fixed documentation for base request function
diff --git a/NAMESPACE b/NAMESPACE
index 1d7cf39..bfa2a7a 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -1,6 +1,6 @@
 # Generated by roxygen2: do not edit by hand
 
-export(gpt3.authenticate)
-export(gpt3.make_request)
 export(gpt3.test_request)
+export(gpt3_authenticate)
+export(gpt3_simple_request)
 export(url.completions)
diff --git a/R/authenticate.R b/R/authenticate.R
index c6a3a69..d0fbb80 100644
--- a/R/authenticate.R
+++ b/R/authenticate.R
@@ -1,24 +1,24 @@
 #' Set up the authentication with your API key
 #'
 #' @description
-#' Access to GPT-3's functions requires an API key that you obtain from [https://openai.com/api/](https://openai.com/api/). `gpt3.authenticate()` accepts your API key and ensures that you can connect to the models. `gpt3.endsession()` overwrites your API key _for this session_ (it is recommended that you run this when you are done). `check_apikey_form()` is a simple check if any information has been provided at all.
+#' Access to GPT-3's functions requires an API key that you obtain from [https://openai.com/api/](https://openai.com/api/). `gpt3_authenticate()` looks for your API key in a file that you provide the path to and ensures you can connect to the models. `gpt3_endsession()` overwrites your API key _for this session_ (it is recommended that you run this when you are done). `check_apikey_form()` is a simple check if any information has been provided at all.
 #' @param path The file path to the API key
 #' @return A confirmation message
-#' @details The easiest way to store you API key is in a `.txt` file with _only_ the API key in it (without quotation marks or other common string indicators). `gpt3.authenticate()` reads the single file you point it to and retrieves the content as authentication key for all requests.
+#' @details The easiest way to store you API key is in a `.txt` file with _only_ the API key in it (without quotation marks or other common string indicators). `gpt3_authenticate()` reads the single file you point it to and retrieves the content as authentication key for all requests.
 #' @examples
 #' # Starting a session:
-#' gpt3.authenticate(apikey = 'REPLACE_THIS_WITH_YOUR_KEY')
+#' gpt3_authenticate(path = './YOURPATH/access_key.txt')
 # '
 #' # After you are finished:
-#' gpt3.endsession()
+#' gpt3_endsession()
 #' @export
-gpt3.authenticate = function(path){
+gpt3_authenticate = function(path){
   apikey_ = readLines(path)
   api_key <<- apikey_
   print(paste0("Will use --> ", api_key, " for authentication."))
 }
 
-gpt3.endsession = function(){
+gpt3_endsession = function(){
   api_key = "---"
   print('-- session ended: you need to re-authenticate again next time.')
 }
@@ -26,10 +26,10 @@
 check_apikey_form = function(){
 
   if(exists(x = 'api_key') == F){
-    warning("Use gpt3.authenticate() to set your API key")
+    warning("Use gpt3_authenticate() to set your API key")
   } else if(nchar(api_key) < 10){
 
-    warning("Use gpt3.authenticate() to set your API key")
+    warning("Use gpt3_authenticate() to set your API key")
 
   }
 }
diff --git a/R/make_request.R b/R/make_request.R
index f6c135c..a8fe10a 100644
--- a/R/make_request.R
+++ b/R/make_request.R
@@ -1,58 +1,140 @@
-#' Make a test request to the GPT-3 API
+#' Makes a single completion request to the GPT-3 API
 #'
 #' @description
-#' `gpt3.test_request()` sends a basic [completion request](https://beta.openai.com/docs/api-reference/completions) to the Open AI GPT-3 API.
-#' @param verbose (boolean) if TRUE prints the actual prompt and GPT-3 completion of the test request (default: FALSE).
-#' @return A message of success or failure of the connection.
+#' `gpt3_single_request()` sends a single [completion request](https://beta.openai.com/docs/api-reference/completions) to the Open AI GPT-3 API.
