blob: 9120991f66ad2b07a18525b419b1998cf6a17a98 [file] [log] [blame]
Marc Kupietzc6a66ee2023-10-23 13:18:48 +02001#' Get syntagmatic neighbours
Marc Kupietzbb4f54c2023-10-19 21:22:44 +02002#'
Marc Kupietzc6a66ee2023-10-23 13:18:48 +02003#' Get the syntagmatic neighbour predictions of a word from the DeReKoVecs model (see Fankhauser/Kupietz 2022, 2017).
4#'
Marc Kupietzbb4f54c2023-10-19 21:22:44 +02005#' @param word The word to get the syntagmatic neighbours for.
6#' @param ... Additional parameters to pass to the API.
7#'
Marc Kupietzc6a66ee2023-10-23 13:18:48 +02008#' @return Data frame with the syntagmatic neighbours of a node predicted from derekovecs model, with the following columns:
9#'
10#' \describe{
11#' \item{average}{⟨a⟩ - Average raw activation of the collocator in the columns selected by auto-focus.}
12#' \item{heat}{Vector of activation of the respective collocator in the slots around the target normalized by its maximum.}
13#' \item{max}{max(a) - Maximum activation of the collocator anywhere in the output layer.}
14#' \item{overall}{Σa/Σw – Sum of the activations over the whole window normalized by the total window sum (no auto-focus).}
15#' \item{pos}{Binary encoded position of where in the window around the node the collocate is predecited with above 0 probability, e.g. 64 = 2^6 ≙ 00010 node 00000}
16#' \item{rank}{Frequency rank of predicted collocate}
17#' \item{word}{Predicted collocate}
18#' }
Marc Kupietzbb4f54c2023-10-19 21:22:44 +020019#' @export
Marc Kupietze981eae2023-10-18 09:00:17 +020020syntagmaticNeighbours <- function(word = "Test", ...) {
Marc Kupietzbb4f54c2023-10-19 21:22:44 +020021 derekovecsApiCall("", word = word, json = 1, ...)$collocators
Marc Kupietze981eae2023-10-18 09:00:17 +020022}
23
Marc Kupietzc6a66ee2023-10-23 13:18:48 +020024#' Get count-based collocates
Marc Kupietzbb4f54c2023-10-19 21:22:44 +020025#'
26#' Get the collocates of a word in the count-based dereko model.
27#'
28#' @param w The word to get the collocates for.
29#' @param ... Additional parameters to pass to the API.
30#'
Marc Kupietzc6a66ee2023-10-23 13:18:48 +020031#' @return A data frame with the most salient collocates and their association scores.
32#' @seealso [collocationScores()] for details
Marc Kupietzbb4f54c2023-10-19 21:22:44 +020033#' @export
Marc Kupietze981eae2023-10-18 09:00:17 +020034countbasedCollocates <- function(w = "Test", ...) {
Marc Kupietzbb4f54c2023-10-19 21:22:44 +020035 derekovecsApiCall(method = "/getClassicCollocators", w = w, ...)$collocates
Marc Kupietze981eae2023-10-18 09:00:17 +020036}
37
Marc Kupietzd417ba62024-12-10 17:54:07 +010038#' Get word frequency
39#'
40#' Gets the absolute frequency of a word in the corpus.
41#'
42#' @param w The word to get the frequency of.
43#' @param ... Additional parameters to pass to the API.
44#'
45#' @return The absolute frequency of the word.
46#' @export
47wordFrequency <- function(w = "Test", ...) {
48 derekovecsApiCall(method = "/getClassicCollocators", w = w, ...)$f1
49}
50
51
Marc Kupietzc6a66ee2023-10-23 13:18:48 +020052#' Get paradigmatic neighbours
Marc Kupietzbb4f54c2023-10-19 21:22:44 +020053#'
54#' Get the paradigmatic neighbours of a word in the derekovecs model.
