Improve Sensitiviy with SMOTE

E.g.:

Confusion Matrix and Statistics

         observed
predicted    0    1
        0 2055    7
        1  246   74

               Accuracy : 0.8938
                 95% CI : (0.8807, 0.9059)
    No Information Rate : 0.966
    P-Value [Acc > NIR] : 1

                  Kappa : 0.3329

 Mcnemar's Test P-Value : <2e-16

            Sensitivity : 0.91358
            Specificity : 0.89309
         Pos Pred Value : 0.23125
         Neg Pred Value : 0.99661
             Prevalence : 0.03401
         Detection Rate : 0.03107
   Detection Prevalence : 0.13434
      Balanced Accuracy : 0.90334

       'Positive' Class : 1

Change-Id: Ibf6457af340b0ca7a4e814f2d77927515a142ee0
diff --git a/R/idiomclassification_mk_pf.R b/R/idiomclassification_mk_pf.R
index 99025b5..82516a3 100644
--- a/R/idiomclassification_mk_pf.R
+++ b/R/idiomclassification_mk_pf.R
@@ -61,13 +61,12 @@
 # optional resampling with smote
 
 smoted.data <- SMOTE(fmla, subset(train, select = c("CO_IDIOM", vars)), perc.over = 1200, perc.under = 100)
-rf_classifier = randomForest(fmla, smoted.data, ntree=100, mtry=4, importance=TRUE)
-prediction_for_table <- predict(rf_classifier,test %>% select(-CO_IDIOM))
+rf_classifier = randomForest(fmla, smoted.data, ntree=200, importance=TRUE)
+prediction_for_table <- predict(rf_classifier,test %>% select(-CO_IDIOM), cutoff=c(0.8,0.2))
 confusion <- table(predicted=prediction_for_table, observed=test$CO_IDIOM)
 conf <- confusionMatrix(confusion, positive = "1")
 print(conf)
 # Using estimates by random forest on entire dataset
-
 library(randomForest)
 rf_classifier_full = randomForest(fmla, data=ngramme, ntree=100, mtry=2, importance=TRUE, cutoff=c(0.8,0.2))
 rf_classifier_full