fprintf(fo, "%s %lld\n", vocab[i].word, vocab[i].cn); |
| 389 | fclose(fo); |
| 390 | } |
| 391 | |
| 392 | void ReadVocab() { |
| 393 | long long a, i = 0; |
| 394 | char c; |
| 395 | char word[MAX_STRING]; |
| 396 | FILE *fin = fopen(read_vocab_file, "rb"); |
| 397 | if (fin == NULL) { |
| 398 | printf("Vocabulary file not found\n"); |
| 399 | exit(1); |
| 400 | } |
| 401 | for (a = 0; a < vocab_hash_size; a++) |
| 402 | vocab_hash[a] = -1; |
| 403 | vocab_size = 0; |
| 404 | while (1) { |
| 405 | ReadWord(word, fin); |
| 406 | if (feof(fin)) |
| 407 | break; |
| 408 | a = AddWordToVocab(word); |
| 409 | fscanf(fin, "%lld%c", &vocab[a].cn, &c); |
| 410 | i++; |
| 411 | } |
| 412 | SortVocab(); |
| 413 | if (debug_mode > 0) { |
| 414 | printf("Vocab size: %lld\n", vocab_size); |
| 415 | printf("Words in train file: %lld\n", train_words); |
| 416 | } |
| 417 | fin = fopen(train_file, "rb"); |
| 418 | if (fin == NULL) { |
| 419 | printf("ERROR: training data file not found!\n"); |
| 420 | exit(1); |
| 421 | } |
| 422 | fseek(fin, 0, SEEK_END); |
| 423 | file_size = ftell(fin); |
| 424 | fclose(fin); |
| 425 | } |
| 426 | |
| 427 | void InitClassUnigramTable() { |
| 428 | long long a, c; |
| 429 | printf("loading class unigrams \n"); |
| 430 | FILE *fin = fopen(negative_classes_file, "rb"); |
| 431 | if (fin == NULL) { |
| 432 | printf("ERROR: class file not found!\n"); |
| 433 | exit(1); |
| 434 | } |
| 435 | word_to_group = (int *) malloc(vocab_size * sizeof(int)); |
| 436 | for (a = 0; a < vocab_size; a++) |
| 437 | word_to_group[a] = -1; |
| 438 | char class[MAX_STRING]; |
| 439 | char prev_class[MAX_STRING]; |
| 440 | prev_class[0] = 0; |
| 441 | char word[MAX_STRING]; |
| 442 | class_number = -1; |
| 443 | while (1) { |
| 444 | if (feof(fin)) |
| 445 | break; |
| 446 | ReadWord(class, fin); |
| 447 | ReadWord(word, fin); |
| 448 | int word_index = SearchVocab(word); |
| 449 | if (word_index != -1) { |
| 450 | if (strcmp(class, prev_class) != 0) { |
| 451 | class_number++; |
| 452 | strcpy(prev_class, class); |
| 453 | } |
| 454 | word_to_group[word_index] = class_number; |
| 455 | } |
| 456 | ReadWord(word, fin); |
| 457 | } |
| 458 | class_number++; |
| 459 | fclose(fin); |
| 460 | |
| 461 | group_to_table = (int *) malloc(table_size * class_number * sizeof(int)); |
| 462 | long long train_words_pow = 0; |
| 463 | real d1, power = 0.75; |
| 464 | |
| 465 | for (c = 0; c < class_number; c++) { |
| 466 | long long offset = c * table_size; |
| 467 | train_words_pow = 0; |
| 468 | for (a = 0; a < vocab_size; a++) |
| 469 | if (word_to_group[a] == c) |
| 470 | train_words_pow += pow(vocab[a].cn, power); |
| 471 | int i = 0; |
| 472 | while (word_to_group[i] != c && i < vocab_size) |
| 473 | i++; |
| 474 | d1 = pow(vocab[i].cn, power) / (real) train_words_pow; |
| 475 | for (a = 0; a < table_size; a++) { |
| 476 | //printf("index %lld , word %d\n", a, i); |
| 477 | group_to_table[offset + a] = i; |
| 478 | if (a / (real) table_size > d1) { |
| 479 | i++; |
| 480 | while (word_to_group[i] != c && i < vocab_size) |
| 481 | i++; |
| 482 | d1 += pow(vocab[i].cn, power) / (real) train_words_pow; |
| 483 | } |
| 484 | if (i >= vocab_size) |
| 485 | while (word_to_group[i] != c && i >= 0) |
| 486 | i--; |
| 487 | } |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | void SaveNet() { |
Marc Kupietz | 313fcc5 | 2016-03-16 16:43:37 +0100 | [diff] [blame^] | 492 | if(type != 3 || negative <= 0) { |
| 493 | fprintf(stderr, "save-net only supported for type 3 with negative sampling\n"); |
| 494 | return; |
| 495 | } |
| 496 | |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 497 | FILE *fnet = fopen(save_net_file, "wb"); |
| 498 | if (fnet == NULL) { |
| 499 | printf("Net parameter file not found\n"); |
| 500 | exit(1); |
| 501 | } |
Marc Kupietz | c697933 | 2016-03-16 15:29:07 +0100 | [diff] [blame] | 502 | fwrite(syn0, sizeof(real), vocab_size * layer1_size, fnet); |
Marc Kupietz | 313fcc5 | 2016-03-16 16:43:37 +0100 | [diff] [blame^] | 503 | fwrite(syn1neg_window, sizeof(real), vocab_size * window_layer_size, fnet); |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 504 | fclose(fnet); |
| 505 | } |
| 506 | |
| 507 | void InitNet() { |
| 508 | long long a, b; |
| 509 | unsigned long long next_random = 1; |
| 510 | window_layer_size = layer1_size * window * 2; |
| 511 | a = posix_memalign((void **) &syn0, 128, |
| 512 | (long long) vocab_size * layer1_size * sizeof(real)); |
| 513 | if (syn0 == NULL) { |
| 514 | printf("Memory allocation failed\n"); |
| 515 | exit(1); |
| 516 | } |
| 517 | |
| 518 | if (hs) { |
| 519 | a = posix_memalign((void **) &syn1, 128, |
| 520 | (long long) vocab_size * layer1_size * sizeof(real)); |
| 521 | if (syn1 == NULL) { |
| 522 | printf("Memory allocation failed\n"); |
| 523 | exit(1); |
| 524 | } |
| 525 | a = posix_memalign((void **) &syn1_window, 128, |
| 526 | (long long) vocab_size * window_layer_size * sizeof(real)); |
| 527 | if (syn1_window == NULL) { |
| 528 | printf("Memory allocation failed\n"); |
| 529 | exit(1); |
| 530 | } |
| 531 | a = posix_memalign((void **) &syn_hidden_word, 128, |
| 532 | (long long) vocab_size * window_hidden_size * sizeof(real)); |
| 533 | if (syn_hidden_word == NULL) { |
| 534 | printf("Memory allocation failed\n"); |
| 535 | exit(1); |
| 536 | } |
| 537 | |
| 538 | for (a = 0; a < vocab_size; a++) |
| 539 | for (b = 0; b < layer1_size; b++) |
| 540 | syn1[a * layer1_size + b] = 0; |
| 541 | for (a = 0; a < vocab_size; a++) |
| 542 | for (b = 0; b < window_layer_size; b++) |
| 543 | syn1_window[a * window_layer_size + b] = 0; |
| 544 | for (a = 0; a < vocab_size; a++) |
| 545 | for (b = 0; b < window_hidden_size; b++) |
| 546 | syn_hidden_word[a * window_hidden_size + b] = 0; |
| 547 | } |
| 548 | if (negative > 0) { |
Marc Kupietz | 1006a27 | 2016-03-16 15:50:20 +0100 | [diff] [blame] | 549 | if(type == 0) { |
| 550 | a = posix_memalign((void **) &syn1neg, 128, |
| 551 | (long long) vocab_size * layer1_size * sizeof(real)); |
| 552 | if (syn1neg == NULL) { |
| 553 | printf("Memory allocation failed\n"); |
| 554 | exit(1); |
| 555 | } |
| 556 | for (a = 0; a < vocab_size; a++) |
| 557 | for (b = 0; b < layer1_size; b++) |
| 558 | syn1neg[a * layer1_size + b] = 0; |
| 559 | } else if (type == 3) { |
| 560 | a = posix_memalign((void **) &syn1neg_window, 128, |
| 561 | (long long) vocab_size * window_layer_size * sizeof(real)); |
| 562 | if (syn1neg_window == NULL) { |
| 563 | printf("Memory allocation failed\n"); |
| 564 | exit(1); |
| 565 | } |
| 566 | for (a = 0; a < vocab_size; a++) |
