blob: 0ed71853ab40e47a9ff22bb08874283419f3bc8a [file] [log] [blame]
ben-aaron188c9254dd2022-09-28 16:33:00 +02001@article{korngiebel2021considering,
2 title={Considering the possibilities and pitfalls of Generative Pre-trained Transformer 3 (GPT-3) in healthcare delivery},
3 author={Korngiebel, Diane M and Mooney, Sean D},
4 journal={NPJ Digital Medicine},
5 volume={4},
6 number={1},
7 pages={1--3},
8 year={2021},
9 publisher={Nature Publishing Group}
10}
11
ben-aaron188c9254dd2022-09-28 16:33:00 +020012@article{binz2022using,
13 title={Using cognitive psychology to understand GPT-3},
14 author={Binz, Marcel and Schulz, Eric},
15 journal={arXiv preprint arXiv:2206.14576},
16 year={2022}
17}
18
19@article{stevenson2022putting,
20 title={Putting GPT-3's Creativity to the (Alternative Uses) Test},
21 author={Stevenson, Claire and Smal, Iris and Baas, Matthijs and Grasman, Raoul and van der Maas, Han},
22 journal={arXiv preprint arXiv:2206.08932},
23 year={2022}
24}
25
26@article{garg2018word,
27 title={Word embeddings quantify 100 years of gender and ethnic stereotypes},
28 author={Garg, Nikhil and Schiebinger, Londa and Jurafsky, Dan and Zou, James},
29 journal={Proceedings of the National Academy of Sciences},
30 volume={115},
31 number={16},
32 pages={E3635--E3644},
33 year={2018},
34 publisher={National Acad Sciences}
35}
ben-aaron188718e3a62022-10-24 14:28:51 +020036
ben-aaron188c9254dd2022-09-28 16:33:00 +020037@inproceedings{bender2021dangers,
38 title={On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?},
39 author={Bender, Emily M and Gebru, Timnit and McMillan-Major, Angelina and Shmitchell, Shmargaret},
40 booktitle={Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency},
41 pages={610--623},
42 year={2021}
43}
44
45@article{dale2021gpt,
46 title={GPT-3: What’s it good for?},
47 author={Dale, Robert},
48 journal={Natural Language Engineering},
49 volume={27},
50 number={1},
51 pages={113--118},
52 year={2021},
53 publisher={Cambridge University Press}
54}
55
56@article{brown2020language,
57 title={Language models are few-shot learners},
58 author={Brown, Tom and Mann, Benjamin and Ryder, Nick and Subbiah, Melanie and Kaplan, Jared D and Dhariwal, Prafulla and Neelakantan, Arvind and Shyam, Pranav and Sastry, Girish and Askell, Amanda and others},
59 journal={Advances in neural information processing systems},
60 volume={33},
61 pages={1877--1901},
62 year={2020}
63}
ben-aaron188718e3a62022-10-24 14:28:51 +020064
ben-aaron188c9254dd2022-09-28 16:33:00 +020065@article{floridi2020gpt,
66 title={GPT-3: Its nature, scope, limits, and consequences},
67 author={Floridi, Luciano and Chiriatti, Massimo},
68 journal={Minds and Machines},
69 volume={30},
70 number={4},
71 pages={681--694},
72 year={2020},
73 publisher={Springer}
74}
75
ben-aaron188c9254dd2022-09-28 16:33:00 +020076
77@article{rahwan2019machine,
78 title={Machine behaviour},
79 author={Rahwan, Iyad and Cebrian, Manuel and Obradovich, Nick and Bongard, Josh and Bonnefon, Jean-Fran{\c{c}}ois and Breazeal, Cynthia and Crandall, Jacob W and Christakis, Nicholas A and Couzin, Iain D and Jackson, Matthew O and others},
80 journal={Nature},
81 volume={568},
82 number={7753},
83 pages={477--486},
84 year={2019},
85 publisher={Nature Publishing Group}
86}
87
88@article{black2022gpt,
89 title={Gpt-neox-20b: An open-source autoregressive language model},
90 author={Black, Sid and Biderman, Stella and Hallahan, Eric and Anthony, Quentin and Gao, Leo and Golding, Laurence and He, Horace and Leahy, Connor and McDonell, Kyle and Phang, Jason and others},
91 journal={arXiv preprint arXiv:2204.06745},
92 year={2022}
93}
ben-aaron188718e3a62022-10-24 14:28:51 +020094
95
96@article{miotto_who_2022,
97 title = {Who is {GPT}-3? {An} {Exploration} of {Personality}, {Values} and {Demographics}},
98 shorttitle = {Who is {GPT}-3?},
99 url = {http://arxiv.org/abs/2209.14338},
100 doi = {10.48550/arXiv.2209.14338},
101 abstract = {Language models such as GPT-3 have caused a furore in the research community. Some studies found that GPT-3 has some creative abilities and makes mistakes that are on par with human behaviour. This paper answers a related question: who is GPT-3? We administered two validated measurement tools to GPT-3 to assess its personality, the values it holds and its self-reported demographics. Our results show that GPT-3 scores similarly to human samples in terms of personality and - when provided with a model response memory - in terms of the values it holds. We provide the first evidence of psychological assessment of the GPT-3 model and thereby add to our understanding of the GPT-3 model. We close with suggestions for future research that moves social science closer to language models and vice versa.},
102 urldate = {2022-10-03},
103 author = {Miotto, Marilù and Rossberg, Nicola and Kleinberg, Bennett},
104 month = sep,
105 year = {2022},
106 note = {arXiv:2209.14338 [cs]},
107 keywords = {Computer Science - Computation and Language},
108 file = {arXiv.org Snapshot:/Users/bennettkleinberg/Zotero/storage/6NCPEUG4/2209.html:text/html},
109}
110
111@article{shihadehbrilliance,
112 title={Brilliance Bias in GPT-3},
113 author={Shihadeh, Juliana and Ackerman, Margareta and Troske, Ashley and Lawson, Nicole and Gonzalez, Edith}
114}