+#' @details For a general guide on the completion requests, see [https://beta.openai.com/docs/guides/completion](https://beta.openai.com/docs/guides/completion). This function provides you with an R wrapper to send requests with the full range of request parameters as detailed on [https://beta.openai.com/docs/api-reference/completions](https://beta.openai.com/docs/api-reference/completions) and reproduced below.
+#'
+#' For the `best_of` parameter: When used with n, best_of controls the number of candidate completions and n specifies how many to return – best_of must be greater than n. Note that this is handled by the wrapper automatically   if(best_of <= n){ best_of = n}.
+#'
+#' Parameters not included/supported:
+#'   - `logit_bias`: [https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias](https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias)
+#'   - `echo`: [https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo](https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo)
+#'   - `stream`: [https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream](https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream)
+#'
+#' @param prompt_input character that contains the prompt to the GPT-3 request
+#' @param model a character vector that indicates the [model](https://beta.openai.com/docs/models/gpt-3) to use; one of "text-davinci-002" (default), "text-curie-001", "text-babbage-001" or "text-ada-001"
+#' @param output_type character determining the output provided: "complete" (default), "text" or "meta"
+#' @param suffix character (default: NULL) (from the official API documentation: _The suffix that comes after a completion of inserted text_)
+#' @param max_tokens numeric (default: 100) indicating the maximum number of tokens that the completion request should return (from the official API documentation: _The maximum number of tokens to generate in the completion. The token count of your prompt plus max_tokens cannot exceed the model's context length. Most models have a context length of 2048 tokens (except for the newest models, which support 4096)_)
+#' @param temperature numeric (default: 0.9) specifying the sampling strategy of the possible completions (from the official API documentation: _What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer. We generally recommend altering this or top_p but not both._)
+#' @param top_p numeric (default: 1) specifying sampling strategy as an alternative to the temperature sampling (from the official API documentation: _An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both._)
+#' @param n numeric (default: 1) specifying the number of completions per request (from the official API documentation: _How many completions to generate for each prompt. **Note: Because this parameter generates many completions, it can quickly consume your token quota.** Use carefully and ensure that you have reasonable settings for max_tokens and stop._)
+#' @param logprobs numeric (default: NULL) (from the official API documentation: _Include the log probabilities on the logprobs most likely tokens, as well the chosen tokens. For example, if logprobs is 5, the API will return a list of the 5 most likely tokens. The API will always return the logprob of the sampled token, so there may be up to logprobs+1 elements in the response. The maximum value for logprobs is 5. If you need more than this, please contact support@openai.com and describe your use case._)
+#' @param stop character or character vector (default: NULL) that specifies after which character value when the completion should end (from the official API documentation: _Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence._)
+#' @param presence_penalty numeric (default: 0) between -2.00  and +2.00 to determine the penalisation of repetitiveness if a token already exists (from the official API documentation: _Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics._). See also: [https://beta.openai.com/docs/api-reference/parameter-details](https://beta.openai.com/docs/api-reference/parameter-details)
+#' @param frequency_penalty numeric (default: 0) between -2.00  and +2.00 to determine the penalisation of repetitiveness based on the frequency of a token in the text already (from the official API documentation: _Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim._). See also: [https://beta.openai.com/docs/api-reference/parameter-details](https://beta.openai.com/docs/api-reference/parameter-details)
+#' @param best_of numeric (default: 1) that determines the space of possibilities from which to select the completion with the highest probability (from the official API documentation: _Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token)_). See details.
+#'
+#' @return A list with two data tables (if `output_type` is the default "complete"): [[1]] contains the data table with the columns `n` (= the mo. of `n` responses requested), `prompt` (= the prompt that was sent), and `gpt3` (= the completion as returned from the GPT-3 model). [[2]] contains the meta information of the request, including the request id, the parameters of the request and the token usage of the prompt (`tok_usage_prompt`), the completion (`tok_usage_completion`) and the total usage (`tok_usage_total`).
+#'
+#' If `output_type` is "text", only the data table in slot [[1]] is returned.
+#'
+#' If `output_type` is "meta", only the data table in slot [[2]] is returned.