| 567 | for (b = 0; b < window_layer_size; b++) |
| 568 | syn1neg_window[a * window_layer_size + b] = 0; |
| 569 | } else if (type == 4) { |
| 570 | a = posix_memalign((void **) &syn_hidden_word_neg, 128, |
| 571 | (long long) vocab_size * window_hidden_size * sizeof(real)); |
| 572 | if (syn_hidden_word_neg == NULL) { |
| 573 | printf("Memory allocation failed\n"); |
| 574 | exit(1); |
| 575 | } |
| 576 | for (a = 0; a < vocab_size; a++) |
| 577 | for (b = 0; b < window_hidden_size; b++) |
| 578 | syn_hidden_word_neg[a * window_hidden_size + b] = 0; |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 579 | } |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 580 | } |
| 581 | if (nce > 0) { |
| 582 | a = posix_memalign((void **) &syn1nce, 128, |
| 583 | (long long) vocab_size * layer1_size * sizeof(real)); |
| 584 | if (syn1nce == NULL) { |
| 585 | printf("Memory allocation failed\n"); |
| 586 | exit(1); |
| 587 | } |
| 588 | a = posix_memalign((void **) &syn1nce_window, 128, |
| 589 | (long long) vocab_size * window_layer_size * sizeof(real)); |
| 590 | if (syn1nce_window == NULL) { |
| 591 | printf("Memory allocation failed\n"); |
| 592 | exit(1); |
| 593 | } |
| 594 | a = posix_memalign((void **) &syn_hidden_word_nce, 128, |
| 595 | (long long) vocab_size * window_hidden_size * sizeof(real)); |
| 596 | if (syn_hidden_word_nce == NULL) { |
| 597 | printf("Memory allocation failed\n"); |
| 598 | exit(1); |
| 599 | } |
| 600 | |
| 601 | for (a = 0; a < vocab_size; a++) |
| 602 | for (b = 0; b < layer1_size; b++) |
| 603 | syn1nce[a * layer1_size + b] = 0; |
| 604 | for (a = 0; a < vocab_size; a++) |
| 605 | for (b = 0; b < window_layer_size; b++) |
| 606 | syn1nce_window[a * window_layer_size + b] = 0; |
| 607 | for (a = 0; a < vocab_size; a++) |
| 608 | for (b = 0; b < window_hidden_size; b++) |
| 609 | syn_hidden_word_nce[a * window_hidden_size + b] = 0; |
| 610 | } |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 611 | |
Marc Kupietz | 1006a27 | 2016-03-16 15:50:20 +0100 | [diff] [blame] | 612 | if(type == 4) { |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 613 | a = posix_memalign((void **) &syn_window_hidden, 128, |
| 614 | window_hidden_size * window_layer_size * sizeof(real)); |
| 615 | if (syn_window_hidden == NULL) { |
| 616 | printf("Memory allocation failed\n"); |
| 617 | exit(1); |
| 618 | } |
| 619 | for (a = 0; a < window_hidden_size * window_layer_size; a++) { |
| 620 | next_random = next_random * (unsigned long long) 25214903917 + 11; |
| 621 | syn_window_hidden[a] = (((next_random & 0xFFFF) / (real) 65536) |
| 622 | - 0.5) / (window_hidden_size * window_layer_size); |
| 623 | } |
| 624 | } |
Marc Kupietz | 1006a27 | 2016-03-16 15:50:20 +0100 | [diff] [blame] | 625 | |
| 626 | if (read_net_file[0] == 0) { |
| 627 | for (a = 0; a < vocab_size; a++) |
| 628 | for (b = 0; b < layer1_size; b++) { |
| 629 | next_random = next_random * (unsigned long long) 25214903917 |
| 630 | + 11; |
| 631 | syn0[a * layer1_size + b] = (((next_random & 0xFFFF) |
| 632 | / (real) 65536) - 0.5) / layer1_size; |
| 633 | } |
Marc Kupietz | 313fcc5 | 2016-03-16 16:43:37 +0100 | [diff] [blame^] | 634 | } else if(type == 3 && negative > 0) { |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 635 | FILE *fnet = fopen(read_net_file, "rb"); |
| 636 | if (fnet == NULL) { |
| 637 | printf("Net parameter file not found\n"); |
| 638 | exit(1); |
| 639 | } |
Marc Kupietz | c697933 | 2016-03-16 15:29:07 +0100 | [diff] [blame] | 640 | fread(syn0, sizeof(real), vocab_size * layer1_size, fnet); |
Marc Kupietz | 313fcc5 | 2016-03-16 16:43:37 +0100 | [diff] [blame^] | 641 | fread(syn1neg_window, sizeof(real), vocab_size * window_layer_size, fnet); |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 642 | fclose(fnet); |
Marc Kupietz | 313fcc5 | 2016-03-16 16:43:37 +0100 | [diff] [blame^] | 643 | } else { |
| 644 | fprintf(stderr, "read-net only supported for type 3 with negative sampling\n"); |
| 645 | exit(-1); |
Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 646 | } |
| 647 | |
| 648 | CreateBinaryTree(); |
| 649 | } |
| 650 | |
| 651 | void *TrainModelThread(void *id) { |
| 652 | long long a, b, d, cw, word, last_word, sentence_length = 0, |
| 653 | sentence_position = 0; |
| 654 | long long word_count = 0, last_word_count = 0, sen[MAX_SENTENCE_LENGTH + 1]; |
| 655 | long long l1, l2, c, target, label, local_iter = iter; |
| 656 | unsigned long long next_random = (long long) id; |
| 657 | real f, g; |
| 658 | clock_t now; |
| 659 | int input_len_1 = layer1_size; |
| 660 | int window_offset = -1; |
| 661 | if (type == 2 || type == 4) { |
| 662 | input_len_1 = window_layer_size; |
| 663 | } |
| 664 | real *neu1 = (real *) calloc(input_len_1, sizeof(real)); |
| 665 | real *neu1e = (real *) calloc(input_len_1, sizeof(real)); |
| 666 | |
| 667 | int input_len_2 = 0; |
| 668 | if (type == 4) { |
| 669 | input_len_2 = window_hidden_size; |
| 670 | } |
| 671 | real *neu2 = (real *) calloc(input_len_2, sizeof(real)); |
| 672 | real *neu2e = (real *) calloc(input_len_2, sizeof(real)); |
| 673 | |
| 674 | FILE *fi = fopen(train_file, "rb"); |
| 675 | fseek(fi, file_size / (long long) num_threads * (long long) id, SEEK_SET); |
| 676 | while (1) { |
| 677 | if (word_count - last_word_count > 10000) { |
| 678 | word_count_actual += word_count - last_word_count; |
| 679 | last_word_count = word_count; |
| 680 | if ((debug_mode > 1)) { |
| 681 | now = clock(); |
| 682 | printf( |
| 683 | "%cAlpha: %f Progress: %.2f%% Words/thread/sec: %.2fk ", |
| 684 | 13, alpha, |
| 685 | word_count_actual / (real) (iter * train_words + 1) |
| 686 | * 100, |
| 687 | word_count_actual |
| 688 | / ((real) (now - start + 1) |
| 689 | / (real) CLOCKS_PER_SEC * 1000)); |
| 690 | fflush(stdout); |
| 691 | } |
| 692 | alpha = starting_alpha |
| 693 | * (1 - word_count_actual / (real) (iter * train_words + 1)); |
| 694 | if (alpha < starting_alpha * 0.0001) |
| 695 | alpha = starting_alpha * 0.0001; |
| 696 | } |
| 697 | if (sentence_length == 0) { |
| 698 | while (1) { |
| 699 | word = ReadWordIndex(fi); |
| 700 | if (feof(fi)) |
| 701 | break; |
| 702 | if (word == -1) |
| 703 | continue; |
| 704 | word_count++; |
| 705 | if (word == 0) |
| 706 | break; |
| 707 | // The subsampling randomly discards frequent words while keeping the ranking same |
| 708 | if (sample > 0) { |
| 709 | real ran = (sqrt(vocab[word].cn / (sample * train_words)) |
| 710 | + 1) * (sample * train_words) / vocab[word].cn; |
| 711 | next_random = next_random * (unsigned long long) 25214903917 |
| 712 | + 11; |
