blob: 1931f4f852f3a2f76c1a2cfba47ff59103178425 [file] [log] [blame]
// Javascript implementation pf Kohonen's Self Organizing Map
// Based on http://www.ai-junkie.com/ann/som/som1.html
var mapWidth = 800,
mapHeight = 800;
function getDistance(weight, inputVector) {
var distance = 0;
for (var i = 0; i <weight.length; i++) {
distance += (inputVector[i] - weight[i]) * (inputVector[i] - weight[i]);
}
return Math.sqrt(distance);
}
function makeRandomWeights(vSize, eSize) {
var weights = [];
if(typeof ArrayBuffer === 'undefined') {
// lacking browser support
while (weights.length < vSize) {
var arr = new Array(eSize);
for(var i = 0; i < eSize; i++) { arr[i]= Math.random(); }
weights.push(arr);
}
} else {
while (weights.length < vSize) {
var arr = new Float64Array(eSize);
for(var i = 0; i < eSize; i++) { arr[i]= Math.random(); }
weights.push(arr);
}
}
return weights;
}
function getBMUIndex(weights, target) {
var BMUIndex = 0;
var bestScore = 99999;
for (i=0; i < weights.length; i++) {
distance = getDistance(weights[i], target);
if (distance < bestScore) {
bestScore = distance;
BMUIndex = i;
}
}
return BMUIndex;
}
function convertIndexToXY(idx, dimW) {
var x = parseInt(idx % dimW,10);
var y = parseInt((idx / dimW),10);
return [x,y];
}
function getEucledianDistance(coord1, coord2) {
return (coord1[0] - coord2[0]) * (coord1[0] - coord2[0]) + (coord1[1] - coord2[1]) * (coord1[1] - coord2[1]);
}
// utilitity that creates contiguous vector of zeros of size n
var zeros = function(n) {
if(typeof(n)==='undefined' || isNaN(n)) { return []; }
if(typeof ArrayBuffer === 'undefined') {
// lacking browser support
var arr = new Array(n);
for(var i=0;i<n;i++) { arr[i]= 0; }
return arr;
} else {
return new Float64Array(n); // typed arrays are faster
}
}
// compute L2 distance between two vectors
var L2 = function(x1, x2) {
var D = x1.length;
var d = 0;
for(var i=0;i<D;i++) {
var x1i = x1[i];
var x2i = x2[i];
d += (x1i-x2i)*(x1i-x2i);
}
return d;
}
// compute pairwise distance in all vectors in X
var xtod = function(X) {
var N = X.length;
var dist = zeros(N * N); // allocate contiguous array
for(var i=0;i<N;i++) {
for(var j=i+1;j<N;j++) {
var d = L2(X[i], X[j]);
dist[i*N+j] = d;
dist[j*N+i] = d;
}
}
return dist;
}
function dotproduct(a,b) {
var n = 0, lim = Math.min(a.length,b.length);
for (var i = 0; i < lim; i++) n += a[i] * b[i];
return n;
}
function vecsum(a,b) {
var lim = a.length;
var sum = new Array(lim);
for (var i = 0; i < lim; i++) sum[i] = a[i] + b[i];
return sum;
}
function norm2(a) {var sumsqr = 0; for (var i = 0; i < a.length; i++) sumsqr += a[i]*a[i]; return Math.sqrt(sumsqr);}
function cosine_sim(x, y) {
xnorm = norm2(x);
if(!xnorm) return 0;
ynorm = norm2(y);
if(!ynorm) return 0;
return dotproduct(x, y) / (xnorm * ynorm);
}
function makeSOM(data, training_iterations) {
var dimW = 6;
var dimH = 6;
var radius = (dimW * dimH) / 2;
var learning_rate = 1;
var time_constant = training_iterations / Math.log(radius);
var inputs = xtod(data.vecs);
var dimI = data.vecs.length;
var weights = makeRandomWeights(dimW * dimH, dimI);
var radius_decaying = 0;
var learning_rate_decaying = 0;
var svg;
var no_targets = (data.target.match(/.[ |]+./g) || []).length+1;
// var avg, avgsim1, avgsim2, minsim;
var refIndex;
var colorScale;
var urlprefix = new URLSearchParams(window.location.search);
urlprefix.delete("word");
urlprefix.append("word","");
if(no_targets > 1) {
refIndex=1;
colorScale = d3.scale.linear()
.range(['green', 'yellow', 'red']) // or use hex values
.domain([-1, 0, 1]);
// avg = vecsum(inputs.slice(0, dimI), inputs.slice(dimI, 2*dimI));
// avgsim1 = cosine_sim(inputs.slice(0, dimI), avg);
// avgsim2 = cosine_sim(inputs.slice(dimI, 2*dimI), avg);
$("#somcolor2").css("background-color", colorScale(0));
$("#somcolor1").css("background-color", colorScale(-1));
$("#somcolor3").css("background-color", colorScale(1));
