| // create main global object |
| var tsnejs = tsnejs || { REVISION: 'ALPHA' }; |
| |
| (function(global) { |
| "use strict"; |
| |
| // utility function |
| var assert = function(condition, message) { |
| if (!condition) { throw message || "Assertion failed"; } |
| } |
| |
| // syntax sugar |
| var getopt = function(opt, field, defaultval) { |
| if(opt.hasOwnProperty(field)) { |
| return opt[field]; |
| } else { |
| return defaultval; |
| } |
| } |
| |
| // return 0 mean unit standard deviation random number |
| var return_v = false; |
| var v_val = 0.0; |
| var gaussRandom = function() { |
| if(return_v) { |
| return_v = false; |
| return v_val; |
| } |
| var u = 2*Math.random()-1; |
| var v = 2*Math.random()-1; |
| var r = u*u + v*v; |
| if(r == 0 || r > 1) return gaussRandom(); |
| var c = Math.sqrt(-2*Math.log(r)/r); |
| v_val = v*c; // cache this for next function call for efficiency |
| return_v = true; |
| return u*c; |
| } |
| |
| // return random normal number |
| var randn = function(mu, std){ return mu+gaussRandom()*std; } |
| |
| // utilitity that creates contiguous vector of zeros of size n |
| var zeros = function(n) { |
| if(typeof(n)==='undefined' || isNaN(n)) { return []; } |
| if(typeof ArrayBuffer === 'undefined') { |
| // lacking browser support |
| var arr = new Array(n); |
| for(var i=0;i<n;i++) { arr[i]= 0; } |
| return arr; |
| } else { |
| return new Float64Array(n); // typed arrays are faster |
| } |
| } |
| |
| // utility that returns 2d array filled with random numbers |
| // or with value s, if provided |
| var randn2d = function(n,d,s) { |
| var uses = typeof s !== 'undefined'; |
| var x = []; |
| for(var i=0;i<n;i++) { |
| var xhere = []; |
| for(var j=0;j<d;j++) { |
| if(uses) { |
| xhere.push(s); |
| } else { |
| xhere.push(randn(0.0, 1e-4)); |
| } |
| } |
| x.push(xhere); |
| } |
| return x; |
| } |
| |
| // compute L2 distance between two vectors |
| var L2 = function(x1, x2) { |
| var D = x1.length; |
| var d = 0; |
| for(var i=0;i<D;i++) { |
| var x1i = x1[i]; |
| var x2i = x2[i]; |
| d += (x1i-x2i)*(x1i-x2i); |
| } |
| return d; |
| } |
| |
| // compute pairwise distance in all vectors in X |
| var xtod = function(X) { |
| var N = X.length; |
| var dist = zeros(N * N); // allocate contiguous array |
| for(var i=0;i<N;i++) { |
| for(var j=i+1;j<N;j++) { |
| var d = L2(X[i], X[j]); |
| dist[i*N+j] = d; |
| dist[j*N+i] = d; |
| } |
| } |
| return dist; |
| } |
| |
| // compute (p_{i|j} + p_{j|i})/(2n) |
| var d2p = function(D, perplexity, tol) { |
| var Nf = Math.sqrt(D.length); // this better be an integer |
| var N = Math.floor(Nf); |
| assert(N === Nf, "D should have square number of elements."); |
| var Htarget = Math.log(perplexity); // target entropy of distribution |
| var P = zeros(N * N); // temporary probability matrix |
| |
| var prow = zeros(N); // a temporary storage compartment |
| for(var i=0;i<N;i++) { |
| var betamin = -Infinity; |
| var betamax = Infinity; |
| var beta = 1; // initial value of precision |
| var done = false; |
| var maxtries = 50; |
| |
| // perform binary search to find a suitable precision beta |
| // so that the entropy of the distribution is appropriate |
| var num = 0; |
| while(!done) { |
| //debugger; |
| |
| // compute entropy and kernel row with beta precision |
| var psum = 0.0; |
| for(var j=0;j<N;j++) { |
| var pj = Math.exp(- D[i*N+j] * beta); |
| if(i===j) { pj = 0; } // we dont care about diagonals |
| prow[j] = pj; |
| psum += pj; |
| } |
| // normalize p and compute entropy |
| var Hhere = 0.0; |
| for(var j=0;j<N;j++) { |