| 713 | if (ran < (next_random & 0xFFFF) / (real) 65536) |
| 714 | continue; |
| 715 | } |
| 716 | sen[sentence_length] = word; |
| 717 | sentence_length++; |
| 718 | if (sentence_length >= MAX_SENTENCE_LENGTH) |
| 719 | break; |
| 720 | } |
| 721 | sentence_position = 0; |
| 722 | } |
| 723 | if (feof(fi) || (word_count > train_words / num_threads)) { |
| 724 | word_count_actual += word_count - last_word_count; |
| 725 | local_iter--; |
| 726 | if (local_iter == 0) |
| 727 | break; |
| 728 | word_count = 0; |
| 729 | last_word_count = 0; |
| 730 | sentence_length = 0; |
| 731 | fseek(fi, file_size / (long long) num_threads * (long long) id, |
| 732 | SEEK_SET); |
| 733 | continue; |
| 734 | } |
| 735 | word = sen[sentence_position]; |
| 736 | if (word == -1) |
| 737 | continue; |
| 738 | for (c = 0; c < input_len_1; c++) |
| 739 | neu1[c] = 0; |
| 740 | for (c = 0; c < input_len_1; c++) |
| 741 | neu1e[c] = 0; |
| 742 | for (c = 0; c < input_len_2; c++) |
| 743 | neu2[c] = 0; |
| 744 | for (c = 0; c < input_len_2; c++) |
| 745 | neu2e[c] = 0; |
| 746 | next_random = next_random * (unsigned long long) 25214903917 + 11; |
| 747 | b = next_random % window; |
| 748 | if (type == 0) { //train the cbow architecture |
| 749 | // in -> hidden |
| 750 | cw = 0; |
| 751 | for (a = b; a < window * 2 + 1 - b; a++) |
| 752 | if (a != window) { |
| 753 | c = sentence_position - window + a; |
| 754 | if (c < 0) |
| 755 | continue; |
| 756 | if (c >= sentence_length) |
| 757 | continue; |
| 758 | last_word = sen[c]; |
| 759 | if (last_word == -1) |
| 760 | continue; |
| 761 | for (c = 0; c < layer1_size; c++) |
| 762 | neu1[c] += syn0[c + last_word * layer1_size]; |
| 763 | cw++; |
| 764 | } |
| 765 | if (cw) { |
| 766 | for (c = 0; c < layer1_size; c++) |
| 767 | neu1[c] /= cw; |
| 768 | if (hs) |
| 769 | for (d = 0; d < vocab[word].codelen; d++) { |
| 770 | f = 0; |
| 771 | l2 = vocab[word].point[d] * layer1_size; |
| 772 | // Propagate hidden -> output |
| 773 | for (c = 0; c < layer1_size; c++) |
| 774 | f += neu1[c] * syn1[c + l2]; |
| 775 | if (f <= -MAX_EXP) |
| 776 | continue; |
| 777 | else if (f >= MAX_EXP) |
| 778 | continue; |
| 779 | else |
| 780 | f = expTable[(int) ((f + MAX_EXP) |
| 781 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 782 | // 'g' is the gradient multiplied by the learning rate |
| 783 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 784 | // Propagate errors output -> hidden |
| 785 | for (c = 0; c < layer1_size; c++) |
| 786 | neu1e[c] += g * syn1[c + l2]; |
| 787 | // Learn weights hidden -> output |
| 788 | for (c = 0; c < layer1_size; c++) |
| 789 | syn1[c + l2] += g * neu1[c]; |
| 790 | if (cap == 1) |
| 791 | for (c = 0; c < layer1_size; c++) |
| 792 | capParam(syn1, c + l2); |
| 793 | } |
| 794 | // NEGATIVE SAMPLING |
| 795 | if (negative > 0) |
| 796 | for (d = 0; d < negative + 1; d++) { |
| 797 | if (d == 0) { |
| 798 | target = word; |
| 799 | label = 1; |
| 800 | } else { |
| 801 | next_random = next_random |
| 802 | * (unsigned long long) 25214903917 + 11; |
| 803 | if (word_to_group != NULL |
| 804 | && word_to_group[word] != -1) { |
| 805 | target = word; |
| 806 | while (target == word) { |
| 807 | target = group_to_table[word_to_group[word] |
| 808 | * table_size |
| 809 | + (next_random >> 16) % table_size]; |
| 810 | next_random = next_random |
| 811 | * (unsigned long long) 25214903917 |
| 812 | + 11; |
| 813 | } |
| 814 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 815 | } else { |
| 816 | target = |
| 817 | table[(next_random >> 16) % table_size]; |
| 818 | } |
| 819 | if (target == 0) |
| 820 | target = next_random % (vocab_size - 1) + 1; |
| 821 | if (target == word) |
| 822 | continue; |
| 823 | label = 0; |
| 824 | } |
| 825 | l2 = target * layer1_size; |
| 826 | f = 0; |
| 827 | for (c = 0; c < layer1_size; c++) |
| 828 | f += neu1[c] * syn1neg[c + l2]; |
| 829 | if (f > MAX_EXP) |
| 830 | g = (label - 1) * alpha; |
| 831 | else if (f < -MAX_EXP) |
| 832 | g = (label - 0) * alpha; |
| 833 | else |
| 834 | g = (label |
| 835 | - expTable[(int) ((f + MAX_EXP) |
| 836 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]) |
| 837 | * alpha; |
| 838 | for (c = 0; c < layer1_size; c++) |
| 839 | neu1e[c] += g * syn1neg[c + l2]; |
| 840 | for (c = 0; c < layer1_size; c++) |
| 841 | syn1neg[c + l2] += g * neu1[c]; |
| 842 | if (cap == 1) |
| 843 | for (c = 0; c < layer1_size; c++) |
| 844 | capParam(syn1neg, c + l2); |
| 845 | } |
| 846 | // Noise Contrastive Estimation |
| 847 | if (nce > 0) |
| 848 | for (d = 0; d < nce + 1; d++) { |
| 849 | if (d == 0) { |
| 850 | target = word; |
| 851 | label = 1; |
| 852 | } else { |
| 853 | next_random = next_random |
| 854 | * (unsigned long long) 25214903917 + 11; |
| 855 | if (word_to_group != NULL |
| 856 | && word_to_group[word] != -1) { |
| 857 | target = word; |
| 858 | while (target == word) { |
| 859 | target = group_to_table[word_to_group[word] |
| 860 | * table_size |
| 861 | + (next_random >> 16) % table_size]; |
| 862 | next_random = next_random |
| 863 | * (unsigned long long) 25214903917 |
| 864 | + 11; |
| 865 | } |
| 866 | } else { |
| 867 | target = |
| 868 | table[(next_random >> 16) % table_size]; |
| 869 | } |
| 870 | if (target == 0) |
| 871 | target = next_random % (vocab_size - 1) + 1; |
| 872 | if (target == word) |
| 873 | continue; |
| 874 | label = 0; |
| 875 | } |
| 876 | l2 = target * layer1_size; |
| 877 | f = 0; |
| 878 | |
| 879 | for (c = 0; c < layer1_size; c++) |
| 880 | f += neu1[c] * syn1nce[c + l2]; |
| 881 | if (f > MAX_EXP) |
| 882 | g = (label - 1) * alpha; |
| 883 | else if (f < -MAX_EXP) |
| 884 | g = (label - 0) * alpha; |
| 885 | else { |
| 886 | f = exp(f); |
| 887 | g = |
| 888 | (label |
| 889 | - f |
| 890 | / (noise_distribution[target] |
| 891 | * nce + f)) * alpha; |
| 892 | } |
| 893 | for (c = 0; c < layer1_size; c++) |
| 894 | neu1e[c] += g * syn1nce[c + l2]; |
| 895 | for (c = 0; c < layer1_size; c++) |
| 896 | syn1nce[c + l2] += g * neu1[c]; |
| 897 | if (cap == 1) |
| 898 | for (c = 0; c < layer1_size; c++) |
| 899 | capParam(syn1nce, c + l2); |
| 900 | } |
| 901 | // hidden -> in |
| 902 | for (a = b; a < window * 2 + 1 - b; a++) |
| 903 | if (a != window) { |
| 904 | c = sentence_position - window + a; |
| 905 | if (c < 0) |
| 906 | continue; |
| 907 | if (c >= sentence_length) |
| 908 | continue; |
| 909 | last_word = sen[c]; |
| 910 | if (last_word == -1) |
| 911 | continue; |
| 912 | for (c = 0; c < layer1_size; c++) |
| 913 | syn0[c + last_word * layer1_size] += neu1e[c]; |
| 914 | } |
| 915 | } |
| 916 | } else if (type == 1) { //train skip-gram |