} else {
refIndex = data.words.length-1;
colorScale = d3.scale.linear()
.range(['white', 'red'])
.domain([-1, 1]);
$("#somcolor1").css("background-color", colorScale(1));
$("#somcolor3").css("background-color", colorScale(-1));
}
$("#somword1").html(data.words[0]);
$("#somword2").html(data.words[refIndex]);
minsim = cosine_sim(inputs.slice(0, dimI), inputs.slice(refIndex*dimI, (refIndex+1)*dimI));
var itdom = document.getElementById("iterations");
var div = d3.select("#som2");
data.coords = [];
for(var i=0; i< data.words.length; i++) {
data.coords[i] = [Math.floor(dimW/2), Math.floor(dimH/2)];
}
svg = div.append("svg")
.attr("width", mapWidth)
.attr("height", mapHeight);
var rects = svg.selectAll(".r")
.data(weights)
.enter().append("rect")
.attr("class", "r")
.attr("width", mapWidth/dimW)
.attr("height", mapHeight/dimH)
.attr("fill", "white")
.attr("z-index", "-1")
.attr("x", function(d, i) { return (i % dimW) * (mapWidth/dimW);})
.attr("y", function(d, i) { return (Math.floor(i / dimW) * (mapWidth/dimW)); })
var g = svg.selectAll(".b")
.data(data.words)
.enter().append("g")
.attr("class", "u");
g.append("a")
.attr("xlink:href", function(word) {return "?"+urlprefix+word;})
.attr("title", function(d, i) {
return "rank: "+i +" "+"freq. rank: "+data.ranks[i].toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",");
})
.append("text")
.attr("text-anchor", "bottom")
.attr("font-size", 12)
.attr("fill", function(d) {
if(data.target.indexOf(" "+d+" ") >= 0) {
return "blue";
} else {
return "#333"
}
})
.text(function(d) { return d; });
$('g.u a, g.tsnet a').on('mousedown', function(e) {
if (e.which === 2) {
e.preventDefault();
e.stopPropagation();
console.log("middle button clicked " + this.childNodes["0"].textContent);
queryKorAPCII(this.childNodes["0"].textContent);
return false;
}
});
var som_interval = setInterval(somStep, 0);
var it=0;
function updateSOM() {
var oc = [];
for(var x = 0; x < dimW; x++) {
for(var y = 0; y < dimH; y++) {
oc[y*dimW+x]=1;
}
}
svg.selectAll('.u')
.data(data.coords)
.transition()
.attr("transform", function(d, i) {
return "translate(" +
(d[0]*(mapWidth/dimW)+4) + "," +
(d[1]*(mapHeight/dimH)+oc[d[1]*dimW+d[0]]++*14+4) + ")"; });
var colorFun = function(d, i) {
var sim1=cosine_sim(d, inputs.slice(0, dimI));
var sim2=cosine_sim(d, inputs.slice(dimI, 2*dimI));
var col;
// col = (sim1-avgsim1)/(1-avgsim1)-(sim2-avgsim2)/(1-avgsim2);
col = (sim2-sim1)/(1-minsim);
// console.log(Math.floor(i/dimW)+","+i%dimW+":"+(sim1-minsim)/(1-minsim)+ " " + (sim2-minsim)/(1-minsim) + "--> "+ col);
if(col > 1) col=1;
if(col < -1) col=-1;
return colorScale(col);
};
if(it>training_iterations*.6) {
svg.selectAll(".r")
.data(weights)
.transition()
.attr("fill", colorFun);
}
}
function somStep() {
if(it++ >= training_iterations) {
updateSOM();
clearInterval(som_interval);
return;
}
itdom.innerHTML = it;
radius_decaying = radius * Math.exp(-it/time_constant);
learning_rate_decaying = learning_rate * Math.exp(-it/time_constant);
//learning_rate_decaying = learning_rate * Math.exp(-it/training_iterations);
//pick a random input to train
var current=Math.floor(Math.random()*dimI)
var iv = inputs.slice(current*dimI, (current+1)*dimI);
// Determine the BMU
BMUIdx = getBMUIndex(weights, iv);
var coord1 = convertIndexToXY(BMUIdx, dimW);
data.coords[current] = coord1;
var widthSq = radius_decaying * radius_decaying;
for (var v in weights) {
var coord2 = convertIndexToXY(v, dimW);
var dist = getEucledianDistance(coord1, coord2);
// Determine if the weight is within the training radius
if (dist < widthSq) {
// console.log(dist, learning_rate_decaying, radius_decaying, it);
influence = Math.exp(-dist/(2*widthSq));
for (vidx = 0;vidx<weights[v].length;vidx++) {
weights[v][vidx] += influence * learning_rate_decaying * (iv[vidx] - weights[v][vidx]);
}
}
}
// }
if(it % 10 == 0) {
updateSOM();
}
}
}