blob: 5dfe0ca5eb3a8d19902a26ca1fd785f7f11c7730 [file] [log] [blame]
package datokenizer
/**
* The file reader is basically a port of foma2js,
* licensed under the Apache License, version 2,
* and written by Mans Hulden.
*/
// The maximum number of states is 1.073.741.823 (30bit),
// with a loadfactor of ~70, this means roughly 70 million
// states in the FSA, which is sufficient for the current
// job.
//
// Serialization is little endian.
// TODO:
// - replace maxSize with the check value
// - Check if final states can be optional.
// - Introduce ELM (Morita et al. 2001) to speed
// up construction. Can be ignored on serialization
// to improve compression.
// - Add checksum to serialization.
// - Replace/Enhance table with a map
// - Provide a bufio.Scanner compatible interface.
// - Mark epsilon transitions in bytes
import (
"bufio"
"compress/gzip"
"encoding/binary"
"fmt"
"io"
"math"
"os"
"sort"
"strconv"
"strings"
"unicode/utf8"
"log"
)
const (
PROPS = 1
SIGMA = 2
STATES = 3
NONE = 4
DEBUG = false
MAGIC = "DATOK"
VERSION = uint16(1)
FIRSTBIT uint32 = 1 << 31
SECONDBIT uint32 = 1 << 30
RESTBIT uint32 = ^uint32(0) &^ (FIRSTBIT | SECONDBIT)
)
// Serialization is always little endian
var bo binary.ByteOrder = binary.LittleEndian
type mapping struct {
source int
target uint32
}
type edge struct {
inSym int
outSym int
end int
nontoken bool
tokenend bool
}
// Tokenizer is the intermediate representation
// of the tokenizer.
type Tokenizer struct {
sigmaRev map[int]rune
sigmaMCS map[int]string
arcCount int
sigmaCount int
transitions []map[int]*edge
// Special symbols in sigma
epsilon int
unknown int
identity int
final int
tokenend int
}
type bc struct {
base uint32
check uint32
}
// DaTokenizer represents a tokenizer implemented as a
// Double Array FSA.
type DaTokenizer struct {
sigma map[rune]int
sigmaASCII [256]int
maxSize int
transCount int
array []bc
// Special symbols in sigma
epsilon int
unknown int
identity int
final int
tokenend int
}
// ParseFoma reads the FST from a foma file
// and creates an internal representation,
// in case it follows the tokenizer's convention.
func LoadFomaFile(file string) *Tokenizer {
f, err := os.Open(file)
if err != nil {
log.Print(err)
return nil
}
defer f.Close()
gz, err := gzip.NewReader(f)
if err != nil {
log.Print(err)
return nil
}
defer gz.Close()
return ParseFoma(gz)
}
// ParseFoma reads the FST from a foma file reader
// and creates an internal representation,
// in case it follows the tokenizer's convention.
func ParseFoma(ior io.Reader) *Tokenizer {
r := bufio.NewReader(ior)
tok := &Tokenizer{
sigmaRev: make(map[int]rune),
sigmaMCS: make(map[int]string),
epsilon: -1,
unknown: -1,
identity: -1,
final: -1,
tokenend: -1,
}
var state, inSym, outSym, end, final int
mode := 0
var elem []string
var elemint [5]int
// Iterate over all lines of the file.
// This is mainly based on foma2js,
// licensed under the Apache License, version 2,
// and written by Mans Hulden.