| 917 | for (a = b; a < window * 2 + 1 - b; a++) |
| 918 | if (a != window) { |
| 919 | c = sentence_position - window + a; |
| 920 | if (c < 0) |
| 921 | continue; |
| 922 | if (c >= sentence_length) |
| 923 | continue; |
| 924 | last_word = sen[c]; |
| 925 | if (last_word == -1) |
| 926 | continue; |
| 927 | l1 = last_word * layer1_size; |
| 928 | for (c = 0; c < layer1_size; c++) |
| 929 | neu1e[c] = 0; |
| 930 | // HIERARCHICAL SOFTMAX |
| 931 | if (hs) |
| 932 | for (d = 0; d < vocab[word].codelen; d++) { |
| 933 | f = 0; |
| 934 | l2 = vocab[word].point[d] * layer1_size; |
| 935 | // Propagate hidden -> output |
| 936 | for (c = 0; c < layer1_size; c++) |
| 937 | f += syn0[c + l1] * syn1[c + l2]; |
| 938 | if (f <= -MAX_EXP) |
| 939 | continue; |
| 940 | else if (f >= MAX_EXP) |
| 941 | continue; |
| 942 | else |
| 943 | f = expTable[(int) ((f + MAX_EXP) |
| 944 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 945 | // 'g' is the gradient multiplied by the learning rate |
| 946 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 947 | // Propagate errors output -> hidden |
| 948 | for (c = 0; c < layer1_size; c++) |
| 949 | neu1e[c] += g * syn1[c + l2]; |
| 950 | // Learn weights hidden -> output |
| 951 | for (c = 0; c < layer1_size; c++) |
| 952 | syn1[c + l2] += g * syn0[c + l1]; |
| 953 | if (cap == 1) |
| 954 | for (c = 0; c < layer1_size; c++) |
| 955 | capParam(syn1, c + l2); |
| 956 | } |
| 957 | // NEGATIVE SAMPLING |
| 958 | if (negative > 0) |
| 959 | for (d = 0; d < negative + 1; d++) { |
| 960 | if (d == 0) { |
| 961 | target = word; |
| 962 | label = 1; |
| 963 | } else { |
| 964 | next_random = next_random |
| 965 | * (unsigned long long) 25214903917 + 11; |
| 966 | if (word_to_group != NULL |
| 967 | && word_to_group[word] != -1) { |
| 968 | target = word; |
| 969 | while (target == word) { |
| 970 | target = |
| 971 | group_to_table[word_to_group[word] |
| 972 | * table_size |
| 973 | + (next_random >> 16) |
| 974 | % table_size]; |
| 975 | next_random = |
| 976 | next_random |
| 977 | * (unsigned long long) 25214903917 |
| 978 | + 11; |
| 979 | } |
| 980 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 981 | } else { |
| 982 | target = table[(next_random >> 16) |
| 983 | % table_size]; |
| 984 | } |
| 985 | if (target == 0) |
| 986 | target = next_random % (vocab_size - 1) + 1; |
| 987 | if (target == word) |
| 988 | continue; |
| 989 | label = 0; |
| 990 | } |
| 991 | l2 = target * layer1_size; |
| 992 | f = 0; |
| 993 | for (c = 0; c < layer1_size; c++) |
| 994 | f += syn0[c + l1] * syn1neg[c + l2]; |
| 995 | if (f > MAX_EXP) |
| 996 | g = (label - 1) * alpha; |
| 997 | else if (f < -MAX_EXP) |
| 998 | g = (label - 0) * alpha; |
| 999 | else |
| 1000 | g = |
| 1001 | (label |
| 1002 | - expTable[(int) ((f + MAX_EXP) |
| 1003 | * (EXP_TABLE_SIZE |
| 1004 | / MAX_EXP / 2))]) |
| 1005 | * alpha; |
| 1006 | for (c = 0; c < layer1_size; c++) |
| 1007 | neu1e[c] += g * syn1neg[c + l2]; |
| 1008 | for (c = 0; c < layer1_size; c++) |
| 1009 | syn1neg[c + l2] += g * syn0[c + l1]; |
| 1010 | if (cap == 1) |
| 1011 | for (c = 0; c < layer1_size; c++) |
| 1012 | capParam(syn1neg, c + l2); |
| 1013 | } |
| 1014 | //Noise Contrastive Estimation |
| 1015 | if (nce > 0) |
| 1016 | for (d = 0; d < nce + 1; d++) { |
| 1017 | if (d == 0) { |
| 1018 | target = word; |
| 1019 | label = 1; |
| 1020 | } else { |
| 1021 | next_random = next_random |
| 1022 | * (unsigned long long) 25214903917 + 11; |
| 1023 | if (word_to_group != NULL |
| 1024 | && word_to_group[word] != -1) { |
| 1025 | target = word; |
| 1026 | while (target == word) { |
| 1027 | target = |
| 1028 | group_to_table[word_to_group[word] |
| 1029 | * table_size |
| 1030 | + (next_random >> 16) |
| 1031 | % table_size]; |
| 1032 | next_random = |
| 1033 | next_random |
| 1034 | * (unsigned long long) 25214903917 |
| 1035 | + 11; |
| 1036 | } |
| 1037 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1038 | } else { |
| 1039 | target = table[(next_random >> 16) |
| 1040 | % table_size]; |
| 1041 | } |
| 1042 | if (target == 0) |
| 1043 | target = next_random % (vocab_size - 1) + 1; |
| 1044 | if (target == word) |
| 1045 | continue; |
| 1046 | label = 0; |
| 1047 | } |
| 1048 | l2 = target * layer1_size; |
| 1049 | f = 0; |
| 1050 | for (c = 0; c < layer1_size; c++) |
| 1051 | f += syn0[c + l1] * syn1nce[c + l2]; |
| 1052 | if (f > MAX_EXP) |
| 1053 | g = (label - 1) * alpha; |
| 1054 | else if (f < -MAX_EXP) |
| 1055 | g = (label - 0) * alpha; |
| 1056 | else { |
| 1057 | f = exp(f); |
| 1058 | g = (label |
| 1059 | - f |
| 1060 | / (noise_distribution[target] |
| 1061 | * nce + f)) * alpha; |
| 1062 | } |
| 1063 | for (c = 0; c < layer1_size; c++) |
| 1064 | neu1e[c] += g * syn1nce[c + l2]; |
| 1065 | for (c = 0; c < layer1_size; c++) |
| 1066 | syn1nce[c + l2] += g * syn0[c + l1]; |
| 1067 | if (cap == 1) |
| 1068 | for (c = 0; c < layer1_size; c++) |
| 1069 | capParam(syn1nce, c + l2); |
| 1070 | } |
| 1071 | // Learn weights input -> hidden |
| 1072 | for (c = 0; c < layer1_size; c++) |
| 1073 | syn0[c + l1] += neu1e[c]; |
| 1074 | } |
| 1075 | } else if (type == 2) { //train the cwindow architecture |
| 1076 | // in -> hidden |
| 1077 | cw = 0; |
| 1078 | for (a = 0; a < window * 2 + 1; a++) |
| 1079 | if (a != window) { |
| 1080 | c = sentence_position - window + a; |
| 1081 | if (c < 0) |
| 1082 | continue; |
| 1083 | if (c >= sentence_length) |
| 1084 | continue; |
| 1085 | last_word = sen[c]; |
| 1086 | if (last_word == -1) |
| 1087 | continue; |
| 1088 | window_offset = a * layer1_size; |
| 1089 | if (a > window) |
| 1090 | window_offset -= layer1_size; |
| 1091 | for (c = 0; c < layer1_size; c++) |
| 1092 | neu1[c + window_offset] += syn0[c |
| 1093 | + last_word * layer1_size]; |
| 1094 | cw++; |
| 1095 | } |
| 1096 | if (cw) { |
| 1097 | if (hs) |
| 1098 | for (d = 0; d < vocab[word].codelen; d++) { |
| 1099 | f = 0; |
| 1100 | l2 = vocab[word].point[d] * window_layer_size; |
| 1101 | // Propagate hidden -> output |
| 1102 | for (c = 0; c < window_layer_size; c++) |
| 1103 | f += neu1[c] * syn1_window[c + l2]; |
| 1104 | if (f <= -MAX_EXP) |
| 1105 | continue; |
| 1106 | else if (f >= MAX_EXP) |
| 1107 | continue; |
| 1108 | else |
| 1109 | f = expTable[(int) ((f + MAX_EXP) |
| 1110 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 1111 | // 'g' is the gradient multiplied by the learning rate |
| 1112 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 1113 | // Propagate errors output -> hidden |
| 1114 | for (c = 0; c < window_layer_size; c++) |
