Fix input for caret::confusionMatrix

Sensitivity, Specificity, ... are nor correctly computed.
See examples in ?caret::confusionMatrix

Output with SMOTE:

print(conf)
Confusion Matrix and Statistics

         observed
predicted    0    1
        0 2238   15
        1   81   48

               Accuracy : 0.9597
                 95% CI : (0.951, 0.9672)
    No Information Rate : 0.9736
    P-Value [Acc > NIR] : 1

                  Kappa : 0.4816

 Mcnemar's Test P-Value : 3.266e-11

            Sensitivity : 0.76190
            Specificity : 0.96507
         Pos Pred Value : 0.37209
         Neg Pred Value : 0.99334
             Prevalence : 0.02645
         Detection Rate : 0.02015
   Detection Prevalence : 0.05416
      Balanced Accuracy : 0.86349

       'Positive' Class : 1

Change-Id: I7009c6b3a1e81f4f912ce13cbbde825abc490ee7
diff --git a/R/idiomclassification_mk_pf.R b/R/idiomclassification_mk_pf.R
index 1310b6b..99025b5 100644
--- a/R/idiomclassification_mk_pf.R
+++ b/R/idiomclassification_mk_pf.R
@@ -53,8 +53,8 @@
 # different cutoff for prediction
 # prediction_for_table <- predict(rf_classifier, test %>% select(-CO_IDIOM), cutoff = c(0.8, 0.2))
 
-confusion <- table(observed=test$CO_IDIOM,predicted=prediction_for_table)
-conf <- confusionMatrix(confusion)
+confusion <- table(predicted=prediction_for_table, observed=test$CO_IDIOM)
+conf <- confusionMatrix(confusion, positive = "1")
 print(conf)
 varImpPlot(rf_classifier)
 
@@ -63,9 +63,9 @@
 smoted.data <- SMOTE(fmla, subset(train, select = c("CO_IDIOM", vars)), perc.over = 1200, perc.under = 100)
 rf_classifier = randomForest(fmla, smoted.data, ntree=100, mtry=4, importance=TRUE)
 prediction_for_table <- predict(rf_classifier,test %>% select(-CO_IDIOM))
-confusion <- table(observed=test$CO_IDIOM,predicted=prediction_for_table)
-confusionMatrix(confusion)
-
+confusion <- table(predicted=prediction_for_table, observed=test$CO_IDIOM)
+conf <- confusionMatrix(confusion, positive = "1")
+print(conf)
 # Using estimates by random forest on entire dataset
 
 library(randomForest)