55#'
56#' @param word The word to get the paradigmatic neighbours for.
57#' @param ... Additional parameters to pass to the API.
58#' @return A list of words with their similarity scores.
59#' @export
60#'
Marc Kupietze981eae2023-10-18 09:00:17 +020061paradigmaticNeighbours <- function(word = "Test", ...) {
Marc Kupietzbb4f54c2023-10-19 21:22:44 +020062 derekovecsApiCall("", word = word, json = 1, ...)$list[[1]]
Marc Kupietze981eae2023-10-18 09:00:17 +020063}
64
Marc Kupietzdb9bb1a2023-10-24 16:03:36 +020065#' Get word embedding
66#'
67#' Get the normalized embedding vector of a word from the derekovecs model.
68#'
69#' @param word The word to get the paradigmatic neighbours for.
70#' @param ... Additional parameters to pass to the API.
71#' @return Normalized embedding vector of the given word.
72#' @export
73#'
74wordEmbedding <- function(word = "Test", ...) {
75 derekovecsApiCall("", word = word, n=1, json = 1, ...)[["list"]][[1]][["vector"]][[1]]
76}
77
78#' Get frequency rank
79#'
80#' Gets the frequency rank of a word in the training data.
81#'
82#' @param word The word to get the frequency rank of.
83#' @param ... Additional parameters to pass to the API.
84#' @return Frequency rank.
85#' @export
Marc Kupietzdb9bb1a2023-10-24 16:03:36 +020086frequencyRank <- function(word = "Test", ...) {
87 derekovecsApiCall("/getWord", w = word, ...)$frequencyRank
88}
89
Marc Kupietzf977fa72023-11-05 18:02:39 +010090#' Get derekovecs server version
91#' @return The version of the derekovecs server.
92#' @export
93serverVersion <- function() {
94 derekovecsApiCall("/getVersion")
95}
96
97#' Get vocabulary size
98#' @return The vocabulary size of the model.
99#' @export
100#' @seealso [frequencyRank()]
101vocabSize <- function() {
102 derekovecsApiCall("/getVocabSize")
103}
104
105#' Get model name
106#' @return The name of the model.
107#' @export
108modelName <- function() {
109 derekovecsApiCall("/getModelName")
110}
111
Marc Kupietzc6a66ee2023-10-23 13:18:48 +0200112#' Get collocation scores
Marc Kupietzbb4f54c2023-10-19 21:22:44 +0200113#'
114#' Calculate the association scores between a node (target word) and words in a window around the it.
115#'
116#' @param w The target word/node.
117#' @param c The collocate.
118#' @param ... Additional parameters to pass to the API.
119#'
120#' @return A one row data frame with collocate and its association scores.
Marc Kupietzc6a66ee2023-10-23 13:18:48 +0200121#' \describe{
122#' \item{word}{collocate}
123#' \item{f2}{abs. frequency of collocate}
124#' \item{f}{abs. frequency of collocation}
125#' \item{npmi}{normalized pmi (Bouma 2009)}
126#' \item{pmi}{pointwise mutual information}
127#' \item{dice}{dice score}
128#' \item{ld}{log-dice score (Rychlý 2008) for whole window}
129#' \item{lfmd}{log-frequency biased mutual dependency ≙ pmi³ (Dalle 1994; Thanopoulos et al. 2002)}
130#' \item{llr}{log-likelihood (Dunning 1993; Evert 2004)}
131#' \item{ln_count}{frequency of collocate as left neighbour of node}
132#' \item{ln_pmi}{pmi as left neighbour}
133#' \item{md}{mutual dependency ≙ pmi² (Dalle 1994; Thanopoulos et al. 2002)}
134#' \item{rn_count}{frequency of collocate as right neighbour of node}
135#' \item{rn_pmi}{pmi as right neighbour}
136#' \item{ldaf}{log-dice score for auto focus window}
137#' \item{win}{binary encoded positions at which the collocate appears at least once, e.g.: 1023 = 2^10-1 ≙ 11111 node 11111}
138#' \item{afwin}{binary encoded auto-focus window (see Perkuhn et al. 2012: E8-15), e.g. 64 = 2^6 ≙ 00010 node 00000 (Aus gutem Grund)}
139#' }
140#' @references
141#' Daille, B. (1994): Approche mixte pour l’extraction automatique de terminologie: statistiques lexicales et filtres linguistiques. PhD thesis, Université Paris 7.