 #' @examples
-#' gpt3.test_request()
+#' # First authenticate with your API key via `gpt3_authenticate('pathtokey')`
+#'
+#' # Once authenticated:
+#'
+#' ## Simple request with defaults:
+#' gpt3_simple_request(prompt_input = 'How old are you?')
+#'
+#' ## Instruct GPT-3 to write ten research ideas of max. 150 tokens with some controls:
+#'gpt3_simple_request(prompt_input = 'Write a research idea about using text data to understand human behaviour:', temperature = 0.8, n = 10, max_tokens = 150)
+#'
+#' ## For fully reproducible results, we need `temperature = 0`, e.g.:
+#' gpt3_simple_request(prompt_input = 'Finish this sentence:/n There is no easier way to learn R than', temperature = 0.0, max_tokens = 50)
+#'
+#' ## The same example with a different GPT-3 model:
+#' gpt3_simple_request(prompt_input = 'Finish this sentence:/n There is no easier way to learn R than', model = 'text-babbage-001', temperature = 0.0, max_tokens = 50)
 #' @export
-gpt3.make_request = function(prompt_
-                             , model_ = 'text-davinci-002'
-                             , output_type_ = 'string_only'
-                             , suffix_ = NULL
-                             , max_tokens_ = 256
-                             , temperature_ = 0.9
-                             , top_p_ = 1
-                             , n_ = 1
-                             , stream_ = F
-                             , logprobs_ = NULL
-                             , echo_ = F
-                             , stop_ = NULL
-                             , presence_penalty_ = 0
-                             , frequency_penalty_ = 0
-                             , best_of_ = 1
-                             , logit_bias_ = NULL
-)
-{
+gpt3_simple_request = function(prompt_input
+                              , model = 'text-davinci-002'
+                              , output_type = 'complete'
+                              , suffix = NULL
+                              , max_tokens = 100
+                              , temperature = 0.9
+                              , top_p = 1
+                              , n = 1
+                              , logprobs = NULL
+                              , stop = NULL
+                              , presence_penalty = 0
+                              , frequency_penalty = 0
+                              , best_of = 1){
 
-  parameter_list = list(prompt = prompt_
-                        , model = model_
-                        , suffix = suffix_
-                        , max_tokens = max_tokens_
-                        , temperature = temperature_
-                        , top_p = top_p_
-                        , n = n_
-                        , stream = stream_
-                        , logprobs = logprobs_
-                        , echo = echo_
-                        , stop = stop_
-                        , presence_penalty = presence_penalty_
-                        , frequency_penalty = frequency_penalty_
-                        , best_of = best_of_
-                        , logit_bias = logit_bias_
-  )
+  #check for request issues with `n` and `best_of`
+  if(best_of < n){
+    best_of = n
+    message('To avoid an `invalid_request_error`, `best_of` was set to equal `n`')
+  }
+
+  if(temperature == 0 & n > 1){
+    n = 1
+    message('You are running the deterministic model, so `n` was set to 1 to avoid unnecessary token quota usage.')