| var pj = prow[j] / psum; |
| prow[j] = pj; |
| if(pj > 1e-7) Hhere -= pj * Math.log(pj); |
| } |
| |
| // adjust beta based on result |
| if(Hhere > Htarget) { |
| // entropy was too high (distribution too diffuse) |
| // so we need to increase the precision for more peaky distribution |
| betamin = beta; // move up the bounds |
| if(betamax === Infinity) { beta = beta * 2; } |
| else { beta = (beta + betamax) / 2; } |
| |
| } else { |
| // converse case. make distrubtion less peaky |
| betamax = beta; |
| if(betamin === -Infinity) { beta = beta / 2; } |
| else { beta = (beta + betamin) / 2; } |
| } |
| |
| // stopping conditions: too many tries or got a good precision |
| num++; |
| if(Math.abs(Hhere - Htarget) < tol) { done = true; } |
| if(num >= maxtries) { done = true; } |
| } |
| |
| // console.log('data point ' + i + ' gets precision ' + beta + ' after ' + num + ' binary search steps.'); |
| // copy over the final prow to P at row i |
| for(var j=0;j<N;j++) { P[i*N+j] = prow[j]; } |
| |
| } // end loop over examples i |
| |
| // symmetrize P and normalize it to sum to 1 over all ij |
| var Pout = zeros(N * N); |
| var N2 = N*2; |
| for(var i=0;i<N;i++) { |
| for(var j=0;j<N;j++) { |
| Pout[i*N+j] = Math.max((P[i*N+j] + P[j*N+i])/N2, 1e-100); |
| } |
| } |
| |
| return Pout; |
| } |
| |
| // helper function |
| function sign(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; } |
| |
| var tSNE = function(opt) { |
| var opt = opt || {}; |
| this.perplexity = getopt(opt, "perplexity", 30); // effective number of nearest neighbors |
| this.dim = getopt(opt, "dim", 2); // by default 2-D tSNE |
| this.epsilon = getopt(opt, "epsilon", 10); // learning rate |
| |
| this.iter = 0; |
| } |
| |
| tSNE.prototype = { |
| |
| // this function takes a set of high-dimensional points |
| // and creates matrix P from them using gaussian kernel |
| initDataRaw: function(X) { |
| var N = X.length; |
| var D = X[0].length; |
| assert(N > 0, " X is empty? You must have some data!"); |
| assert(D > 0, " X[0] is empty? Where is the data?"); |
| var dists = xtod(X); // convert X to distances using gaussian kernel |
| this.P = d2p(dists, this.perplexity, 1e-4); // attach to object |
| this.N = N; // back up the size of the dataset |
| this.initSolution(); // refresh this |
| }, |
| |
| // this function takes a given distance matrix and creates |
| // matrix P from them. |
| // D is assumed to be provided as a list of lists, and should be symmetric |
| initDataDist: function(D) { |
| var N = D.length; |
| assert(N > 0, " X is empty? You must have some data!"); |
| // convert D to a (fast) typed array version |
| var dists = zeros(N * N); // allocate contiguous array |
| for(var i=0;i<N;i++) { |
| for(var j=i+1;j<N;j++) { |
| var d = D[i][j]; |
| dists[i*N+j] = d; |
| dists[j*N+i] = d; |
| } |
| } |
| this.P = d2p(dists, this.perplexity, 1e-4); |
| this.N = N; |
| this.initSolution(); // refresh this |
| }, |
| |
| // (re)initializes the solution to random |
| initSolution: function() { |
| // generate random solution to t-SNE |
| this.Y = randn2d(this.N, this.dim); // the solution |
| this.gains = randn2d(this.N, this.dim, 1.0); // step gains to accelerate progress in unchanging directions |
| this.ystep = randn2d(this.N, this.dim, 0.0); // momentum accumulator |
| this.iter = 0; |
| }, |
| |
| // return pointer to current solution |
| getSolution: function() { |
| return this.Y; |
| }, |
| |
| // perform a single step of optimization to improve the embedding |
| step: function() { |
| this.iter += 1; |
| var N = this.N; |
| |