| 1115 | neu1e[c] += g * syn1_window[c + l2]; |
| 1116 | // Learn weights hidden -> output |
| 1117 | for (c = 0; c < window_layer_size; c++) |
| 1118 | syn1_window[c + l2] += g * neu1[c]; |
| 1119 | if (cap == 1) |
| 1120 | for (c = 0; c < window_layer_size; c++) |
| 1121 | capParam(syn1_window, c + l2); |
| 1122 | } |
| 1123 | // NEGATIVE SAMPLING |
| 1124 | if (negative > 0) |
| 1125 | for (d = 0; d < negative + 1; d++) { |
| 1126 | if (d == 0) { |
| 1127 | target = word; |
| 1128 | label = 1; |
| 1129 | } else { |
| 1130 | next_random = next_random |
| 1131 | * (unsigned long long) 25214903917 + 11; |
| 1132 | if (word_to_group != NULL |
| 1133 | && word_to_group[word] != -1) { |
| 1134 | target = word; |
| 1135 | while (target == word) { |
| 1136 | target = group_to_table[word_to_group[word] |
| 1137 | * table_size |
| 1138 | + (next_random >> 16) % table_size]; |
| 1139 | next_random = next_random |
| 1140 | * (unsigned long long) 25214903917 |
| 1141 | + 11; |
| 1142 | } |
| 1143 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1144 | } else { |
| 1145 | target = |
| 1146 | table[(next_random >> 16) % table_size]; |
| 1147 | } |
| 1148 | if (target == 0) |
| 1149 | target = next_random % (vocab_size - 1) + 1; |
| 1150 | if (target == word) |
| 1151 | continue; |
| 1152 | label = 0; |
| 1153 | } |
| 1154 | l2 = target * window_layer_size; |
| 1155 | f = 0; |
| 1156 | for (c = 0; c < window_layer_size; c++) |
| 1157 | f += neu1[c] * syn1neg_window[c + l2]; |
| 1158 | if (f > MAX_EXP) |
| 1159 | g = (label - 1) * alpha; |
| 1160 | else if (f < -MAX_EXP) |
| 1161 | g = (label - 0) * alpha; |
| 1162 | else |
| 1163 | g = (label |
| 1164 | - expTable[(int) ((f + MAX_EXP) |
| 1165 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]) |
| 1166 | * alpha; |
| 1167 | for (c = 0; c < window_layer_size; c++) |
| 1168 | neu1e[c] += g * syn1neg_window[c + l2]; |
| 1169 | for (c = 0; c < window_layer_size; c++) |
| 1170 | syn1neg_window[c + l2] += g * neu1[c]; |
| 1171 | if (cap == 1) |
| 1172 | for (c = 0; c < window_layer_size; c++) |
| 1173 | capParam(syn1neg_window, c + l2); |
| 1174 | } |
| 1175 | // Noise Contrastive Estimation |
| 1176 | if (nce > 0) |
| 1177 | for (d = 0; d < nce + 1; d++) { |
| 1178 | if (d == 0) { |
| 1179 | target = word; |
| 1180 | label = 1; |
| 1181 | } else { |
| 1182 | next_random = next_random |
| 1183 | * (unsigned long long) 25214903917 + 11; |
| 1184 | if (word_to_group != NULL |
| 1185 | && word_to_group[word] != -1) { |
| 1186 | target = word; |
| 1187 | while (target == word) { |
| 1188 | target = group_to_table[word_to_group[word] |
| 1189 | * table_size |
| 1190 | + (next_random >> 16) % table_size]; |
| 1191 | next_random = next_random |
| 1192 | * (unsigned long long) 25214903917 |
| 1193 | + 11; |
| 1194 | } |
| 1195 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1196 | } else { |
| 1197 | target = |
| 1198 | table[(next_random >> 16) % table_size]; |
| 1199 | } |
| 1200 | if (target == 0) |
| 1201 | target = next_random % (vocab_size - 1) + 1; |
| 1202 | if (target == word) |
| 1203 | continue; |
| 1204 | label = 0; |
| 1205 | } |
| 1206 | l2 = target * window_layer_size; |
| 1207 | f = 0; |
| 1208 | for (c = 0; c < window_layer_size; c++) |
| 1209 | f += neu1[c] * syn1nce_window[c + l2]; |
| 1210 | if (f > MAX_EXP) |
| 1211 | g = (label - 1) * alpha; |
| 1212 | else if (f < -MAX_EXP) |
| 1213 | g = (label - 0) * alpha; |
| 1214 | else { |
| 1215 | f = exp(f); |
| 1216 | g = |
| 1217 | (label |
| 1218 | - f |
| 1219 | / (noise_distribution[target] |
| 1220 | * nce + f)) * alpha; |
| 1221 | } |
| 1222 | for (c = 0; c < window_layer_size; c++) |
| 1223 | neu1e[c] += g * syn1nce_window[c + l2]; |
| 1224 | for (c = 0; c < window_layer_size; c++) |
| 1225 | syn1nce_window[c + l2] += g * neu1[c]; |
| 1226 | if (cap == 1) |
| 1227 | for (c = 0; c < window_layer_size; c++) |
| 1228 | capParam(syn1nce_window, c + l2); |
| 1229 | } |
| 1230 | // hidden -> in |
| 1231 | for (a = 0; a < window * 2 + 1; a++) |
| 1232 | if (a != window) { |
| 1233 | c = sentence_position - window + a; |
| 1234 | if (c < 0) |
| 1235 | continue; |
| 1236 | if (c >= sentence_length) |
| 1237 | continue; |
| 1238 | last_word = sen[c]; |
| 1239 | if (last_word == -1) |
| 1240 | continue; |
| 1241 | window_offset = a * layer1_size; |
| 1242 | if (a > window) |
| 1243 | window_offset -= layer1_size; |
| 1244 | for (c = 0; c < layer1_size; c++) |
| 1245 | syn0[c + last_word * layer1_size] += neu1e[c |
| 1246 | + window_offset]; |
| 1247 | } |
| 1248 | } |
| 1249 | } else if (type == 3) { //train structured skip-gram |
| 1250 | for (a = 0; a < window * 2 + 1; a++) |
| 1251 | if (a != window) { |
| 1252 | c = sentence_position - window + a; |
| 1253 | if (c < 0) |
| 1254 | continue; |
| 1255 | if (c >= sentence_length) |
| 1256 | continue; |
| 1257 | last_word = sen[c]; |
| 1258 | if (last_word == -1) |
| 1259 | continue; |
| 1260 | l1 = last_word * layer1_size; |
| 1261 | window_offset = a * layer1_size; |
| 1262 | if (a > window) |
| 1263 | window_offset -= layer1_size; |
| 1264 | for (c = 0; c < layer1_size; c++) |
| 1265 | neu1e[c] = 0; |
| 1266 | // HIERARCHICAL SOFTMAX |
| 1267 | if (hs) |
| 1268 | for (d = 0; d < vocab[word].codelen; d++) { |
| 1269 | f = 0; |
| 1270 | l2 = vocab[word].point[d] * window_layer_size; |
| 1271 | // Propagate hidden -> output |
| 1272 | for (c = 0; c < layer1_size; c++) |
| 1273 | f += syn0[c + l1] |
| 1274 | * syn1_window[c + l2 + window_offset]; |
| 1275 | if (f <= -MAX_EXP) |
| 1276 | continue; |
| 1277 | else if (f >= MAX_EXP) |
| 1278 | continue; |
| 1279 | else |
| 1280 | f = expTable[(int) ((f + MAX_EXP) |
| 1281 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 1282 | // 'g' is the gradient multiplied by the learning rate |
| 1283 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 1284 | // Propagate errors output -> hidden |
| 1285 | for (c = 0; c < layer1_size; c++) |
| 1286 | neu1e[c] += g |
| 1287 | * syn1_window[c + l2 + window_offset]; |
| 1288 | // Learn weights hidden -> output |
| 1289 | for (c = 0; c < layer1_size; c++) |
| 1290 | syn1[c + l2 + window_offset] += g |
| 1291 | * syn0[c + l1]; |
| 1292 | if (cap == 1) |
| 1293 | for (c = 0; c < layer1_size; c++) |
| 1294 | capParam(syn1, c + l2 + window_offset); |
| 1295 | } |
| 1296 | // NEGATIVE SAMPLING |
| 1297 | if (negative > 0) |
| 1298 | for (d = 0; d < negative + 1; d++) { |
| 1299 | if (d == 0) { |
| 1300 | target = word; |
| 1301 | label = 1; |
| 1302 | } else { |
| 1303 | next_random = next_random |
| 1304 | * (unsigned long long) 25214903917 + 11; |
