| <!doctype html> | 
 | <html lang="en"> | 
 |  | 
 | 	<head> | 
 | 		<meta charset="utf-8"> | 
 |  | 
 | 		<title>reveal.js - Math Plugin</title> | 
 |  | 
 | 		<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no"> | 
 |  | 
 | 		<link rel="stylesheet" href="../dist/reveal.css"> | 
 | 		<link rel="stylesheet" href="../dist/theme/night.css" id="theme"> | 
 | 	</head> | 
 |  | 
 | 	<body> | 
 |  | 
 | 		<div class="reveal"> | 
 |  | 
 | 			<div class="slides"> | 
 |  | 
 | 				<section> | 
 | 					<h2>reveal.js Math Plugin</h2> | 
 | 					<p>A thin wrapper for MathJax</p> | 
 | 				</section> | 
 |  | 
 | 				<section> | 
 | 					<h3>The Lorenz Equations</h3> | 
 |  | 
 | 					\[\begin{aligned} | 
 | 					\dot{x} & = \sigma(y-x) \\ | 
 | 					\dot{y} & = \rho x - y - xz \\ | 
 | 					\dot{z} & = -\beta z + xy | 
 | 					\end{aligned} \] | 
 | 				</section> | 
 |  | 
 | 				<section> | 
 | 					<h3>The Cauchy-Schwarz Inequality</h3> | 
 |  | 
 | 					<script type="math/tex; mode=display"> | 
 | 						\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) | 
 | 					</script> | 
 | 				</section> | 
 |  | 
 | 				<section> | 
 | 					<h3>A Cross Product Formula</h3> | 
 |  | 
 | 					\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix} | 
 | 					\mathbf{i} & \mathbf{j} & \mathbf{k} \\ | 
 | 					\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\ | 
 | 					\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0 | 
 | 					\end{vmatrix}  \] | 
 | 				</section> | 
 |  | 
 | 				<section> | 
 | 					<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3> | 
 |  | 
 | 					\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \] | 
 | 				</section> | 
 |  | 
 | 				<section> | 
 | 					<h3>An Identity of Ramanujan</h3> | 
 |  | 
 | 					\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = | 
 | 					1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} | 
 | 					{1+\frac{e^{-8\pi}} {1+\ldots} } } } \] | 
 | 				</section> | 
 |  | 
 | 				<section> | 
 | 					<h3>A Rogers-Ramanujan Identity</h3> | 
 |  | 
 | 					\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = | 
 | 					\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] | 
 | 				</section> | 
 |  | 
 | 				<section> | 
 | 					<h3>Maxwell’s Equations</h3> | 
 |  | 
 | 					\[  \begin{aligned} | 
 | 					\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ | 
 | 					\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ | 
 | 					\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} | 
 | 					\] | 
 | 				</section> | 
 |  | 
 | 				<section> | 
 | 					<h3>TeX Macros</h3> | 
 |  | 
 | 					Here is a common vector space: | 
 | 					\[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 < +\infty}\] | 
 | 					used in functional analysis. | 
 | 				</section> | 
 |  | 
 | 				<section> | 
 | 					<section> | 
 | 						<h3>The Lorenz Equations</h3> | 
 |  | 
 | 						<div class="fragment"> | 
 | 							\[\begin{aligned} | 
 | 							\dot{x} & = \sigma(y-x) \\ | 
 | 							\dot{y} & = \rho x - y - xz \\ | 
 | 							\dot{z} & = -\beta z + xy | 
 | 							\end{aligned} \] | 
 | 						</div> | 
 | 					</section> | 
 |  | 
 | 					<section> | 
 | 						<h3>The Cauchy-Schwarz Inequality</h3> | 
 |  | 
 | 						<div class="fragment"> | 
 | 							\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \] | 
 | 						</div> | 
 | 					</section> | 
 |  | 
 | 					<section> | 
 | 						<h3>A Cross Product Formula</h3> | 
 |  | 
 | 						<div class="fragment"> | 
 | 							\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix} | 
 | 							\mathbf{i} & \mathbf{j} & \mathbf{k} \\ | 
 | 							\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\ | 
 | 							\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0 | 
 | 							\end{vmatrix}  \] | 
 | 						</div> | 
 | 					</section> | 
 |  | 
 | 					<section> | 
 | 						<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3> | 
 |  | 
 | 						<div class="fragment"> | 
 | 							\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \] | 
 | 						</div> | 
 | 					</section> | 
 |  | 
 | 					<section> | 
 | 						<h3>An Identity of Ramanujan</h3> | 
 |  | 
 | 						<div class="fragment"> | 
 | 							\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = | 
 | 							1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} | 
 | 							{1+\frac{e^{-8\pi}} {1+\ldots} } } } \] | 
 | 						</div> | 
 | 					</section> | 
 |  | 
 | 					<section> | 
 | 						<h3>A Rogers-Ramanujan Identity</h3> | 
 |  | 
 | 						<div class="fragment"> | 
 | 							\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = | 
 | 							\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] | 
 | 						</div> | 
 | 					</section> | 
 |  | 
 | 					<section> | 
 | 						<h3>Maxwell’s Equations</h3> | 
 |  | 
 | 						<div class="fragment"> | 
 | 							\[  \begin{aligned} | 
 | 							\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ | 
 | 							\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ | 
 | 							\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} | 
 | 							\] | 
 | 						</div> | 
 | 					</section> | 
 |  | 
 | 					<section> | 
 | 						<h3>TeX Macros</h3> | 
 |  | 
 | 						Here is a common vector space: | 
 | 						\[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 < +\infty}\] | 
 | 						used in functional analysis. | 
 | 					</section> | 
 | 				</section> | 
 |  | 
 | 			</div> | 
 |  | 
 | 		</div> | 
 |  | 
 | 		<script src="../dist/reveal.js"></script> | 
 | 		<script src="../plugin/math/math.js"></script> | 
 | 		<script> | 
 | 			Reveal.initialize({ | 
 | 				history: true, | 
 | 				transition: 'linear', | 
 |  | 
 | 				math: { | 
 | 					// mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js', | 
 | 					config: 'TeX-AMS_HTML-full', | 
 | 					TeX: { | 
 | 						Macros: { | 
 | 							R: '\\mathbb{R}', | 
 | 							set: [ '\\left\\{#1 \\; ; \\; #2\\right\\}', 2 ] | 
 | 						} | 
 | 					} | 
 | 				}, | 
 |  | 
 | 				plugins: [ RevealMath ] | 
 | 			}); | 
 | 		</script> | 
 |  | 
 | 	</body> | 
 | </html> |