blob: 1b80e034d8444326bc9c073c6ad692f456b617b1 [file] [log] [blame]
JJ Allaireefa6ad42016-01-30 13:12:05 -05001<!doctype html>
2<html lang="en">
3
4 <head>
5 <meta charset="utf-8">
6
7 <title>reveal.js - Math Plugin</title>
8
9 <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
10
11 <link rel="stylesheet" href="../../css/reveal.css">
12 <link rel="stylesheet" href="../../css/theme/night.css" id="theme">
13 </head>
14
15 <body>
16
17 <div class="reveal">
18
19 <div class="slides">
20
21 <section>
22 <h2>reveal.js Math Plugin</h2>
23 <p>A thin wrapper for MathJax</p>
24 </section>
25
26 <section>
27 <h3>The Lorenz Equations</h3>
28
29 \[\begin{aligned}
30 \dot{x} &amp; = \sigma(y-x) \\
31 \dot{y} &amp; = \rho x - y - xz \\
32 \dot{z} &amp; = -\beta z + xy
33 \end{aligned} \]
34 </section>
35
36 <section>
37 <h3>The Cauchy-Schwarz Inequality</h3>
38
39 <script type="math/tex; mode=display">
40 \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
41 </script>
42 </section>
43
44 <section>
45 <h3>A Cross Product Formula</h3>
46
47 \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
48 \mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
49 \frac{\partial X}{\partial u} &amp; \frac{\partial Y}{\partial u} &amp; 0 \\
50 \frac{\partial X}{\partial v} &amp; \frac{\partial Y}{\partial v} &amp; 0
51 \end{vmatrix} \]
52 </section>
53
54 <section>
55 <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
56
57 \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
58 </section>
59
60 <section>
61 <h3>An Identity of Ramanujan</h3>
62
63 \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
64 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
65 {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
66 </section>
67
68 <section>
69 <h3>A Rogers-Ramanujan Identity</h3>
70
71 \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
72 \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
73 </section>
74
75 <section>
76 <h3>Maxwell&#8217;s Equations</h3>
77
78 \[ \begin{aligned}
79 \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
80 \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
81 \nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
82 \]
83 </section>
84
85 <section>
86 <section>
87 <h3>The Lorenz Equations</h3>
88
89 <div class="fragment">
90 \[\begin{aligned}
91 \dot{x} &amp; = \sigma(y-x) \\
92 \dot{y} &amp; = \rho x - y - xz \\
93 \dot{z} &amp; = -\beta z + xy
94 \end{aligned} \]
95 </div>
96 </section>
97
98 <section>
99 <h3>The Cauchy-Schwarz Inequality</h3>
100
101 <div class="fragment">
102 \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
103 </div>
104 </section>
105
106 <section>
107 <h3>A Cross Product Formula</h3>
108
109 <div class="fragment">
110 \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
111 \mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
112 \frac{\partial X}{\partial u} &amp; \frac{\partial Y}{\partial u} &amp; 0 \\
113 \frac{\partial X}{\partial v} &amp; \frac{\partial Y}{\partial v} &amp; 0
114 \end{vmatrix} \]
115 </div>
116 </section>
117
118 <section>
119 <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
120
121 <div class="fragment">
122 \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
123 </div>
124 </section>
125
126 <section>
127 <h3>An Identity of Ramanujan</h3>
128
129 <div class="fragment">
130 \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
131 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
132 {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
133 </div>
134 </section>
135
136 <section>
137 <h3>A Rogers-Ramanujan Identity</h3>
138
139 <div class="fragment">
140 \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
141 \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
142 </div>
143 </section>
144
145 <section>
146 <h3>Maxwell&#8217;s Equations</h3>
147
148 <div class="fragment">
149 \[ \begin{aligned}
150 \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
151 \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
152 \nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
153 \]
154 </div>
155 </section>
156 </section>
157
158 </div>
159
160 </div>
161
162 <script src="../../lib/js/head.min.js"></script>
163 <script src="../../js/reveal.js"></script>
164
165 <script>
166
167 Reveal.initialize({
168 history: true,
169 transition: 'linear',
170
171 math: {
172 // mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
173 config: 'TeX-AMS_HTML-full'
174 },
175
176 dependencies: [
177 { src: '../../lib/js/classList.js' },
178 { src: '../../plugin/math/math.js', async: true }
179 ]
180 });
181
182 </script>
183
184 </body>
185</html>