
Package ‘rgpt3’
December 24, 2022

Title Making requests from R to the GPT-3 API

Version 0.3.1

Description With this package you can interact with the powerful GPT-3 models in two ways: mak-
ing requests for completions (e.g., ask GPT-3 to write a novel, classify text, answer ques-
tions, etc.) and retrieving text embeddings representations (i.e., obtain a low-dimensional vec-
tor representation that allows for downstream analyses). You need to authenti-
cate with your own Open AI API key and all requests you make count towards you to-
ken quota. For completion requests and embeddings requests, two functions each al-
low you to send either sinlge re-
quests (`gpt3_single_request()` and `gpt3_single_embedding()`) or send bunch re-
quests where the vectorised structure is used (`gpt3_requests()` and `gpt3_embeddings()`).

URL https://github.com/ben-aaron188/rgpt3

License GPL (>= 3)

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.1

Imports data.table,
httr

R topics documented:

gpt3_authenticate . 2
gpt3_completions . 2
gpt3_embeddings . 5
gpt3_single_completion . 7
gpt3_single_embedding . 9
gpt3_test_completion . 11
price_base_davinci . 11
to_numeric . 12
url.completions . 12

Index 13

1

https://github.com/ben-aaron188/rgpt3

2 gpt3_completions

gpt3_authenticate Set up the authentication with your API key

Description

Access to GPT-3’s functions requires an API key that you obtain from https://openai.com/api/.
gpt3_authenticate() looks for your API key in a file that you provide the path to and ensures
you can connect to the models. gpt3_endsession() overwrites your API key for this session (it is
recommended that you run this when you are done). check_apikey_form() is a simple check if
any information has been provided at all.

Usage

gpt3_authenticate(path)

Arguments

path The file path to the API key

Details

The easiest way to store you API key is in a .txt file with only the API key in it (without quotation
marks or other common string indicators). gpt3_authenticate() reads the single file you point it
to and retrieves the content as authentication key for all requests.

Value

A confirmation message

Examples

Starting a session:
gpt3_authenticate(path = './YOURPATH/access_key.txt')
After you are finished:
gpt3_endsession()

gpt3_completions Makes bunch completion requests to the GPT-3 API

Description

gpt3_completions() is the package’s main function for rquests and takes as input a vector of
prompts and processes each prompt as per the defined parameters. It extends the gpt3_single_completion()
function to allow for bunch processing of requests to the Open AI GPT-3 API.

https://openai.com/api/

gpt3_completions 3

Usage

gpt3_completions(
prompt_var,
id_var,
param_output_type = "complete",
param_model = "text-davinci-003",
param_suffix = NULL,
param_max_tokens = 100,
param_temperature = 0.9,
param_top_p = 1,
param_n = 1,
param_logprobs = NULL,
param_stop = NULL,
param_presence_penalty = 0,
param_frequency_penalty = 0,
param_best_of = 1

)

Arguments

prompt_var character vector that contains the prompts to the GPT-3 request

id_var (optional) character vector that contains the user-defined ids of the prompts. See
details.

param_output_type

character determining the output provided: "complete" (default), "text" or "meta"

param_model a character vector that indicates the model to use; one of "text-davinci-003" (de-
fault), "text-davinci-002", "text-davinci-001", "text-curie-001", "text-babbage-
001" or "text-ada-001"

param_suffix character (default: NULL) (from the official API documentation: The suffix that
comes after a completion of inserted text)

param_max_tokens

numeric (default: 100) indicating the maximum number of tokens that the com-
pletion request should return (from the official API documentation: The maxi-
mum number of tokens to generate in the completion. The token count of your
prompt plus max_tokens cannot exceed the model’s context length. Most mod-
els have a context length of 2048 tokens (except for the newest models, which
support 4096))

param_temperature

numeric (default: 0.9) specifying the sampling strategy of the possible comple-
tions (from the official API documentation: What sampling temperature to use.
Higher values means the model will take more risks. Try 0.9 for more creative
applications, and 0 (argmax sampling) for ones with a well-defined answer. We
generally recommend altering this or top_p but not both.)

param_top_p numeric (default: 1) specifying sampling strategy as an alternative to the tem-
perature sampling (from the official API documentation: An alternative to sam-
pling with temperature, called nucleus sampling, where the model considers the
results of the tokens with top_p probability mass. So 0.1 means only the tokens
comprising the top 10% probability mass are considered. We generally recom-
mend altering this or temperature but not both.)

