| JJ Allaire | efa6ad4 | 2016-01-30 13:12:05 -0500 | [diff] [blame] | 1 | <!doctype html> | 
 | 2 | <html lang="en"> | 
 | 3 |  | 
 | 4 | 	<head> | 
 | 5 | 		<meta charset="utf-8"> | 
 | 6 |  | 
 | 7 | 		<title>reveal.js - Math Plugin</title> | 
 | 8 |  | 
 | 9 | 		<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no"> | 
 | 10 |  | 
 | 11 | 		<link rel="stylesheet" href="../../css/reveal.css"> | 
 | 12 | 		<link rel="stylesheet" href="../../css/theme/night.css" id="theme"> | 
 | 13 | 	</head> | 
 | 14 |  | 
 | 15 | 	<body> | 
 | 16 |  | 
 | 17 | 		<div class="reveal"> | 
 | 18 |  | 
 | 19 | 			<div class="slides"> | 
 | 20 |  | 
 | 21 | 				<section> | 
 | 22 | 					<h2>reveal.js Math Plugin</h2> | 
 | 23 | 					<p>A thin wrapper for MathJax</p> | 
 | 24 | 				</section> | 
 | 25 |  | 
 | 26 | 				<section> | 
 | 27 | 					<h3>The Lorenz Equations</h3> | 
 | 28 |  | 
 | 29 | 					\[\begin{aligned} | 
 | 30 | 					\dot{x} & = \sigma(y-x) \\ | 
 | 31 | 					\dot{y} & = \rho x - y - xz \\ | 
 | 32 | 					\dot{z} & = -\beta z + xy | 
 | 33 | 					\end{aligned} \] | 
 | 34 | 				</section> | 
 | 35 |  | 
 | 36 | 				<section> | 
 | 37 | 					<h3>The Cauchy-Schwarz Inequality</h3> | 
 | 38 |  | 
 | 39 | 					<script type="math/tex; mode=display"> | 
 | 40 | 						\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) | 
 | 41 | 					</script> | 
 | 42 | 				</section> | 
 | 43 |  | 
 | 44 | 				<section> | 
 | 45 | 					<h3>A Cross Product Formula</h3> | 
 | 46 |  | 
 | 47 | 					\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix} | 
 | 48 | 					\mathbf{i} & \mathbf{j} & \mathbf{k} \\ | 
 | 49 | 					\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\ | 
 | 50 | 					\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0 | 
 | 51 | 					\end{vmatrix}  \] | 
 | 52 | 				</section> | 
 | 53 |  | 
 | 54 | 				<section> | 
 | 55 | 					<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3> | 
 | 56 |  | 
 | 57 | 					\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \] | 
 | 58 | 				</section> | 
 | 59 |  | 
 | 60 | 				<section> | 
 | 61 | 					<h3>An Identity of Ramanujan</h3> | 
 | 62 |  | 
 | 63 | 					\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = | 
 | 64 | 					1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} | 
 | 65 | 					{1+\frac{e^{-8\pi}} {1+\ldots} } } } \] | 
 | 66 | 				</section> | 
 | 67 |  | 
 | 68 | 				<section> | 
 | 69 | 					<h3>A Rogers-Ramanujan Identity</h3> | 
 | 70 |  | 
 | 71 | 					\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = | 
 | 72 | 					\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] | 
 | 73 | 				</section> | 
 | 74 |  | 
 | 75 | 				<section> | 
 | 76 | 					<h3>Maxwell’s Equations</h3> | 
 | 77 |  | 
 | 78 | 					\[  \begin{aligned} | 
 | 79 | 					\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ | 
 | 80 | 					\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ | 
 | 81 | 					\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} | 
 | 82 | 					\] | 
 | 83 | 				</section> | 
 | 84 |  | 
 | 85 | 				<section> | 
 | 86 | 					<section> | 
 | 87 | 						<h3>The Lorenz Equations</h3> | 
 | 88 |  | 
 | 89 | 						<div class="fragment"> | 
 | 90 | 							\[\begin{aligned} | 
 | 91 | 							\dot{x} & = \sigma(y-x) \\ | 
 | 92 | 							\dot{y} & = \rho x - y - xz \\ | 