| 1305 | if (word_to_group != NULL |
| 1306 | && word_to_group[word] != -1) { |
| 1307 | target = word; |
| 1308 | while (target == word) { |
| 1309 | target = |
| 1310 | group_to_table[word_to_group[word] |
| 1311 | * table_size |
| 1312 | + (next_random >> 16) |
| 1313 | % table_size]; |
| 1314 | next_random = |
| 1315 | next_random |
| 1316 | * (unsigned long long) 25214903917 |
| 1317 | + 11; |
| 1318 | } |
| 1319 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1320 | } else { |
| 1321 | target = table[(next_random >> 16) |
| 1322 | % table_size]; |
| 1323 | } |
| 1324 | if (target == 0) |
| 1325 | target = next_random % (vocab_size - 1) + 1; |
| 1326 | if (target == word) |
| 1327 | continue; |
| 1328 | label = 0; |
| 1329 | } |
| 1330 | l2 = target * window_layer_size; |
| 1331 | f = 0; |
| 1332 | for (c = 0; c < layer1_size; c++) |
| 1333 | f += |
| 1334 | syn0[c + l1] |
| 1335 | * syn1neg_window[c + l2 |
| 1336 | + window_offset]; |
| 1337 | if (f > MAX_EXP) |
| 1338 | g = (label - 1) * alpha; |
| 1339 | else if (f < -MAX_EXP) |
| 1340 | g = (label - 0) * alpha; |
| 1341 | else |
| 1342 | g = |
| 1343 | (label |
| 1344 | - expTable[(int) ((f + MAX_EXP) |
| 1345 | * (EXP_TABLE_SIZE |
| 1346 | / MAX_EXP / 2))]) |
| 1347 | * alpha; |
| 1348 | for (c = 0; c < layer1_size; c++) |
| 1349 | neu1e[c] += |
| 1350 | g |
| 1351 | * syn1neg_window[c + l2 |
| 1352 | + window_offset]; |
| 1353 | for (c = 0; c < layer1_size; c++) |
| 1354 | syn1neg_window[c + l2 + window_offset] += g |
| 1355 | * syn0[c + l1]; |
| 1356 | if (cap == 1) |
| 1357 | for (c = 0; c < layer1_size; c++) |
| 1358 | capParam(syn1neg_window, |
| 1359 | c + l2 + window_offset); |
| 1360 | } |
| 1361 | // Noise Constrastive Estimation |
| 1362 | if (nce > 0) |
| 1363 | for (d = 0; d < nce + 1; d++) { |
| 1364 | if (d == 0) { |
| 1365 | target = word; |
| 1366 | label = 1; |
| 1367 | } else { |
| 1368 | next_random = next_random |
| 1369 | * (unsigned long long) 25214903917 + 11; |
| 1370 | if (word_to_group != NULL |
| 1371 | && word_to_group[word] != -1) { |
| 1372 | target = word; |
| 1373 | while (target == word) { |
| 1374 | target = |
| 1375 | group_to_table[word_to_group[word] |
| 1376 | * table_size |
| 1377 | + (next_random >> 16) |
| 1378 | % table_size]; |
| 1379 | next_random = |
| 1380 | next_random |
| 1381 | * (unsigned long long) 25214903917 |
| 1382 | + 11; |
| 1383 | } |
| 1384 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1385 | } else { |
| 1386 | target = table[(next_random >> 16) |
| 1387 | % table_size]; |
| 1388 | } |
| 1389 | if (target == 0) |
| 1390 | target = next_random % (vocab_size - 1) + 1; |
| 1391 | if (target == word) |
| 1392 | continue; |
| 1393 | label = 0; |
| 1394 | } |
| 1395 | l2 = target * window_layer_size; |
| 1396 | f = 0; |
| 1397 | for (c = 0; c < layer1_size; c++) |
| 1398 | f += |
| 1399 | syn0[c + l1] |
| 1400 | * syn1nce_window[c + l2 |
| 1401 | + window_offset]; |
| 1402 | if (f > MAX_EXP) |
| 1403 | g = (label - 1) * alpha; |
| 1404 | else if (f < -MAX_EXP) |
| 1405 | g = (label - 0) * alpha; |
| 1406 | else { |
| 1407 | f = exp(f); |
| 1408 | g = (label |
| 1409 | - f |
| 1410 | / (noise_distribution[target] |
| 1411 | * nce + f)) * alpha; |
| 1412 | } |
| 1413 | for (c = 0; c < layer1_size; c++) |
| 1414 | neu1e[c] += |
| 1415 | g |
| 1416 | * syn1nce_window[c + l2 |
| 1417 | + window_offset]; |
| 1418 | for (c = 0; c < layer1_size; c++) |
| 1419 | syn1nce_window[c + l2 + window_offset] += g |
| 1420 | * syn0[c + l1]; |
| 1421 | if (cap == 1) |
| 1422 | for (c = 0; c < layer1_size; c++) |
| 1423 | capParam(syn1nce_window, |
| 1424 | c + l2 + window_offset); |
| 1425 | } |
| 1426 | // Learn weights input -> hidden |
| 1427 | for (c = 0; c < layer1_size; c++) { |
| 1428 | syn0[c + l1] += neu1e[c]; |
| 1429 | if (syn0[c + l1] > 50) |
| 1430 | syn0[c + l1] = 50; |
| 1431 | if (syn0[c + l1] < -50) |
| 1432 | syn0[c + l1] = -50; |
| 1433 | } |
| 1434 | } |
| 1435 | } else if (type == 4) { //training senna |
| 1436 | // in -> hidden |
| 1437 | cw = 0; |
| 1438 | for (a = 0; a < window * 2 + 1; a++) |
| 1439 | if (a != window) { |
| 1440 | c = sentence_position - window + a; |
| 1441 | if (c < 0) |
| 1442 | continue; |
| 1443 | if (c >= sentence_length) |
| 1444 | continue; |
| 1445 | last_word = sen[c]; |
| 1446 | if (last_word == -1) |
| 1447 | continue; |
| 1448 | window_offset = a * layer1_size; |
| 1449 | if (a > window) |
| 1450 | window_offset -= layer1_size; |
| 1451 | for (c = 0; c < layer1_size; c++) |
| 1452 | neu1[c + window_offset] += syn0[c |
| 1453 | + last_word * layer1_size]; |
| 1454 | cw++; |
| 1455 | } |
| 1456 | if (cw) { |
| 1457 | for (a = 0; a < window_hidden_size; a++) { |
| 1458 | c = a * window_layer_size; |
| 1459 | for (b = 0; b < window_layer_size; b++) { |
| 1460 | neu2[a] += syn_window_hidden[c + b] * neu1[b]; |
| 1461 | } |
| 1462 | } |
| 1463 | if (hs) |
| 1464 | for (d = 0; d < vocab[word].codelen; d++) { |
| 1465 | f = 0; |
| 1466 | l2 = vocab[word].point[d] * window_hidden_size; |
| 1467 | // Propagate hidden -> output |
| 1468 | for (c = 0; c < window_hidden_size; c++) |
| 1469 | f += hardTanh(neu2[c]) * syn_hidden_word[c + l2]; |
| 1470 | if (f <= -MAX_EXP) |
| 1471 | continue; |
| 1472 | else if (f >= MAX_EXP) |
| 1473 | continue; |
| 1474 | else |
| 1475 | f = expTable[(int) ((f + MAX_EXP) |
| 1476 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 1477 | // 'g' is the gradient multiplied by the learning rate |
| 1478 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 1479 | // Propagate errors output -> hidden |
| 1480 | for (c = 0; c < window_hidden_size; c++) |
| 1481 | neu2e[c] += dHardTanh(neu2[c], g) * g |
| 1482 | * syn_hidden_word[c + l2]; |
| 1483 | // Learn weights hidden -> output |
| 1484 | for (c = 0; c < window_hidden_size; c++) |
| 1485 | syn_hidden_word[c + l2] += dHardTanh(neu2[c], g) * g |
| 1486 | * neu2[c]; |
| 1487 | } |
| 1488 | // NEGATIVE SAMPLING |
| 1489 | if (negative > 0) |
| 1490 | for (d = 0; d < negative + 1; d++) { |
| 1491 | if (d == 0) { |
| 1492 | target = word; |
| 1493 | label = 1; |
| 1494 | } else { |
| 1495 | next_random = next_random |
| 1496 | * (unsigned long long) 25214903917 + 11; |
| 1497 | if (word_to_group != NULL |
| 1498 | && word_to_group[word] != -1) { |
| 1499 | target = word; |
| 1500 | while (target == word) { |
| 1501 | target = group_to_table[word_to_group[word] |
| 1502 | * table_size |
| 1503 | + (next_random >> 16) % table_size]; |
| 1504 | next_random = next_random |
| 1505 | * (unsigned long long) 25214903917 |
| 1506 | + 11; |
| 1507 | } |