param_n numeric (default: 1) specifying the number of completions per request (from
the official API documentation: How many completions to generate for each

https://beta.openai.com/docs/models/gpt-3

4 gpt3_completions

prompt. Note: Because this parameter generates many completions, it can
quickly consume your token quota. Use carefully and ensure that you have
reasonable settings for max_tokens and stop.)

param_logprobs numeric (default: NULL) (from the official API documentation: Include the log
probabilities on the logprobs most likely tokens, as well the chosen tokens. For
example, if logprobs is 5, the API will return a list of the 5 most likely tokens.
The API will always return the logprob of the sampled token, so there may be up
to logprobs+1 elements in the response. The maximum value for logprobs is 5.
If you need more than this, please go to https://help.openai.com/en/ and
describe your use case.)

param_stop character or character vector (default: NULL) that specifies after which charac-
ter value when the completion should end (from the official API documentation:
Up to 4 sequences where the API will stop generating further tokens. The re-
turned text will not contain the stop sequence.)

param_presence_penalty

numeric (default: 0) between -2.00 and +2.00 to determine the penalisation of
repetitiveness if a token already exists (from the official API documentation:
Number between -2.0 and 2.0. Positive values penalize new tokens based on
whether they appear in the text so far, increasing the model’s likelihood to talk
about new topics.). See also: https://beta.openai.com/docs/api-reference/
parameter-details

param_frequency_penalty

numeric (default: 0) between -2.00 and +2.00 to determine the penalisation of
repetitiveness based on the frequency of a token in the text already (from the
official API documentation: Number between -2.0 and 2.0. Positive values
penalize new tokens based on their existing frequency in the text so far, de-
creasing the model’s likelihood to repeat the same line verbatim.). See also:
https://beta.openai.com/docs/api-reference/parameter-details

param_best_of numeric (default: 1) that determines the space of possibilities from which to
select the completion with the highest probability (from the official API docu-
mentation: Generates best_of completions server-side and returns the "best"
(the one with the highest log probability per token)). See details.

Details

The easiest (and intended) use case for this function is to create a data.frame or data.table with
variables that contain the prompts to be requested from GPT-3 and a prompt id (see examples
below). For a general guide on the completion requests, see https://beta.openai.com/docs/
guides/completion. This function provides you with an R wrapper to send requests with the full
range of request parameters as detailed on https://beta.openai.com/docs/api-reference/
completions and reproduced below.

For the best_of parameter: The gpt3_single_completion() (which is used here in a vectorised
manner) handles the issue that best_of must be greater than n by setting if(best_of <= n){ best_of
= n}.

If id_var is not provided, the function will use prompt_1 ... prompt_n as id variable.

Parameters not included/supported:

• logit_bias: https://beta.openai.com/docs/api-reference/completions/create#completions/
create-logit_bias

• echo: https://beta.openai.com/docs/api-reference/completions/create#completions/
create-echo

https://help.openai.com/en/
https://beta.openai.com/docs/api-reference/parameter-details
https://beta.openai.com/docs/api-reference/parameter-details
https://beta.openai.com/docs/api-reference/parameter-details
https://beta.openai.com/docs/guides/completion
https://beta.openai.com/docs/guides/completion
https://beta.openai.com/docs/api-reference/completions
https://beta.openai.com/docs/api-reference/completions
https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias
https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias
https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo
https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo

gpt3_embeddings 5

• stream: https://beta.openai.com/docs/api-reference/completions/create#completions/
create-stream

Value

A list with two data tables (if param_output_type is the default "complete"): [1] contains the data
table with the columns n (= the mo. of n responses requested), prompt (= the prompt that was sent),
gpt3 (= the completion as returned from the GPT-3 model) and id (= the provided id_var or its
default alternative). [2] contains the meta information of the request, including the request id, the
parameters of the request and the token usage of the prompt (tok_usage_prompt), the completion
(tok_usage_completion), the total usage (tok_usage_total), and the id (= the provided id_var
or its default alternative).

If output_type is "text", only the data table in slot [1] is returned.

If output_type is "meta", only the data table in slot [2] is returned.