for {
line, err := r.ReadString('\n')
if err != nil {
if err == io.EOF {
break
}
log.Print(err)
return nil
}
// Read parser mode for the following lines
if strings.HasPrefix(line, "##") {
if strings.HasPrefix(line, "##props##") {
mode = PROPS
} else if strings.HasPrefix(line, "##states##") {
mode = STATES
// Adds a final transition symbol to sigma
// written as '#' in Mizobuchi et al (2000)
tok.sigmaCount++
tok.final = tok.sigmaCount
} else if strings.HasPrefix(line, "##sigma##") {
mode = SIGMA
} else if strings.HasPrefix(line, "##end##") {
mode = NONE
} else if !strings.HasPrefix(line, "##foma-net") {
log.Print("Unknown input line")
break
}
continue
}
// Based on the current parser mode, interpret the lines
switch mode {
case PROPS:
{
elem = strings.Split(line, " ")
/*
fmt.Println("arity: " + elem[0])
fmt.Println("arccount: " + elem[1])
fmt.Println("statecount: " + elem[2])
fmt.Println("linecount: " + elem[3])
fmt.Println("finalcount: " + elem[4])
fmt.Println("pathcount: " + elem[5])
fmt.Println("is_deterministic: " + elem[6])
fmt.Println("is_pruned: " + elem[7])
fmt.Println("is_minimized: " + elem[8])
fmt.Println("is_epsilon_free: " + elem[9])
fmt.Println("is_loop_free: " + elem[10])
fmt.Println("extras: " + elem[11])
fmt.Println("name: " + elem[12])
*/
if elem[6] != "1" {
log.Print("The FST needs to be deterministic")
return nil
}
if elem[9] != "1" {
log.Print("The FST needs to be epsilon free")
return nil
}
elemint[0], err = strconv.Atoi(elem[1])
if err != nil {
log.Print("Can't read arccount")
return nil
}
tok.arcCount = elemint[0]
elemint[0], err = strconv.Atoi(elem[2])
if err != nil {
log.Print("Can't read statecount")
return nil
}
// States start at 1 in Mizobuchi et al (2000),
// as the state 0 is associated with a fail.
// Initialize states and transitions
tok.transitions = make([]map[int]*edge, elemint[0]+1)
continue
}
case STATES:
{
elem = strings.Split(line[0:len(line)-1], " ")
if elem[0] == "-1" {
if DEBUG {
fmt.Println("Skip", elem)
}
continue
}
elemint[0], err = strconv.Atoi(elem[0])
if err != nil {
fmt.Println("Unable to translate", elem[0])
break
}
if len(elem) > 1 {
elemint[1], err = strconv.Atoi(elem[1])
if err != nil {
fmt.Println("Unable to translate", elem[1])
break
}
if len(elem) > 2 {
elemint[2], err = strconv.Atoi(elem[2])
if err != nil {
fmt.Println("Unable to translate", elem[2])
break
}
if len(elem) > 3 {
elemint[3], err = strconv.Atoi(elem[3])
if err != nil {
fmt.Println("Unable to translate", elem[3])
break
}
if len(elem) > 4 {
elemint[4], err = strconv.Atoi(elem[4])
if err != nil {
fmt.Println("Unable to translate", elem[4])
break
}
}
}
}
}
switch len(elem) {
case 5:
{
state = elemint[0]
inSym = elemint[1]
outSym = elemint[2]
end = elemint[3]
final = elemint[4]
}
case 4:
{
if elemint[1] == -1 {
state = elemint[0]
final = elemint[3]
// Final state that has no outgoing edges
if final == 1 {
// Initialize outgoing states
if tok.transitions[state+1] == nil {
tok.transitions[state+1] = make(map[int]*edge)
}
// TODO:
// Maybe this is less relevant for tokenizers
tok.transitions[state+1][tok.final] = &edge{}
}
continue
} else {
state = elemint[0]
inSym = elemint[1]
end = elemint[2]
final = elemint[3]
outSym = inSym
}
}
case 3:
{
inSym = elemint[0]
outSym = elemint[1]
end = elemint[2]
}
case 2:
{
inSym = elemint[0]
end = elemint[1]
outSym = inSym
}
}
nontoken := false
tokenend := false
// While the states in foma start with 0, the states in the
// Mizobuchi FSA start with one - so we increase every state by 1.
// We also increase sigma by 1, so there are no 0 transitions.