+  }
+
+  parameter_list = list(prompt = prompt_input
+                        , model = model
+                        , suffix = suffix
+                        , max_tokens = max_tokens
+                        , temperature = temperature
+                        , top_p = top_p
+                        , n = n
+                        , logprobs = logprobs
+                        , stop = stop
+                        , presence_penalty = presence_penalty
+                        , frequency_penalty = frequency_penalty
+                        , best_of = best_of)
 
   request_base = httr::POST(url = url.completions
-                      , body = parameter_list
-                      , httr::add_headers(Authorization = paste("Bearer", api_key))
-                      , encode = "json")
+                            , body = parameter_list
+                            , httr::add_headers(Authorization = paste("Bearer", api_key))
+                            , encode = "json")
+
+  request_content = httr::content(request_base)
+
+  if(n == 1){
+    core_output = data.table::data.table('n' = 1
+                                         , 'prompt' = prompt_input
+                                         , 'gpt3' = request_content$choices[[1]]$text)
+  } else if(n > 1){
+
+    core_output = data.table::data.table('n' = 1:n
+                                         , 'prompt' = rep(prompt_input, n)
+                                         , 'gpt3' = rep("", n))
+
+    for(i in 1:n){
+      core_output$gpt3[i] = request_content$choices[[i]]$text
+    }
+
+  }
 
 
-  if(output_type_ == 'string_only'){
-    output = httr::content(request_base)$choices[[1]]$text
-  } else {
-    output = httr::content(request_base)
+  meta_output = data.table::data.table('request_id' = request_content$id
+                           , 'object' = request_content$object
+                           , 'model' = request_content$model
+                           , 'param_prompt' = prompt_input
+                           , 'param_model' = model
+                           , 'param_suffix' = suffix
+                           , 'param_max_tokens' = max_tokens
+                           , 'param_temperature' = temperature
+                           , 'param_top_p' = top_p
+                           , 'param_n' = n
+                           , 'param_logprobs' = logprobs
+                           , 'param_stop' = stop
+                           , 'param_presence_penalty' = presence_penalty
+                           , 'param_frequency_penalty' = frequency_penalty
+                           , 'param_best_of' = best_of
+                           , 'tok_usage_prompt' = request_content$usage$prompt_tokens
+                           , 'tok_usage_completion' = request_content$usage$completion_tokens
+                           , 'tok_usage_total' = request_content$usage$total_tokens)
+
+  if(output_type == 'complete'){
+    output = list(core_output
+                  , meta_output)
+  } else if(output_type == 'meta'){
+    output = meta_output
+  } else if(output_type == 'text'){
+    output = core_output
   }
 
   return(output)
diff --git a/man/gpt3.authenticate.Rd b/man/gpt3.authenticate.Rd
deleted file mode 100644
index d8751ad..0000000
--- a/man/gpt3.authenticate.Rd
+++ /dev/null
@@ -1,26 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/authenticate.R
-\name{gpt3.authenticate}
-\alias{gpt3.authenticate}
-\title{Set up the authentication with your API key}
-\usage{
-gpt3.authenticate(path)
-}
-\arguments{
-\item{path}{The file path to the API key}
-}
-\value{
-A confirmation message
-}
-\description{
-Access to GPT-3's functions requires an API key that you obtain from \url{https://openai.com/api/}. \code{gpt3.authenticate()} accepts your API key and ensures that you can connect to the models. \code{gpt3.endsession()} overwrites your API key \emph{for this session} (it is recommended that you run this when you are done). \code{check_apikey_form()} is a simple check if any information has been provided at all.
-}
-\details{
-The easiest way to store you API key is in a \code{.txt} file with \emph{only} the API key in it (without quotation marks or other common string indicators). \code{gpt3.authenticate()} reads the single file you point it to and retrieves the content as authentication key for all requests.
-}
-\examples{
-# Starting a session:
-gpt3.authenticate(apikey = 'REPLACE_THIS_WITH_YOUR_KEY')
-# After you are finished:
-gpt3.endsession()
-}
diff --git a/man/gpt3.make_request.Rd b/man/gpt3.make_request.Rd
deleted file mode 100644
index dcdff54..0000000
--- a/man/gpt3.make_request.Rd
+++ /dev/null
@@ -1,37 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/make_request.R
-\name{gpt3.make_request}
-\alias{gpt3.make_request}
-\title{Make a test request to the GPT-3 API}
-\usage{
-gpt3.make_request(
-  prompt_,
-  model_ = "text-davinci-002",
-  output_type_ = "string_only",
-  suffix_ = NULL,
-  max_tokens_ = 256,
-  temperature_ = 0.9,
-  top_p_ = 1,
-  n_ = 1,
-  stream_ = F,
-  logprobs_ = NULL,
-  echo_ = F,
-  stop_ = NULL,
-  presence_penalty_ = 0,
-  frequency_penalty_ = 0,
-  best_of_ = 1,
-  logit_bias_ = NULL
-)
-}
-\arguments{
-\item{verbose}{(boolean) if TRUE prints the actual prompt and GPT-3 completion of the test request (default: FALSE).}
-}
-\value{
-A message of success or failure of the connection.