Examples

First authenticate with your API key via `gpt3_authenticate('pathtokey')`

Once authenticated:
Assuming you have a data.table with 3 different prompts:
dt_prompts = data.table::data.table('prompts' = c('What is the meaning if life?', 'Write a tweet about London:', 'Write a research proposal for using AI to fight fake news:'), 'prompt_id' = c(LETTERS[1:3]))
gpt3_completions(prompt_var = dt_prompts$prompts

, id_var = dt_prompts$prompt_id)

With more controls
gpt3_completions(prompt_var = dt_prompts$prompts

, id_var = dt_prompts$prompt_id
, param_max_tokens = 50
, param_temperature = 0.5
, param_n = 5)

Reproducible example (deterministic approach)
gpt3_completions(prompt_var = dt_prompts$prompts

, id_var = dt_prompts$prompt_id
, param_max_tokens = 50
, param_temperature = 0.0)

Changing the GPT-3 model
gpt3_completions(prompt_var = dt_prompts$prompts

, id_var = dt_prompts$prompt_id
, param_model = 'text-babbage-001'
, param_max_tokens = 50
, param_temperature = 0.4)

gpt3_embeddings Retrieves text embeddings for character input from a vector from the
GPT-3 API

Description

gpt3_embeddings() extends the single embeddings function gpt3_single_embedding() to allow
for the processing of a whole vector

https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream
https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream

6 gpt3_embeddings

Usage

gpt3_embeddings(input_var, id_var, param_model = "text-embedding-ada-002")

Arguments

input_var character vector that contains the texts for which you want to obtain text embed-
dings from the GPT-3 model #’ @param id_var (optional) character vector that
contains the user-defined ids of the prompts. See details.

param_model a character vector that indicates the embedding model; one of "text-embedding-
ada-002" (default), "text-similarity-ada-001", "text-similarity-curie-001", "text-
similarity-babbage-001", "text-similarity-davinci-001"

Details

The returned data.table contains the column id which indicates the text id (or its generic alternative
if not specified) and the columns dim_1 ... dim_{max}, where max is the length of the text embed-
dings vector that the different models (see below) return. For the default "Ada 2nd gen." model,
these are 1536 dimensions (i.e., dim_1... dim_1536).

The function supports the text similarity embeddings for the five GPT-3 embeddings models as
specified in the parameter list. It is strongly advised to use the second generation model "text-
embedding-ada-002". The main difference between the five models is the size of the embedding
representation as indicated by the vector embedding size and the pricing. The newest model (de-
fault) is the fastest, cheapest and highest quality one.

• Ada 2nd generation text-embedding-ada-002 (1536 dimensions)

• Ada (1024 dimensions)

• Babbage (2048 dimensions)

• Curie (4096 dimensions)

• Davinci (12288 dimensions)

Note that the dimension size (= vector length), speed and associated costs differ considerably.

These vectors can be used for downstream tasks such as (vector) similarity calculations.

Value

A data.table with the embeddings as separate columns; one row represents one input text. See
details.

Examples

First authenticate with your API key via `gpt3_authenticate('pathtokey')`

Use example data:
The data below were generated with the `gpt3_single_request()` function as follows:
DO NOT RUN
travel_blog_data = gpt3_single_request(prompt_input = "Write a travel blog about a dog's journey through the UK:", temperature = 0.8, n = 10, max_tokens = 200)[[1]]
END DO NOT RUN

You can load these data with:
data("travel_blog_data") # the dataset contains 10 completions for the above request

Obtain text embeddings for the completion texts:

https://beta.openai.com/docs/guides/embeddings/embedding-models
https://beta.openai.com/docs/guides/embeddings/embedding-models
https://openai.com/api/pricing/

gpt3_single_completion 7

emb_travelblogs = gpt3_embeddings(input_var = travel_blog_data$gpt3)
dim(emb_travelblogs)

gpt3_single_completion

Makes a single completion request to the GPT-3 API

Description

gpt3_single_completion() sends a single completion request to the Open AI GPT-3 API.

Usage

gpt3_single_completion(
prompt_input,
model = "text-davinci-003",
output_type = "complete",
suffix = NULL,
max_tokens = 100,
temperature = 0.9,
top_p = 1,
n = 1,
logprobs = NULL,
stop = NULL,
presence_penalty = 0,
frequency_penalty = 0,
best_of = 1

)

Arguments

prompt_input character that contains the prompt to the GPT-3 request

model a character vector that indicates the model to use; one of "text-davinci-003" (de-
fault), "text-davinci-002", "text-davinci-001", "text-curie-001", "text-babbage-
001" or "text-ada-001"

output_type character determining the output provided: "complete" (default), "text" or "meta"

suffix character (default: NULL) (from the official API documentation: The suffix that
comes after a completion of inserted text)

max_tokens numeric (default: 100) indicating the maximum number of tokens that the com-
pletion request should return (from the official API documentation: The maxi-
mum number of tokens to generate in the completion. The token count of your
prompt plus max_tokens cannot exceed the model’s context length. Most mod-
els have a context length of 2048 tokens (except for the newest models, which
support 4096))

temperature numeric (default: 0.9) specifying the sampling strategy of the possible comple-
tions (from the official API documentation: What sampling temperature to use.
Higher values means the model will take more risks. Try 0.9 for more creative
applications, and 0 (argmax sampling) for ones with a well-defined answer. We
generally recommend altering this or top_p but not both.)