inSym++
outSym++
// Only a limited list of transitions are allowed
if inSym != outSym {
if outSym == tok.tokenend && inSym == tok.epsilon {
tokenend = true
} else if outSym == tok.epsilon {
nontoken = true
} else {
log.Println(
"Unsupported transition: " +
strconv.Itoa(state) +
" -> " + strconv.Itoa(end) +
" (" +
strconv.Itoa(inSym) +
":" +
strconv.Itoa(outSym) +
") (" +
string(tok.sigmaRev[inSym]) +
":" +
string(tok.sigmaRev[outSym]) +
")")
return nil
}
} else if inSym == tok.tokenend {
// Ignore tokenend accepting arcs
continue
} else if inSym == tok.epsilon {
log.Println("General epsilon transitions are not supported")
return nil
} else if tok.sigmaMCS[inSym] != "" {
// log.Fatalln("Non supported character", tok.sigmaMCS[inSym])
// Ignore MCS transitions
continue
}
// Create an edge based on the collected information
targetObj := &edge{
inSym: inSym,
outSym: outSym,
end: end + 1,
tokenend: tokenend,
nontoken: nontoken,
}
// Initialize outgoing states
if tok.transitions[state+1] == nil {
tok.transitions[state+1] = make(map[int]*edge)
}
// Ignore transitions with invalid symbols
if inSym >= 0 {
tok.transitions[state+1][inSym] = targetObj
}
// Add final transition
if final == 1 {
// TODO:
// Maybe this is less relevant for tokenizers
tok.transitions[state+1][tok.final] = &edge{}
}
if DEBUG {
fmt.Println("Add",
state+1, "->", end+1,
"(",
inSym,
":",
outSym,
") (",
string(tok.sigmaRev[inSym]),
":",
string(tok.sigmaRev[outSym]),
")",
";",
"TE:", tokenend,
"NT:", nontoken,
"FIN:", final)
}
continue
}
case SIGMA:
{
elem = strings.SplitN(line[0:len(line)-1], " ", 2)
// Turn string into sigma id
number, err := strconv.Atoi(elem[0])
// ID needs to be > 1
number++
if err != nil {
log.Println(err)
return nil
}
tok.sigmaCount = number
var symbol rune
// Read rune
if utf8.RuneCountInString(elem[1]) == 1 {
symbol = []rune(elem[1])[0]
} else if utf8.RuneCountInString(elem[1]) > 1 {
// Probably a MCS
switch elem[1] {
case "@_EPSILON_SYMBOL_@":
{
tok.epsilon = number
}
case "@_UNKNOWN_SYMBOL_@":
{
tok.unknown = number
}
case "@_IDENTITY_SYMBOL_@":
{
tok.identity = number
}
case "@_TOKEN_SYMBOL_@":
{
tok.tokenend = number
}
default:
{
// MCS not supported
tok.sigmaMCS[number] = line
}
}
continue
} else { // Probably a new line symbol
line, err = r.ReadString('\n')
if err != nil {
log.Println(err)
return nil
}
if len(line) != 1 {
// MCS not supported
tok.sigmaMCS[number] = line
continue
}
symbol = rune('\n')
}
tok.sigmaRev[number] = symbol
}
}
}
tok.sigmaMCS = nil
return tok
}
// Set alphabet A to the list of all symbols
// outgoing from s
func (tok *Tokenizer) getSet(s int, A *[]int) {
for a := range tok.transitions[s] {
*A = append(*A, a)
}
// Not required, but simplifies bug hunting
// sort.Ints(*A)
}
// ToDoubleArray turns the intermediate tokenizer representation
// into a double array representation.
//
// This is based on Mizobuchi et al (2000), p.128
func (tok *Tokenizer) ToDoubleArray() *DaTokenizer {
dat := &DaTokenizer{
sigma: make(map[rune]int),
transCount: -1,
final: tok.final,
unknown: tok.unknown,
identity: tok.identity,
epsilon: tok.epsilon,
tokenend: tok.tokenend,
}
dat.resize(dat.final)
for num, sym := range tok.sigmaRev {
if int(sym) < 256 {
dat.sigmaASCII[int(sym)] = num
}
dat.sigma[sym] = num
}
mark := 0
size := 0
var base uint32
var atrans *edge
var s, s1 int
var t, t1 uint32
// Create a mapping from s (in Ms aka Intermediate FSA)
// to t (in Mt aka Double Array FSA)
table := make([]*mapping, tok.arcCount+1)
// tableQueue := make([]int, tok.arcCount+1)
// Initialize with the start state
table[size] = &mapping{source: 1, target: 1}
// tableQueue[size] = 1
size++
// Allocate space for the outgoing symbol range
A := make([]int, 0, tok.sigmaCount)
// tableLookup := make([]uint32, tok.arcCount+2) // make(map[int]uint32)
// tableLookup[1] = 1
// block_begin_pos := uint32(1)
for mark < size {
s = table[mark].source // This is a state in Ms
t = table[mark].target // This is a state in Mt
// s = tableQueue[mark]
// t = tableLookup[s]
mark++
// Following the paper, here the state t can be remembered
// in the set of states St
A = A[:0]
tok.getSet(s, &A)
// Set base to the first free slot in the double array