142#'
143#' Dunning, T. (1993): Accurate methods for the statistics of surprise and coincidence. Comput. Linguist. 19, 1 (March 1993), 61-74.
144#'
145#' Evert, Stefan (2004): The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD dissertation, IMS, University of Stuttgart. Published in 2005, URN urn:nbn:de:bsz:93-opus-23714.
146#' Free PDF available from <https://purl.org/stefan.evert/PUB/Evert2004phd.pdf>
147#'
148#' Thanopoulos, A., Fakotakis, N., Kokkinakis, G. (2002): Comparative evaluation of collocation extraction metrics. In: Proc. of LREC 2002: 620–625.
149#'
Marc Kupietzbb4f54c2023-10-19 21:22:44 +0200150#' @export
151#'
Marc Kupietze981eae2023-10-18 09:00:17 +0200152collocationScores <- function(w, c, ...) {
Marc Kupietzbb4f54c2023-10-19 21:22:44 +0200153 derekovecsApiCall("/getCollocationAssociation",
154 w = w, c = c, ...)$collocates
Marc Kupietze981eae2023-10-18 09:00:17 +0200155}
156
Marc Kupietzc6a66ee2023-10-23 13:18:48 +0200157#' Get cosine similarity
Marc Kupietzbb4f54c2023-10-19 21:22:44 +0200158#'
159#' @param w1 The first word.
160#' @param w2 The second word.
161#' @param ... Additional parameters to pass to the API.
162#'
163#' @return The cosine similarity between the two words.
164#' @export
165#'
166#' @description Calculate the cosine similarity between two words in the derekovecs model.
Marc Kupietze981eae2023-10-18 09:00:17 +0200167cosineSimilarity <- function(w1, w2, ...) {
Marc Kupietzbb4f54c2023-10-19 21:22:44 +0200168 derekovecsApiCall("/getSimilarity", w1 = w1, w2 = w2, ...)
169}
170
Marc Kupietzc6a66ee2023-10-23 13:18:48 +0200171#' Get the DeReKoVecs server
Marc Kupietzbb4f54c2023-10-19 21:22:44 +0200172#'
173#' @return The URL of the DeReKoVecs API server.
174#' @export
175#'
176derekovecsServer <- function() {
177 api_server <- Sys.getenv("DEREKOVECS_SERVER")
178 if (!identical(api_server, "")) {
179 return(api_server)
180 }
181 'https://corpora.ids-mannheim.de/openlab/derekovecs/'
182}
183
184#' DeReKoVecsCall
185#'
186#' Call the DeReKoVecs API.
187#'
188#' @param method The method to call.
189#' @param ... The parameters to pass to the method.
190#' @return The result of the call.
191#' @importFrom httr2 request req_url_path_append req_url_query req_perform resp_body_json
192#'
193#' @include utils-pipe.R
Marc Kupietzf977fa72023-11-05 18:02:39 +0100194#' @export
Marc Kupietzbb4f54c2023-10-19 21:22:44 +0200195#'
196derekovecsApiCall <- function(method = "", ...) {
197 httr2::request(derekovecsServer()) %>%
198 httr2::req_url_path_append(method) %>%
199 httr2::req_url_query(...) %>%
200 httr2::req_perform() %>%
201 httr2::resp_body_json(simplifyVector = TRUE)
Marc Kupietze981eae2023-10-18 09:00:17 +0200202}