https://beta.openai.com/docs/api-reference/completions
https://beta.openai.com/docs/models/gpt-3

8 gpt3_single_completion

top_p numeric (default: 1) specifying sampling strategy as an alternative to the tem-
perature sampling (from the official API documentation: An alternative to sam-
pling with temperature, called nucleus sampling, where the model considers the
results of the tokens with top_p probability mass. So 0.1 means only the tokens
comprising the top 10% probability mass are considered. We generally recom-
mend altering this or temperature but not both.)

n numeric (default: 1) specifying the number of completions per request (from
the official API documentation: How many completions to generate for each
prompt. Note: Because this parameter generates many completions, it can
quickly consume your token quota. Use carefully and ensure that you have
reasonable settings for max_tokens and stop.)

logprobs numeric (default: NULL) (from the official API documentation: Include the log
probabilities on the logprobs most likely tokens, as well the chosen tokens. For
example, if logprobs is 5, the API will return a list of the 5 most likely tokens.
The API will always return the logprob of the sampled token, so there may be up
to logprobs+1 elements in the response. The maximum value for logprobs is 5.
If you need more than this, please go to https://help.openai.com/en/ and
describe your use case.)

stop character or character vector (default: NULL) that specifies after which charac-
ter value when the completion should end (from the official API documentation:
Up to 4 sequences where the API will stop generating further tokens. The re-
turned text will not contain the stop sequence.)

presence_penalty

numeric (default: 0) between -2.00 and +2.00 to determine the penalisation of
repetitiveness if a token already exists (from the official API documentation:
Number between -2.0 and 2.0. Positive values penalize new tokens based on
whether they appear in the text so far, increasing the model’s likelihood to talk
about new topics.). See also: https://beta.openai.com/docs/api-reference/
parameter-details

frequency_penalty

numeric (default: 0) between -2.00 and +2.00 to determine the penalisation of
repetitiveness based on the frequency of a token in the text already (from the
official API documentation: Number between -2.0 and 2.0. Positive values
penalize new tokens based on their existing frequency in the text so far, de-
creasing the model’s likelihood to repeat the same line verbatim.). See also:
https://beta.openai.com/docs/api-reference/parameter-details

best_of numeric (default: 1) that determines the space of possibilities from which to
select the completion with the highest probability (from the official API docu-
mentation: Generates best_of completions server-side and returns the "best"
(the one with the highest log probability per token)). See details.

Details

For a general guide on the completion requests, see https://beta.openai.com/docs/guides/
completion. This function provides you with an R wrapper to send requests with the full range of
request parameters as detailed on https://beta.openai.com/docs/api-reference/completions
and reproduced below.

For the best_of parameter: When used with n, best_of controls the number of candidate comple-
tions and n specifies how many to return – best_of must be greater than n. Note that this is handled
by the wrapper automatically if(best_of <= n) best_of = n.

Parameters not included/supported:

https://help.openai.com/en/
https://beta.openai.com/docs/api-reference/parameter-details
https://beta.openai.com/docs/api-reference/parameter-details
https://beta.openai.com/docs/api-reference/parameter-details
https://beta.openai.com/docs/guides/completion
https://beta.openai.com/docs/guides/completion
https://beta.openai.com/docs/api-reference/completions

gpt3_single_embedding 9

• logit_bias: https://beta.openai.com/docs/api-reference/completions/create#completions/
create-logit_bias

• echo: https://beta.openai.com/docs/api-reference/completions/create#completions/
create-echo

• stream: https://beta.openai.com/docs/api-reference/completions/create#completions/
create-stream

Value

A list with two data tables (if output_type is the default "complete"): [1] contains the data table
with the columns n (= the mo. of n responses requested), prompt (= the prompt that was sent),
and gpt3 (= the completion as returned from the GPT-3 model). [2] contains the meta informa-
tion of the request, including the request id, the parameters of the request and the token usage of
the prompt (tok_usage_prompt), the completion (tok_usage_completion) and the total usage
(tok_usage_total).

If output_type is "text", only the data table in slot [1] is returned.

If output_type is "meta", only the data table in slot [2] is returned.

Examples

First authenticate with your API key via `gpt3_authenticate('pathtokey')`

Once authenticated:

Simple request with defaults:
gpt3_single_completion(prompt_input = 'How old are you?')