| 1508 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1509 | } else { |
| 1510 | target = |
| 1511 | table[(next_random >> 16) % table_size]; |
| 1512 | } |
| 1513 | if (target == 0) |
| 1514 | target = next_random % (vocab_size - 1) + 1; |
| 1515 | if (target == word) |
| 1516 | continue; |
| 1517 | label = 0; |
| 1518 | } |
| 1519 | l2 = target * window_hidden_size; |
| 1520 | f = 0; |
| 1521 | for (c = 0; c < window_hidden_size; c++) |
| 1522 | f += hardTanh(neu2[c]) |
| 1523 | * syn_hidden_word_neg[c + l2]; |
| 1524 | if (f > MAX_EXP) |
| 1525 | g = (label - 1) * alpha / negative; |
| 1526 | else if (f < -MAX_EXP) |
| 1527 | g = (label - 0) * alpha / negative; |
| 1528 | else |
| 1529 | g = (label |
| 1530 | - expTable[(int) ((f + MAX_EXP) |
| 1531 | * (EXP_TABLE_SIZE / MAX_EXP / 2))]) |
| 1532 | * alpha / negative; |
| 1533 | for (c = 0; c < window_hidden_size; c++) |
| 1534 | neu2e[c] += dHardTanh(neu2[c], g) * g |
| 1535 | * syn_hidden_word_neg[c + l2]; |
| 1536 | for (c = 0; c < window_hidden_size; c++) |
| 1537 | syn_hidden_word_neg[c + l2] += dHardTanh(neu2[c], g) |
| 1538 | * g * neu2[c]; |
| 1539 | } |
| 1540 | for (a = 0; a < window_hidden_size; a++) |
| 1541 | for (b = 0; b < window_layer_size; b++) |
| 1542 | neu1e[b] += neu2e[a] |
| 1543 | * syn_window_hidden[a * window_layer_size + b]; |
| 1544 | for (a = 0; a < window_hidden_size; a++) |
| 1545 | for (b = 0; b < window_layer_size; b++) |
| 1546 | syn_window_hidden[a * window_layer_size + b] += neu2e[a] |
| 1547 | * neu1[b]; |
| 1548 | // hidden -> in |
| 1549 | for (a = 0; a < window * 2 + 1; a++) |
| 1550 | if (a != window) { |
| 1551 | c = sentence_position - window + a; |
| 1552 | if (c < 0) |
| 1553 | continue; |
| 1554 | if (c >= sentence_length) |
| 1555 | continue; |
| 1556 | last_word = sen[c]; |
| 1557 | if (last_word == -1) |
| 1558 | continue; |
| 1559 | window_offset = a * layer1_size; |
| 1560 | if (a > window) |
| 1561 | window_offset -= layer1_size; |
| 1562 | for (c = 0; c < layer1_size; c++) |
| 1563 | syn0[c + last_word * layer1_size] += neu1e[c |
| 1564 | + window_offset]; |
| 1565 | } |
| 1566 | } |
| 1567 | } else { |
| 1568 | printf("unknown type %i", type); |
| 1569 | exit(0); |
| 1570 | } |
| 1571 | sentence_position++; |
| 1572 | if (sentence_position >= sentence_length) { |
| 1573 | sentence_length = 0; |
| 1574 | continue; |
| 1575 | } |
| 1576 | } |
| 1577 | fclose(fi); |
| 1578 | free(neu1); |
| 1579 | free(neu1e); |
| 1580 | pthread_exit(NULL); |
| 1581 | } |
| 1582 | |
| 1583 | void TrainModel() { |
| 1584 | long a, b, c, d; |
| 1585 | FILE *fo; |
| 1586 | pthread_t *pt = (pthread_t *) malloc(num_threads * sizeof(pthread_t)); |
| 1587 | printf("Starting training using file %s\n", train_file); |
| 1588 | starting_alpha = alpha; |
| 1589 | if (read_vocab_file[0] != 0) |
| 1590 | ReadVocab(); |
| 1591 | else |
| 1592 | LearnVocabFromTrainFile(); |
| 1593 | if (save_vocab_file[0] != 0) |
| 1594 | SaveVocab(); |
| 1595 | if (output_file[0] == 0) |
| 1596 | return; |
| 1597 | InitNet(); |
| 1598 | if (negative > 0 || nce > 0) |
| 1599 | InitUnigramTable(); |
| 1600 | if (negative_classes_file[0] != 0) |
| 1601 | InitClassUnigramTable(); |
| 1602 | start = clock(); |
| 1603 | for (a = 0; a < num_threads; a++) |
| 1604 | pthread_create(&pt[a], NULL, TrainModelThread, (void *) a); |
| 1605 | for (a = 0; a < num_threads; a++) |
| 1606 | pthread_join(pt[a], NULL); |
| 1607 | fo = fopen(output_file, "wb"); |
| 1608 | if (classes == 0) { |
| 1609 | // Save the word vectors |
| 1610 | fprintf(fo, "%lld %lld\n", vocab_size, layer1_size); |
| 1611 | for (a = 0; a < vocab_size; a++) { |
| 1612 | fprintf(fo, "%s ", vocab[a].word); |
| 1613 | if (binary) |
| 1614 | for (b = 0; b < layer1_size; b++) |
| 1615 | fwrite(&syn0[a * layer1_size + b], sizeof(real), 1, fo); |
| 1616 | else |
| 1617 | for (b = 0; b < layer1_size; b++) |
| 1618 | fprintf(fo, "%lf ", syn0[a * layer1_size + b]); |
| 1619 | fprintf(fo, "\n"); |
| 1620 | } |
| 1621 | } else { |
| 1622 | // Run K-means on the word vectors |
| 1623 | int clcn = classes, iter = 10, closeid; |
| 1624 | int *centcn = (int *) malloc(classes * sizeof(int)); |
| 1625 | int *cl = (int *) calloc(vocab_size, sizeof(int)); |
| 1626 | real closev, x; |
| 1627 | real *cent = (real *) calloc(classes * layer1_size, sizeof(real)); |
| 1628 | for (a = 0; a < vocab_size; a++) |
| 1629 | cl[a] = a % clcn; |
| 1630 | for (a = 0; a < iter; a++) { |
| 1631 | for (b = 0; b < clcn * layer1_size; b++) |
| 1632 | cent[b] = 0; |
| 1633 | for (b = 0; b < clcn; b++) |
| 1634 | centcn[b] = 1; |
| 1635 | for (c = 0; c < vocab_size; c++) { |
| 1636 | for (d = 0; d < layer1_size; d++) |
| 1637 | cent[layer1_size * cl[c] + d] += syn0[c * layer1_size + d]; |
| 1638 | centcn[cl[c]]++; |
| 1639 | } |
| 1640 | for (b = 0; b < clcn; b++) { |
| 1641 | closev = 0; |
| 1642 | for (c = 0; c < layer1_size; c++) { |
| 1643 | cent[layer1_size * b + c] /= centcn[b]; |
| 1644 | closev += cent[layer1_size * b + c] |
| 1645 | * cent[layer1_size * b + c]; |
| 1646 | } |
| 1647 | closev = sqrt(closev); |
| 1648 | for (c = 0; c < layer1_size; c++) |
| 1649 | cent[layer1_size * b + c] /= closev; |
| 1650 | } |
| 1651 | for (c = 0; c < vocab_size; c++) { |
| 1652 | closev = -10; |
| 1653 | closeid = 0; |
| 1654 | for (d = 0; d < clcn; d++) { |
| 1655 | x = 0; |
| 1656 | for (b = 0; b < layer1_size; b++) |
| 1657 | x += cent[layer1_size * d + b] |
| 1658 | * syn0[c * layer1_size + b]; |
| 1659 | if (x > closev) { |
| 1660 | closev = x; |
| 1661 | closeid = d; |
| 1662 | } |
| 1663 | } |
| 1664 | cl[c] = closeid; |
| 1665 | } |
| 1666 | } |
| 1667 | // Save the K-means classes |
| 1668 | for (a = 0; a < vocab_size; a++) |
| 1669 | fprintf(fo, "%s %d\n", vocab[a].word, cl[a]); |
| 1670 | free(centcn); |
| 1671 | free(cent); |
| 1672 | free(cl); |
| 1673 | } |
| 1674 | fclose(fo); |
| 1675 | if (save_net_file[0] != 0) |
| 1676 | SaveNet(); |
| 1677 | } |
| 1678 | |
| 1679 | int ArgPos(char *str, int argc, char **argv) { |
| 1680 | int a; |
| 1681 | for (a = 1; a < argc; a++) |
| 1682 | if (!strcmp(str, argv[a])) { |
| 1683 | if (a == argc - 1) { |
| 1684 | printf("Argument missing for %s\n", str); |
| 1685 | exit(1); |
| 1686 | } |
| 1687 | return a; |
| 1688 | } |
| 1689 | return -1; |
| 1690 | } |
| 1691 | |
| 1692 | int main(int argc, char **argv) { |
| 1693 | int i; |
| 1694 | if (argc == 1) { |
| 1695 | printf("WORD VECTOR estimation toolkit v 0.1c\n\n"); |
| 1696 | printf("Options:\n"); |
| 1697 | printf("Parameters for training:\n"); |
| 1698 | printf("\t-train <file>\n"); |