// base = dat.xCheck(A)
// base = dat.xCheckSkip(A)
// base = dat.xCheckNiu(A, &block_begin_pos)
base = dat.xCheckSkipNiu(A)
dat.array[t].setBase(base)
// TODO:
// Sort the outgoing transitions based on the
// outdegree of .end
// Iterate over all outgoing symbols
for _, a := range A {
if a != tok.final {
atrans = tok.transitions[s][a]
// Aka g(s, a)
s1 = atrans.end
// Store the transition
t1 = base + uint32(a)
dat.array[t1].setCheck(t)
// Set maxSize
if dat.maxSize < int(t1) {
dat.maxSize = int(t1)
}
if DEBUG {
fmt.Println("Translate transition",
s, "->", s1, "(", a, ")", "to", t, "->", t1)
}
// Mark the state as being the target of a nontoken transition
if atrans.nontoken {
dat.array[t1].setNonToken(true)
if DEBUG {
fmt.Println("Set", t1, "to nontoken")
}
}
// Mark the state as being the target of a tokenend transition
if atrans.tokenend {
dat.array[t1].setTokenEnd(true)
if DEBUG {
fmt.Println("Set", t1, "to tokenend")
}
}
// Check for representative states
r := stateAlreadyInTable(s1, table, size)
// r := tableLookup[s1]
// No representative found
if r == 0 {
// Remember the mapping
table[size] = &mapping{source: s1, target: t1}
// tableQueue[size] = s1
// tableLookup[s1] = t1
size++
} else {
// Overwrite with the representative state
dat.array[t1].setBase(r)
dat.array[t1].setSeparate(true)
}
} else {
// Store a final transition
dat.array[base+uint32(dat.final)].setCheck(t)
if dat.maxSize < int(base)+dat.final {
dat.maxSize = int(base) + dat.final
}
}
}
}
// Following Mizobuchi et al (2000) the size of the
// FSA should be stored in check(1).
// We make the size a bit larger so we never have to check for boundaries.
dat.setSize(dat.maxSize + dat.final)
if len(dat.array) < dat.maxSize+dat.final {
dat.array = append(dat.array, make([]bc, dat.final)...)
}
dat.array = dat.array[:dat.maxSize+dat.final]
return dat
}
// Check the table if a mapping of s
// exists and return this as a representative.
// Currently iterates through the whole table
// in a bruteforce manner.
func stateAlreadyInTable(s int, table []*mapping, size int) uint32 {
for x := 0; x < size; x++ {
if table[x].source == s {
return table[x].target
}
}
return 0
}
// Resize double array when necessary
func (dat *DaTokenizer) resize(l int) {
// TODO:
// This is a bit too aggressive atm and should be calmed down.
if len(dat.array) <= l {
dat.array = append(dat.array, make([]bc, l)...)
}
}
// Set base value in double array
func (bc *bc) setBase(v uint32) {
bc.base = v
}
// Get base value in double array
func (bc *bc) getBase() uint32 {
return bc.base & RESTBIT
}
// Set check value in double array
func (bc *bc) setCheck(v uint32) {
bc.check = v
}
// Get check value in double array
func (bc *bc) getCheck() uint32 {
return bc.check & RESTBIT
}
// Returns true if a state is separate pointing to a representative
func (bc *bc) isSeparate() bool {
return bc.base&FIRSTBIT != 0
}
// Mark a state as separate pointing to a representative
func (bc *bc) setSeparate(sep bool) {
if sep {
bc.base |= FIRSTBIT
} else {
bc.base &= (RESTBIT | SECONDBIT)
}
}
// Returns true if a state is the target of a nontoken transition
func (bc *bc) isNonToken() bool {
return bc.check&FIRSTBIT != 0
}
// Mark a state as being the target of a nontoken transition
func (bc *bc) setNonToken(sep bool) {
if sep {
bc.check |= FIRSTBIT
} else {
bc.check &= (RESTBIT | SECONDBIT)
}
}
// Returns true if a state is the target of a tokenend transition
func (bc *bc) isTokenEnd() bool {
return bc.check&SECONDBIT != 0
}
// Mark a state as being the target of a tokenend transition
func (bc *bc) setTokenEnd(sep bool) {
if sep {
bc.check |= SECONDBIT
} else {
bc.check &= (RESTBIT | FIRSTBIT)
}
}
// Set size of double array
func (dat *DaTokenizer) setSize(v int) {
dat.array[1].setCheck(uint32(v))
}
// Get size of double array
func (dat *DaTokenizer) GetSize() int {
return int(dat.array[1].getCheck())
}
// Based on Mizobuchi et al (2000), p. 124
// This iterates for every state through the complete double array
// structure until it finds a gap that fits all outgoing transitions
// of the state. This is extremely slow, but is only necessary in the
// construction phase of the tokenizer.