-}
-\description{
-\code{gpt3.test_request()} sends a basic \href{https://beta.openai.com/docs/api-reference/completions}{completion request} to the Open AI GPT-3 API.
-}
-\examples{
-gpt3.test_request()
-}
diff --git a/man/gpt3_authenticate.Rd b/man/gpt3_authenticate.Rd
new file mode 100644
index 0000000..e07ca46
--- /dev/null
+++ b/man/gpt3_authenticate.Rd
@@ -0,0 +1,26 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/authenticate.R
+\name{gpt3_authenticate}
+\alias{gpt3_authenticate}
+\title{Set up the authentication with your API key}
+\usage{
+gpt3_authenticate(path)
+}
+\arguments{
+\item{path}{The file path to the API key}
+}
+\value{
+A confirmation message
+}
+\description{
+Access to GPT-3's functions requires an API key that you obtain from \url{https://openai.com/api/}. \code{gpt3_authenticate()} looks for your API key in a file that you provide the path to and ensures you can connect to the models. \code{gpt3_endsession()} overwrites your API key \emph{for this session} (it is recommended that you run this when you are done). \code{check_apikey_form()} is a simple check if any information has been provided at all.
+}
+\details{
+The easiest way to store you API key is in a \code{.txt} file with \emph{only} the API key in it (without quotation marks or other common string indicators). \code{gpt3_authenticate()} reads the single file you point it to and retrieves the content as authentication key for all requests.
+}
+\examples{
+# Starting a session:
+gpt3_authenticate(path = './YOURPATH/access_key.txt')
+# After you are finished:
+gpt3_endsession()
+}
diff --git a/man/gpt3_simple_request.Rd b/man/gpt3_simple_request.Rd
new file mode 100644
index 0000000..71ed790
--- /dev/null
+++ b/man/gpt3_simple_request.Rd
@@ -0,0 +1,88 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/make_request.R
+\name{gpt3_simple_request}
+\alias{gpt3_simple_request}
+\title{Makes a single completion request to the GPT-3 API}
+\usage{
+gpt3_simple_request(
+  prompt_input,
+  model = "text-davinci-002",
+  output_type = "complete",
+  suffix = NULL,
+  max_tokens = 100,
+  temperature = 0.9,
+  top_p = 1,
+  n = 1,
+  logprobs = NULL,
+  stop = NULL,
+  presence_penalty = 0,
+  frequency_penalty = 0,
+  best_of = 1
+)
+}
+\arguments{
+\item{prompt_input}{character that contains the prompt to the GPT-3 request}
+
+\item{model}{a character vector that indicates the \href{https://beta.openai.com/docs/models/gpt-3}{model} to use; one of "text-davinci-002" (default), "text-curie-001", "text-babbage-001" or "text-ada-001"}
+
+\item{output_type}{character determining the output provided: "complete" (default), "text" or "meta"}
+
+\item{suffix}{character (default: NULL) (from the official API documentation: \emph{The suffix that comes after a completion of inserted text})}
+
+\item{max_tokens}{numeric (default: 100) indicating the maximum number of tokens that the completion request should return (from the official API documentation: \emph{The maximum number of tokens to generate in the completion. The token count of your prompt plus max_tokens cannot exceed the model's context length. Most models have a context length of 2048 tokens (except for the newest models, which support 4096)})}
+
+\item{temperature}{numeric (default: 0.9) specifying the sampling strategy of the possible completions (from the official API documentation: \emph{What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer. We generally recommend altering this or top_p but not both.})}
+
+\item{top_p}{numeric (default: 1) specifying sampling strategy as an alternative to the temperature sampling (from the official API documentation: \emph{An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10\% probability mass are considered. We generally recommend altering this or temperature but not both.})}
+
+\item{n}{numeric (default: 1) specifying the number of completions per request (from the official API documentation: \emph{How many completions to generate for each prompt. \strong{Note: Because this parameter generates many completions, it can quickly consume your token quota.} Use carefully and ensure that you have reasonable settings for max_tokens and stop.})}
+