 | 93 | 							\dot{z} & = -\beta z + xy | 
 | 94 | 							\end{aligned} \] | 
 | 95 | 						</div> | 
 | 96 | 					</section> | 
 | 97 |  | 
 | 98 | 					<section> | 
 | 99 | 						<h3>The Cauchy-Schwarz Inequality</h3> | 
 | 100 |  | 
 | 101 | 						<div class="fragment"> | 
 | 102 | 							\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \] | 
 | 103 | 						</div> | 
 | 104 | 					</section> | 
 | 105 |  | 
 | 106 | 					<section> | 
 | 107 | 						<h3>A Cross Product Formula</h3> | 
 | 108 |  | 
 | 109 | 						<div class="fragment"> | 
 | 110 | 							\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix} | 
 | 111 | 							\mathbf{i} & \mathbf{j} & \mathbf{k} \\ | 
 | 112 | 							\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\ | 
 | 113 | 							\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0 | 
 | 114 | 							\end{vmatrix}  \] | 
 | 115 | 						</div> | 
 | 116 | 					</section> | 
 | 117 |  | 
 | 118 | 					<section> | 
 | 119 | 						<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3> | 
 | 120 |  | 
 | 121 | 						<div class="fragment"> | 
 | 122 | 							\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \] | 
 | 123 | 						</div> | 
 | 124 | 					</section> | 
 | 125 |  | 
 | 126 | 					<section> | 
 | 127 | 						<h3>An Identity of Ramanujan</h3> | 
 | 128 |  | 
 | 129 | 						<div class="fragment"> | 
 | 130 | 							\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = | 
 | 131 | 							1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} | 
 | 132 | 							{1+\frac{e^{-8\pi}} {1+\ldots} } } } \] | 
 | 133 | 						</div> | 
 | 134 | 					</section> | 
 | 135 |  | 
 | 136 | 					<section> | 
 | 137 | 						<h3>A Rogers-Ramanujan Identity</h3> | 
 | 138 |  | 
 | 139 | 						<div class="fragment"> | 
 | 140 | 							\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = | 
 | 141 | 							\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] | 
 | 142 | 						</div> | 
 | 143 | 					</section> | 
 | 144 |  | 
 | 145 | 					<section> | 
 | 146 | 						<h3>Maxwell’s Equations</h3> | 
 | 147 |  | 
 | 148 | 						<div class="fragment"> | 
 | 149 | 							\[  \begin{aligned} | 
 | 150 | 							\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ | 
 | 151 | 							\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ | 
 | 152 | 							\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} | 
 | 153 | 							\] | 
 | 154 | 						</div> | 
 | 155 | 					</section> | 
 | 156 | 				</section> | 
 | 157 |  | 
 | 158 | 			</div> | 
 | 159 |  | 
 | 160 | 		</div> | 
 | 161 |  | 
 | 162 | 		<script src="../../lib/js/head.min.js"></script> | 
 | 163 | 		<script src="../../js/reveal.js"></script> | 
 | 164 |  | 
 | 165 | 		<script> | 
 | 166 |  | 
 | 167 | 			Reveal.initialize({ | 
 | 168 | 				history: true, | 
 | 169 | 				transition: 'linear', | 
 | 170 |  | 
 | 171 | 				math: { | 
 | 172 | 					// mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js', | 
 | 173 | 					config: 'TeX-AMS_HTML-full' | 
 | 174 | 				}, | 
 | 175 |  | 
 | 176 | 				dependencies: [ | 
 | 177 | 					{ src: '../../lib/js/classList.js' }, | 
 | 178 | 					{ src: '../../plugin/math/math.js', async: true } | 
 | 179 | 				] | 
 | 180 | 			}); | 
 | 181 |  | 
 | 182 | 		</script> | 
 | 183 |  | 
 | 184 | 	</body> | 
 | 185 | </html> |