func (dat *DaTokenizer) xCheck(symbols []int) uint32 {
// Start at the first entry of the double array list
base := uint32(1)
OVERLAP:
// Resize the array if necessary
dat.resize(int(base) + dat.final)
for _, a := range symbols {
if dat.array[int(base)+a].getCheck() != 0 {
base++
goto OVERLAP
}
}
return base
}
// This is an implementation of xCheck with the skip-improvement
// proposed by Morita et al. (2001)
func (dat *DaTokenizer) xCheckSkip(symbols []int) uint32 {
// Start at the first entry of the double array list
base := uint32(math.Abs(float64(dat.maxSize-1) * .9))
OVERLAP:
// Resize the array if necessary
dat.resize(int(base) + dat.final)
for _, a := range symbols {
if dat.array[int(base)+a].getCheck() != 0 {
base++
goto OVERLAP
}
}
return base
}
// This is an implementation of xCheck with the skip-improvement
// proposed by Morita et al. (2001) for higher outdegrees as
// proposed by Niu et al. (2013)
func (dat *DaTokenizer) xCheckSkipNiu(symbols []int) uint32 {
// Start at the first entry of the double array list
base := uint32(1)
// Or skip the first few entries
if len(symbols) >= 3 {
base = uint32(math.Abs(float64(dat.maxSize-1)*.9)) + 1
}
OVERLAP:
// Resize the array if necessary
dat.resize(int(base) + dat.final + 1)
for _, a := range symbols {
if dat.array[int(base)+a].getCheck() != 0 {
base++
goto OVERLAP
}
}
return base
}
// This is an implementation of xCheck wit an improvement
// proposed by Niu et al. (2013)
func (dat *DaTokenizer) xCheckNiu(symbols []int, block_begin_pos *uint32) uint32 {
// Start at the first entry of the double array list
base := uint32(1)
if len(symbols) > 3 {
sort.Ints(symbols)
if *block_begin_pos > uint32(symbols[0]) {
dat.resize(int(*block_begin_pos) + dat.final)
*block_begin_pos += uint32(symbols[len(symbols)-1] + 1)
return *block_begin_pos - uint32(symbols[0])
}
}
OVERLAP:
// Resize the array if necessary
dat.resize(int(base) + dat.final)
for _, a := range symbols {
if dat.array[int(base)+a].getCheck() != 0 {
base++
goto OVERLAP
}
}
return base
}
// List all outgoing transitions for a state
// for testing purposes
func (dat *DaTokenizer) outgoing(t uint32) []int {
valid := make([]int, 0, len(dat.sigma))
for _, a := range dat.sigma {
t1 := dat.array[t].getBase() + uint32(a)
if t1 <= dat.array[1].getCheck() && dat.array[t1].getCheck() == t {
valid = append(valid, a)
}
}
for _, a := range []int{dat.epsilon, dat.unknown, dat.identity, dat.final} {
t1 := dat.array[t].getBase() + uint32(a)
if t1 <= dat.array[1].getCheck() && dat.array[t1].getCheck() == t {
valid = append(valid, -1*a)
}
}
sort.Ints(valid)
return valid
}
// TransCount as the number of transitions aka arcs in the
// finite state automaton
func (dat *DaTokenizer) TransCount() int {
// Cache the transCount
if dat.transCount > 0 {
return dat.transCount
}
dat.transCount = 0
for x := 1; x < len(dat.array); x++ {
if dat.array[x].getBase() != 0 {
dat.transCount++
}
}
return dat.transCount
}
// LoadFactor as defined in Kanda et al (2018),
// i.e. the proportion of non-empty elements to all elements.