| var cg = this.costGrad(this.Y); // evaluate gradient |
| var cost = cg.cost; |
| var grad = cg.grad; |
| |
| // perform gradient step |
| var ymean = zeros(this.dim); |
| for(var i=0;i<N;i++) { |
| for(var d=0;d<this.dim;d++) { |
| var gid = grad[i][d]; |
| var sid = this.ystep[i][d]; |
| var gainid = this.gains[i][d]; |
| |
| // compute gain update |
| var newgain = sign(gid) === sign(sid) ? gainid * 0.8 : gainid + 0.2; |
| if(gainid < 0.01) gainid = 0.01; // clamp |
| this.gains[i][d] = newgain; // store for next turn |
| |
| // compute momentum step direction |
| var momval = this.iter < 250 ? 0.5 : 0.8; |
| var newsid = momval * sid - this.epsilon * newgain * grad[i][d]; |
| this.ystep[i][d] = newsid; // remember the step we took |
| |
| // step! |
| this.Y[i][d] += newsid; |
| |
| ymean[d] += this.Y[i][d]; // accumulate mean so that we can center later |
| } |
| } |
| |
| // reproject Y to be zero mean |
| for(var i=0;i<N;i++) { |
| for(var d=0;d<this.dim;d++) { |
| this.Y[i][d] -= ymean[d]/N; |
| } |
| } |
| |
| //if(this.iter%100===0) console.log('iter ' + this.iter + ', cost: ' + cost); |
| return cost; // return current cost |
| }, |
| |
| // for debugging: gradient check |
| debugGrad: function() { |
| var N = this.N; |
| |
| var cg = this.costGrad(this.Y); // evaluate gradient |
| var cost = cg.cost; |
| var grad = cg.grad; |
| |
| var e = 1e-5; |
| for(var i=0;i<N;i++) { |
| for(var d=0;d<this.dim;d++) { |
| var yold = this.Y[i][d]; |
| |
| this.Y[i][d] = yold + e; |
| var cg0 = this.costGrad(this.Y); |
| |
| this.Y[i][d] = yold - e; |
| var cg1 = this.costGrad(this.Y); |
| |
| var analytic = grad[i][d]; |
| var numerical = (cg0.cost - cg1.cost) / ( 2 * e ); |
| console.log(i + ',' + d + ': gradcheck analytic: ' + analytic + ' vs. numerical: ' + numerical); |
| |
| this.Y[i][d] = yold; |
| } |
| } |
| }, |
| |
| // return cost and gradient, given an arrangement |
| costGrad: function(Y) { |
| var N = this.N; |
| var dim = this.dim; // dim of output space |
| var P = this.P; |
| |
| var pmul = this.iter < 100 ? 4 : 1; // trick that helps with local optima |
| |
| // compute current Q distribution, unnormalized first |
| var Qu = zeros(N * N); |
| var qsum = 0.0; |
| for(var i=0;i<N;i++) { |
| for(var j=i+1;j<N;j++) { |
| var dsum = 0.0; |
| for(var d=0;d<dim;d++) { |
| var dhere = Y[i][d] - Y[j][d]; |
| dsum += dhere * dhere; |
| } |
| var qu = 1.0 / (1.0 + dsum); // Student t-distribution |
| Qu[i*N+j] = qu; |
| Qu[j*N+i] = qu; |
| qsum += 2 * qu; |
| } |
| } |
| // normalize Q distribution to sum to 1 |
| var NN = N*N; |
| var Q = zeros(NN); |
| for(var q=0;q<NN;q++) { Q[q] = Math.max(Qu[q] / qsum, 1e-100); } |
| |
| var cost = 0.0; |
| var grad = []; |
| for(var i=0;i<N;i++) { |
| var gsum = new Array(dim); // init grad for point i |
| for(var d=0;d<dim;d++) { gsum[d] = 0.0; } |
| for(var j=0;j<N;j++) { |
| cost += - P[i*N+j] * Math.log(Q[i*N+j]); // accumulate cost (the non-constant portion at least...) |
| var premult = 4 * (pmul * P[i*N+j] - Q[i*N+j]) * Qu[i*N+j]; |
| for(var d=0;d<dim;d++) { |
| gsum[d] += premult * (Y[i][d] - Y[j][d]); |
| } |
| } |
| grad.push(gsum); |
| } |
| |
| return {cost: cost, grad: grad}; |
| } |
| } |
| |
| global.tSNE = tSNE; // export tSNE class |
| })(tsnejs); |
| |
| |
| // export the library to window, or to module in nodejs |
| (function(lib) { |
| "use strict"; |
| if (typeof module === "undefined" || typeof module.exports === "undefined") { |
| window.tsnejs = lib; // in ordinary browser attach library to window |
| } else { |
| module.exports = lib; // in nodejs |
| } |
| })(tsnejs); |