Update to reveal.js 4.1.2 (#136)

- New tools/ script to manually keep step for updates
- Plugins are all updated
- Template update following latest Pandoc version
- updated README for documentation
- Help page updated 
- See other change in NEWS file
diff --git a/inst/reveal.js-4.1.2/examples/math.html b/inst/reveal.js-4.1.2/examples/math.html
new file mode 100644
index 0000000..5861a71
--- /dev/null
+++ b/inst/reveal.js-4.1.2/examples/math.html
@@ -0,0 +1,201 @@
+<!doctype html>
+<html lang="en">
+
+	<head>
+		<meta charset="utf-8">
+
+		<title>reveal.js - Math Plugin</title>
+
+		<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
+
+		<link rel="stylesheet" href="../dist/reveal.css">
+		<link rel="stylesheet" href="../dist/theme/night.css" id="theme">
+	</head>
+
+	<body>
+
+		<div class="reveal">
+
+			<div class="slides">
+
+				<section>
+					<h2>reveal.js Math Plugin</h2>
+					<p>A thin wrapper for MathJax</p>
+				</section>
+
+				<section>
+					<h3>The Lorenz Equations</h3>
+
+					\[\begin{aligned}
+					\dot{x} &amp; = \sigma(y-x) \\
+					\dot{y} &amp; = \rho x - y - xz \\
+					\dot{z} &amp; = -\beta z + xy
+					\end{aligned} \]
+				</section>
+
+				<section>
+					<h3>The Cauchy-Schwarz Inequality</h3>
+
+					<script type="math/tex; mode=display">
+						\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
+					</script>
+				</section>
+
+				<section>
+					<h3>A Cross Product Formula</h3>
+
+					\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
+					\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
+					\frac{\partial X}{\partial u} &amp;  \frac{\partial Y}{\partial u} &amp; 0 \\
+					\frac{\partial X}{\partial v} &amp;  \frac{\partial Y}{\partial v} &amp; 0
+					\end{vmatrix}  \]
+				</section>
+
+				<section>
+					<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
+
+					\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
+				</section>
+
+				<section>
+					<h3>An Identity of Ramanujan</h3>
+
+					\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
+					1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
+					{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
+				</section>
+
+				<section>
+					<h3>A Rogers-Ramanujan Identity</h3>
+
+					\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
+					\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
+				</section>
+
+				<section>
+					<h3>Maxwell&#8217;s Equations</h3>
+
+					\[  \begin{aligned}
+					\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
+					\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
+					\nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
+					\]
+				</section>
+
+				<section>
+					<h3>TeX Macros</h3>
+
+					Here is a common vector space:
+					\[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 &lt; +\infty}\]
+					used in functional analysis.
+				</section>
+
+				<section>
+					<section>
+						<h3>The Lorenz Equations</h3>
+
+						<div class="fragment">
+							\[\begin{aligned}
+							\dot{x} &amp; = \sigma(y-x) \\
+							\dot{y} &amp; = \rho x - y - xz \\
+							\dot{z} &amp; = -\beta z + xy
+							\end{aligned} \]
+						</div>
+					</section>
+
+					<section>
+						<h3>The Cauchy-Schwarz Inequality</h3>
+
+						<div class="fragment">
+							\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
+						</div>
+					</section>
+
+					<section>
+						<h3>A Cross Product Formula</h3>
+
+						<div class="fragment">
+							\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
+							\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
+							\frac{\partial X}{\partial u} &amp;  \frac{\partial Y}{\partial u} &amp; 0 \\
+							\frac{\partial X}{\partial v} &amp;  \frac{\partial Y}{\partial v} &amp; 0
+							\end{vmatrix}  \]
+						</div>
+					</section>
+
+					<section>
+						<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
+
+						<div class="fragment">
+							\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
+						</div>
+					</section>
+
+					<section>
+						<h3>An Identity of Ramanujan</h3>
+
+						<div class="fragment">
+							\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
+							1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
+							{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
+						</div>
+					</section>
+
+					<section>
+						<h3>A Rogers-Ramanujan Identity</h3>
+
+						<div class="fragment">
+							\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
+							\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
+						</div>
+					</section>
+
+					<section>
+						<h3>Maxwell&#8217;s Equations</h3>
+
+						<div class="fragment">
+							\[  \begin{aligned}
+							\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
+							\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
+							\nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
+							\]
+						</div>
+					</section>
+
+					<section>
+						<h3>TeX Macros</h3>
+
+						Here is a common vector space:
+						\[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 &lt; +\infty}\]
+						used in functional analysis.
+					</section>
+				</section>
+
+			</div>
+
+		</div>
+
+		<script src="../dist/reveal.js"></script>
+		<script src="../plugin/math/math.js"></script>
+		<script>
+			Reveal.initialize({
+				history: true,
+				transition: 'linear',
+
+				math: {
+					// mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
+					config: 'TeX-AMS_HTML-full',
+					TeX: {
+						Macros: {
+							R: '\\mathbb{R}',
+							set: [ '\\left\\{#1 \\; ; \\; #2\\right\\}', 2 ]
+						}
+					}
+				},
+
+				plugins: [ RevealMath ]
+			});
+		</script>
+
+	</body>
+</html>