+\item{logprobs}{numeric (default: NULL) (from the official API documentation: \emph{Include the log probabilities on the logprobs most likely tokens, as well the chosen tokens. For example, if logprobs is 5, the API will return a list of the 5 most likely tokens. The API will always return the logprob of the sampled token, so there may be up to logprobs+1 elements in the response. The maximum value for logprobs is 5. If you need more than this, please contact support@openai.com and describe your use case.})}
+
+\item{stop}{character or character vector (default: NULL) that specifies after which character value when the completion should end (from the official API documentation: \emph{Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence.})}
+
+\item{presence_penalty}{numeric (default: 0) between -2.00  and +2.00 to determine the penalisation of repetitiveness if a token already exists (from the official API documentation: \emph{Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.}). See also: \url{https://beta.openai.com/docs/api-reference/parameter-details}}
+
+\item{frequency_penalty}{numeric (default: 0) between -2.00  and +2.00 to determine the penalisation of repetitiveness based on the frequency of a token in the text already (from the official API documentation: \emph{Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.}). See also: \url{https://beta.openai.com/docs/api-reference/parameter-details}}
+
+\item{best_of}{numeric (default: 1) that determines the space of possibilities from which to select the completion with the highest probability (from the official API documentation: \emph{Generates \code{best_of} completions server-side and returns the "best" (the one with the highest log probability per token)}). See details.}
+}
+\value{
+A list with two data tables (if \code{output_type} is the default "complete"): [\link{1}] contains the data table with the columns \code{n} (= the mo. of \code{n} responses requested), \code{prompt} (= the prompt that was sent), and \code{gpt3} (= the completion as returned from the GPT-3 model). [\link{2}] contains the meta information of the request, including the request id, the parameters of the request and the token usage of the prompt (\code{tok_usage_prompt}), the completion (\code{tok_usage_completion}) and the total usage (\code{tok_usage_total}).
+
+If \code{output_type} is "text", only the data table in slot [\link{1}] is returned.
+
+If \code{output_type} is "meta", only the data table in slot [\link{2}] is returned.
+}
+\description{
+\code{gpt3_single_request()} sends a single \href{https://beta.openai.com/docs/api-reference/completions}{completion request} to the Open AI GPT-3 API.
+}
+\details{
+For a general guide on the completion requests, see \url{https://beta.openai.com/docs/guides/completion}. This function provides you with an R wrapper to send requests with the full range of request parameters as detailed on \url{https://beta.openai.com/docs/api-reference/completions} and reproduced below.
+
+For the \code{best_of} parameter: When used with n, best_of controls the number of candidate completions and n specifies how many to return – best_of must be greater than n. Note that this is handled by the wrapper automatically   if(best_of <= n){ best_of = n}.
+
+Parameters not included/supported:
+\itemize{
+\item \code{logit_bias}: \url{https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias}
+\item \code{echo}: \url{https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo}
+\item \code{stream}: \url{https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream}
+}
+}
+\examples{
+# First authenticate with your API key via `gpt3_authenticate('pathtokey')`
+
+# Once authenticated:
+
+## Simple request with defaults:
+gpt3_simple_request(prompt_input = 'How old are you?')
+
+## Instruct GPT-3 to write ten research ideas of max. 150 tokens with some controls:
+gpt3_simple_request(prompt_input = 'Write a research idea about using text data to understand human behaviour:', temperature = 0.8, n = 10, max_tokens = 150)
+
+## For fully reproducible results, we need `temperature = 0`, e.g.:
+gpt3_simple_request(prompt_input = 'Finish this sentence:/n There is no easier way to learn R than', temperature = 0.0, max_tokens = 50)
+
+## The same example with a different GPT-3 model:
+gpt3_simple_request(prompt_input = 'Finish this sentence:/n There is no easier way to learn R than', model = 'text-babbage-001', temperature = 0.0, max_tokens = 50)
+}