Instruct GPT-3 to write ten research ideas of max. 150 tokens with some controls:
gpt3_single_completion(prompt_input = 'Write a research idea about using text data to understand human behaviour:'

, temperature = 0.8
, n = 10
, max_tokens = 150)

For fully reproducible results, we need `temperature = 0`, e.g.:
gpt3_single_completion(prompt_input = 'Finish this sentence:/n There is no easier way to learn R than'

, temperature = 0.0
, max_tokens = 50)

The same example with a different GPT-3 model:
gpt3_single_completion(prompt_input = 'Finish this sentence:/n There is no easier way to learn R than'

, model = 'text-babbage-001'
, temperature = 0.0
, max_tokens = 50)

gpt3_single_embedding Obtains text embeddings for a single character (string) from the GPT-
3 API

Description

gpt3_single_embedding() sends a single embedding request to the Open AI GPT-3 API.

https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias
https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias
https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo
https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo
https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream
https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream
https://beta.openai.com/docs/guides/embeddings

10 gpt3_single_embedding

Usage

gpt3_single_embedding(input, model = "text-embedding-ada-002")

Arguments

input character that contains the text for which you want to obtain text embeddings
from the GPT-3 model

model a character vector that indicates the similarity embedding model; one of "text-
embedding-ada-002" (default), "text-similarity-ada-001", "text-similarity-curie-
001", "text-similarity-babbage-001", "text-similarity-davinci-001". Note: it is
strongly recommend to use the faster, cheaper and higher quality second gener-
ation embeddings model "text-embedding-ada-002".

Details

The function supports the text similarity embeddings for the four GPT-3 models as specified in the
parameter list. The main difference between the four models is the sophistication of the embedding
representation as indicated by the vector embedding size.

• Second-generation embeddings model text-embedding-ada-002 (1536 dimensions)

• Ada (1024 dimensions)

• Babbage (2048 dimensions)

• Curie (4096 dimensions)

• Davinci (12288 dimensions)

Note that the dimension size (= vector length), speed and associated costs differ considerably.

These vectors can be used for downstream tasks such as (vector) similarity calculations.

Value

A numeric vector (= the embedding vector)

Examples

First authenticate with your API key via `gpt3_authenticate('pathtokey')`

Once authenticated:

Simple request with defaults:
sample_string = "London is one of the most liveable cities in the world. The city is always full of energy and people. It's always a great place to explore and have fun."
gpt3_single_embedding(input = sample_string)

Change the model:
#' gpt3_single_embedding(input = sample_string

, model = 'text-similarity-curie-001')

https://beta.openai.com/docs/guides/embeddings/similarity-embeddings
https://openai.com/api/pricing/

gpt3_test_completion 11

gpt3_test_completion Make a test request to the GPT-3 API

Description

gpt3_test_completion() sends a basic completion request to the Open AI GPT-3 API.

Usage

gpt3_test_completion(verbose = T)

Arguments

verbose (boolean) if TRUE prints the actual prompt and GPT-3 completion of the test
request (default: TRUE).

Value

A message of success or failure of the connection.

Examples

gpt3_test_completion()

price_base_davinci Contains the pricing for completion requests (see: https://openai.
com/api/pricing/#faq-completions-pricing)

Description

These are the prices listed for 1k tokens of requests for the various models. These are needed for
the rgpt3_cost_estimate(...) function.

Usage

price_base_davinci

Format

An object of class numeric of length 1.

https://beta.openai.com/docs/api-reference/completions
https://openai.com/api/pricing/#faq-completions-pricing
https://openai.com/api/pricing/#faq-completions-pricing

12 url.completions

to_numeric Convert character vector of numeric values into a numeric vector

Description

Converts a character vector of numeric values into a numeric vector

Usage

to_numeric(x)

Arguments

x a character vector of numeric values

Value

A numeric vector

Examples

to_numeric('12312')

url.completions Contains the package’s base URLs

Description

These are the base URLs for the rgpt3 package. Do not change these!

Usage

url.completions

Format

An object of class character of length 1.

Index

∗ datasets
price_base_davinci, 11
url.completions, 12

1, 5, 9
2, 5, 9

gpt3_authenticate, 2
gpt3_completions, 2
gpt3_embeddings, 5
gpt3_single_completion, 7
gpt3_single_embedding, 9
gpt3_test_completion, 11

price_base_davinci, 11

to_numeric, 12

url.completions, 12

13

	gpt3_authenticate
	gpt3_completions
	gpt3_embeddings
	gpt3_single_completion
	gpt3_single_embedding
	gpt3_test_completion
	price_base_davinci
	to_numeric
	url.completions
	Index