| 1699 | printf("\t\tUse text data from <file> to train the model\n"); |
| 1700 | printf("\t-output <file>\n"); |
| 1701 | printf( |
| 1702 | "\t\tUse <file> to save the resulting word vectors / word clusters\n"); |
| 1703 | printf("\t-size <int>\n"); |
| 1704 | printf("\t\tSet size of word vectors; default is 100\n"); |
| 1705 | printf("\t-window <int>\n"); |
| 1706 | printf("\t\tSet max skip length between words; default is 5\n"); |
| 1707 | printf("\t-sample <float>\n"); |
| 1708 | printf( |
| 1709 | "\t\tSet threshold for occurrence of words. Those that appear with higher frequency in the training data\n"); |
| 1710 | printf( |
| 1711 | "\t\twill be randomly down-sampled; default is 1e-3, useful range is (0, 1e-5)\n"); |
| 1712 | printf("\t-hs <int>\n"); |
| 1713 | printf("\t\tUse Hierarchical Softmax; default is 0 (not used)\n"); |
| 1714 | printf("\t-negative <int>\n"); |
| 1715 | printf( |
| 1716 | "\t\tNumber of negative examples; default is 5, common values are 3 - 10 (0 = not used)\n"); |
| 1717 | printf("\t-negative-classes <file>\n"); |
| 1718 | printf("\t\tNegative classes to sample from\n"); |
| 1719 | printf("\t-nce <int>\n"); |
| 1720 | printf( |
| 1721 | "\t\tNumber of negative examples for nce; default is 0, common values are 3 - 10 (0 = not used)\n"); |
| 1722 | printf("\t-threads <int>\n"); |
| 1723 | printf("\t\tUse <int> threads (default 12)\n"); |
| 1724 | printf("\t-iter <int>\n"); |
| 1725 | printf("\t\tRun more training iterations (default 5)\n"); |
| 1726 | printf("\t-min-count <int>\n"); |
| 1727 | printf( |
| 1728 | "\t\tThis will discard words that appear less than <int> times; default is 5\n"); |
| 1729 | printf("\t-alpha <float>\n"); |
| 1730 | printf( |
| 1731 | "\t\tSet the starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW\n"); |
| 1732 | printf("\t-classes <int>\n"); |
| 1733 | printf( |
| 1734 | "\t\tOutput word classes rather than word vectors; default number of classes is 0 (vectors are written)\n"); |
| 1735 | printf("\t-debug <int>\n"); |
| 1736 | printf( |
| 1737 | "\t\tSet the debug mode (default = 2 = more info during training)\n"); |
| 1738 | printf("\t-binary <int>\n"); |
| 1739 | printf( |
| 1740 | "\t\tSave the resulting vectors in binary moded; default is 0 (off)\n"); |
| 1741 | printf("\t-save-vocab <file>\n"); |
| 1742 | printf("\t\tThe vocabulary will be saved to <file>\n"); |
| 1743 | printf("\t-read-vocab <file>\n"); |
| 1744 | printf( |
| 1745 | "\t\tThe vocabulary will be read from <file>, not constructed from the training data\n"); |
| 1746 | printf("\t-read-net <file>\n"); |
| 1747 | printf( |
| 1748 | "\t\tThe net parameters will be read from <file>, not initialized randomly\n"); |
| 1749 | printf("\t-save-net <file>\n"); |
| 1750 | printf("\t\tThe net parameters will be saved to <file>\n"); |
| 1751 | printf("\t-type <int>\n"); |
| 1752 | printf( |
| 1753 | "\t\tType of embeddings (0 for cbow, 1 for skipngram, 2 for cwindow, 3 for structured skipngram, 4 for senna type)\n"); |
| 1754 | printf("\t-cap <int>\n"); |
| 1755 | printf( |
| 1756 | "\t\tlimit the parameter values to the range [-50, 50]; default is 0 (off)\n"); |
| 1757 | printf("\nExamples:\n"); |
| 1758 | printf( |
| 1759 | "./word2vec -train data.txt -output vec.txt -size 200 -window 5 -sample 1e-4 -negative 5 -hs 0 -binary 0 -type 1 -iter 3\n\n"); |
| 1760 | return 0; |
| 1761 | } |
| 1762 | output_file[0] = 0; |
| 1763 | save_vocab_file[0] = 0; |
| 1764 | read_vocab_file[0] = 0; |
| 1765 | save_net_file[0] = 0; |
| 1766 | read_net_file[0] = 0; |
| 1767 | negative_classes_file[0] = 0; |
| 1768 | if ((i = ArgPos((char *) "-size", argc, argv)) > 0) |
| 1769 | layer1_size = atoi(argv[i + 1]); |
| 1770 | if ((i = ArgPos((char *) "-train", argc, argv)) > 0) |
| 1771 | strcpy(train_file, argv[i + 1]); |
| 1772 | if ((i = ArgPos((char *) "-save-vocab", argc, argv)) > 0) |
| 1773 | strcpy(save_vocab_file, argv[i + 1]); |
| 1774 | if ((i = ArgPos((char *) "-read-vocab", argc, argv)) > 0) |
| 1775 | strcpy(read_vocab_file, argv[i + 1]); |
| 1776 | if ((i = ArgPos((char *) "-save-net", argc, argv)) > 0) |
| 1777 | strcpy(save_net_file, argv[i + 1]); |
| 1778 | if ((i = ArgPos((char *) "-read-net", argc, argv)) > 0) |
| 1779 | strcpy(read_net_file, argv[i + 1]); |
| 1780 | if ((i = ArgPos((char *) "-debug", argc, argv)) > 0) |
| 1781 | debug_mode = atoi(argv[i + 1]); |
| 1782 | if ((i = ArgPos((char *) "-binary", argc, argv)) > 0) |
| 1783 | binary = atoi(argv[i + 1]); |
| 1784 | if ((i = ArgPos((char *) "-type", argc, argv)) > 0) |
| 1785 | type = atoi(argv[i + 1]); |
| 1786 | if ((i = ArgPos((char *) "-output", argc, argv)) > 0) |
| 1787 | strcpy(output_file, argv[i + 1]); |
| 1788 | if ((i = ArgPos((char *) "-window", argc, argv)) > 0) |
| 1789 | window = atoi(argv[i + 1]); |
| 1790 | if ((i = ArgPos((char *) "-sample", argc, argv)) > 0) |
| 1791 | sample = atof(argv[i + 1]); |
| 1792 | if ((i = ArgPos((char *) "-hs", argc, argv)) > 0) |
| 1793 | hs = atoi(argv[i + 1]); |
| 1794 | if ((i = ArgPos((char *) "-negative", argc, argv)) > 0) |
| 1795 | negative = atoi(argv[i + 1]); |
| 1796 | if ((i = ArgPos((char *) "-negative-classes", argc, argv)) > 0) |
| 1797 | strcpy(negative_classes_file, argv[i + 1]); |
| 1798 | if ((i = ArgPos((char *) "-nce", argc, argv)) > 0) |
| 1799 | nce = atoi(argv[i + 1]); |
| 1800 | if ((i = ArgPos((char *) "-threads", argc, argv)) > 0) |
| 1801 | num_threads = atoi(argv[i + 1]); |
| 1802 | if ((i = ArgPos((char *) "-iter", argc, argv)) > 0) |
| 1803 | iter = atoi(argv[i + 1]); |
| 1804 | if ((i = ArgPos((char *) "-min-count", argc, argv)) > 0) |
| 1805 | min_count = atoi(argv[i + 1]); |
| 1806 | if ((i = ArgPos((char *) "-classes", argc, argv)) > 0) |
| 1807 | classes = atoi(argv[i + 1]); |
| 1808 | if ((i = ArgPos((char *) "-cap", argc, argv)) > 0) |
| 1809 | cap = atoi(argv[i + 1]); |
| 1810 | if (type == 0 || type == 2 || type == 4) |
| 1811 | alpha = 0.05; |
| 1812 | if ((i = ArgPos((char *) "-alpha", argc, argv)) > 0) |
| 1813 | alpha = atof(argv[i + 1]); |
| 1814 | vocab = (struct vocab_word *) calloc(vocab_max_size, |
| 1815 | sizeof(struct vocab_word)); |
| 1816 | vocab_hash = (int *) calloc(vocab_hash_size, sizeof(int)); |
| 1817 | expTable = (real *) malloc((EXP_TABLE_SIZE + 1) * sizeof(real)); |
| 1818 | for (i = 0; i < EXP_TABLE_SIZE; i++) { |
| 1819 | expTable[i] = exp((i / (real) EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table |
| 1820 | expTable[i] = expTable[i] / (expTable[i] + 1); // Precompute f(x) = x / (x + 1) |
| 1821 | } |
| 1822 | TrainModel(); |
| 1823 | return 0; |
| 1824 | } |
| 1825 | |