func (dat *DaTokenizer) LoadFactor() float64 {
return float64(dat.TransCount()) / float64(len(dat.array)) * 100
}
// Save stores the double array data in a file
func (dat *DaTokenizer) Save(file string) (n int64, err error) {
f, err := os.Create(file)
if err != nil {
log.Println(err)
return 0, err
}
defer f.Close()
gz := gzip.NewWriter(f)
defer gz.Close()
n, err = dat.WriteTo(gz)
if err != nil {
log.Println(err)
return n, err
}
gz.Flush()
return n, nil
}
// WriteTo stores the double array data in an io.Writer.
func (dat *DaTokenizer) WriteTo(w io.Writer) (n int64, err error) {
wb := bufio.NewWriter(w)
defer wb.Flush()
// Store magical header
all, err := wb.Write([]byte(MAGIC))
if err != nil {
log.Println(err)
return int64(all), err
}
// Get sigma as a list
sigmalist := make([]rune, len(dat.sigma)+16)
max := 0
for sym, num := range dat.sigma {
sigmalist[num] = sym
if num > max {
max = num
}
}
sigmalist = sigmalist[:max+1]
buf := make([]byte, 0, 16)
bo.PutUint16(buf[0:2], VERSION)
bo.PutUint16(buf[2:4], uint16(dat.epsilon))
bo.PutUint16(buf[4:6], uint16(dat.unknown))
bo.PutUint16(buf[6:8], uint16(dat.identity))
bo.PutUint16(buf[8:10], uint16(dat.final))
bo.PutUint16(buf[10:12], uint16(len(sigmalist)))
bo.PutUint32(buf[12:16], uint32(len(dat.array)*2)) // Legacy support
more, err := wb.Write(buf[0:16])
if err != nil {
log.Println(err)
return int64(all), err
}
all += more
// Write sigma
for _, sym := range sigmalist {
more, err = wb.WriteRune(sym)
if err != nil {
log.Println(err)
return int64(all), err
}
all += more
}
if err != nil {
log.Println(err)
return int64(all), err
}
// Test marker - could be checksum
more, err = wb.Write([]byte("T"))
if err != nil {
log.Println(err)
return int64(all), err
}
all += more
// for x := 0; x < len(dat.array); x++ {
for _, bc := range dat.array {
bo.PutUint32(buf[0:4], bc.base)
more, err = wb.Write(buf[0:4])
if err != nil {
log.Println(err)
return int64(all), err
}
all += more
if more != 4 {
log.Println("Can not write base uint32")
return int64(all), err
}
bo.PutUint32(buf[0:4], bc.check)
more, err = wb.Write(buf[0:4])
if err != nil {
log.Println(err)
return int64(all), err
}
all += more
if more != 4 {
log.Println("Can not write check uint32")
return int64(all), err
}
}
return int64(all), err
}
// LoadDatokFile reads a double array represented tokenizer
// from a file.
func LoadDatokFile(file string) *DaTokenizer {
f, err := os.Open(file)
if err != nil {
log.Println(err)
return nil
}
defer f.Close()
gz, err := gzip.NewReader(f)
if err != nil {
log.Println(err)
return nil
}
defer gz.Close()
// Todo: Read the whole file!
return ParseDatok(gz)
}
// LoadDatokFile reads a double array represented tokenizer
// from an io.Reader
func ParseDatok(ior io.Reader) *DaTokenizer {
// Initialize tokenizer with default values
dat := &DaTokenizer{
sigma: make(map[rune]int),
epsilon: 0,
unknown: 0,
identity: 0,
final: 0,
transCount: 0,
}
r := bufio.NewReader(ior)
buf := make([]byte, 1024)
buf = buf[0:len(MAGIC)]
_, err := r.Read(buf)
if err != nil {
log.Println(err)
return nil
}
if string(MAGIC) != string(buf) {
log.Println("Not a datok file")
return nil
}
more, err := io.ReadFull(r, buf[0:16])
if err != nil {
log.Println(err)
return nil
}
if more != 16 {
log.Println("Read bytes do not fit")
return nil
}
version := bo.Uint16(buf[0:2])
if version != VERSION {
log.Println("Version not compatible")
return nil
}
dat.epsilon = int(bo.Uint16(buf[2:4]))
dat.unknown = int(bo.Uint16(buf[4:6]))
dat.identity = int(bo.Uint16(buf[6:8]))
dat.final = int(bo.Uint16(buf[8:10]))
sigmaCount := int(bo.Uint16(buf[10:12]))
arraySize := int(bo.Uint32(buf[12:16])) / 2 // Legacy support
// Shouldn't be relevant though
dat.maxSize = arraySize - 1
for x := 0; x < sigmaCount; x++ {
sym, _, err := r.ReadRune()
if err == nil && sym != 0 {
if int(sym) < 256 {
dat.sigmaASCII[int(sym)] = x
}
dat.sigma[sym] = x
}
}
_, err = io.ReadFull(r, buf[0:1])
if err != nil {
log.Print(err)
return nil
}
if string("T") != string(buf[0:1]) {
log.Println("Not a datok file")
return nil
}
// Read based on length
dat.array = make([]bc, arraySize)
dataArray, err := io.ReadAll(r)
if err == io.EOF {
log.Println(err)
return nil
}
if len(dataArray) < arraySize*8 {
log.Println("Not enough bytes read")
return nil
}
for x := 0; x < arraySize; x++ {
dat.array[x].base = bo.Uint32(dataArray[x*8 : (x*8)+4])
dat.array[x].check = bo.Uint32(dataArray[(x*8)+4 : (x*8)+8])
}
return dat
}
// Show the current state of the buffer,
// for testing puroses
func showBuffer(buffer []rune, buffo int, buffi int) string {
out := make([]rune, 0, 1024)
for x := 0; x < len(buffer); x++ {
if buffi == x {
out = append(out, '^')
}
if buffo == x {
out = append(out, '[', buffer[x], ']')
} else {
out = append(out, buffer[x])
}
}
return string(out)
}
// Transduce an input string against the double array
// FSA. The rules are always greedy. If the automaton fails,
// it takes the last possible token ending branch.
//
// Based on Mizobuchi et al (2000), p. 129,
// with additional support for IDENTITY, UNKNOWN
// and EPSILON transitions and NONTOKEN and TOKENEND handling.
func (dat *DaTokenizer) Transduce(r io.Reader, w io.Writer) bool {
var a int
var t0 uint32
t := uint32(1) // Initial state
var ok, rewindBuffer bool
// Remember the last position of a possible tokenend,
// in case the automaton fails.
epsilonState := uint32(0)
epsilonOffset := 0
// Implement a low level buffer for full control,
// however - it is probably better to introduce
// this on a higher level with a io.Reader interface
// The buffer stores a single word and may have white
// space at the end (but not at the beginning).
//
// This is the only backtracking requirement because of
// epsilon transitions, to support tokenizations like:
// "this is an example|.| And it works." vs
// "this is an example.com| application."
//
// TODO:
// Store a translation buffer as well, so characters don't
// have to be translated multiple times!
buffer := make([]rune, 1024)
buffo := 0 // Buffer offset
buffi := 0 // Buffer length
reader := bufio.NewReader(r)
writer := bufio.NewWriter(w)
defer writer.Flush()
var char rune
var err error
eof := false
newchar := true
PARSECHAR:
for {
if newchar {
// Get from reader if buffer is empty
if buffo >= buffi {
if eof {
break
}
char, _, err = reader.ReadRune()
// No more runes to read
if err != nil {
eof = true
break
}
buffer[buffi] = char
buffi++
}
char = buffer[buffo]
if DEBUG {
fmt.Println("Current char", string(char), showBuffer(buffer, buffo, buffi))
}
// TODO:
// Better not repeatedly check for a!
// Possibly keep a buffer with a.
if int(char) < 256 {
a = dat.sigmaASCII[int(char)]
} else {
a, ok = dat.sigma[char]
if !ok {
a = 0
}
}
// Use identity symbol if character is not in sigma
if a == 0 && dat.identity != -1 {
a = dat.identity
}
t0 = t
// Check for epsilon transitions and remember
if dat.array[dat.array[t0].getBase()+uint32(dat.epsilon)].getCheck() == t0 {
// Remember state for backtracking to last tokenend state
epsilonState = t0
epsilonOffset = buffo
}
}
// Checks a transition based on t0, a and buffo
t = dat.array[t0].getBase() + uint32(a)
ta := dat.array[t]
if DEBUG {
// Char is only relevant if set
fmt.Println("Check", t0, "-", a, "(", string(char), ")", "->", t)
if false {
fmt.Println(dat.outgoing(t0))
}
}
// Check if the transition is invalid according to the double array
if t > dat.array[1].getCheck() || ta.getCheck() != t0 {
if DEBUG {
fmt.Println("Match is not fine!", t, "and", ta.getCheck(), "vs", t0)
}
if !ok && a == dat.identity {
// Try again with unknown symbol, in case identity failed
// Char is only relevant when set
if DEBUG {
fmt.Println("UNKNOWN symbol", string(char), "->", dat.unknown)
}
a = dat.unknown
} else if a != dat.epsilon {
// Try again with epsilon symbol, in case everything else failed
t0 = epsilonState
epsilonState = 0 // reset
buffo = epsilonOffset
a = dat.epsilon
if DEBUG {
fmt.Println("Get from epsilon stack and set buffo!", showBuffer(buffer, buffo, buffi))
}
} else {
break
}
newchar = false
continue
}
// Transition was successful
rewindBuffer = false
// Transition consumes a character
if a != dat.epsilon {
buffo++
// Transition does not produce a character
if buffo == 1 && ta.isNonToken() {
if DEBUG {
fmt.Println("Nontoken forward", showBuffer(buffer, buffo, buffi))
}
rewindBuffer = true
}
}
// Transition marks the end of a token - so flush the buffer
if ta.isTokenEnd() {
if buffi > 0 {
if DEBUG {
fmt.Println("-> Flush buffer: [", string(buffer[:buffo]), "]", showBuffer(buffer, buffo, buffi))
}
writer.WriteString(string(buffer[:buffo]))
rewindBuffer = true
}
if DEBUG {
fmt.Println("-> Newline")
}
writer.WriteRune('\n')
}
// Rewind the buffer if necessary
if rewindBuffer {
// TODO: Better as a ring buffer
for x, i := range buffer[buffo:buffi] {
buffer[x] = i
}
buffi -= buffo
epsilonOffset -= buffo
buffo = 0
if DEBUG {
fmt.Println("Remaining:", showBuffer(buffer, buffo, buffi))
}
}
// Move to representative state
if ta.isSeparate() {
t = ta.getBase()
ta = dat.array[t]
if DEBUG {
fmt.Println("Representative pointing to", t)
}
}
newchar = true
// TODO:
// Prevent endless epsilon loops!
}
// Input reader is not yet finished
if !eof {
if DEBUG {
fmt.Println("Not at the end - problem", t0, ":", dat.outgoing(t0))
}
return false
}
if DEBUG {
fmt.Println("Entering final check")
}
// Automaton is in a final state, so flush the buffer and return
x := dat.array[t].getBase() + uint32(dat.final)
if x < dat.array[1].getCheck() && dat.array[x].getCheck() == t {
if buffi > 0 {
if DEBUG {
fmt.Println("-> Flush buffer: [", string(buffer[:buffi]), "]")
}
writer.WriteString(string(buffer[:buffi]))
if dat.array[t].isTokenEnd() {
writer.WriteRune('\n')
if DEBUG {
fmt.Println("-> Newline")
}
}
}
// Add an additional sentence ending, if the file is over but no explicit
// sentence split was reached. This may be controversial and therefore
// optional via parameter.
if !dat.array[t0].isTokenEnd() {
writer.WriteRune('\n')
if DEBUG {
fmt.Println("-> Newline")
}
}
// TODO:
// There may be a new line at the end, from an epsilon,
// so we may need to go on!
return true
}
// Check epsilon transitions until a final state is reached
t0 = t
t = dat.array[t0].getBase() + uint32(dat.epsilon)
a = dat.epsilon
newchar = false
if dat.array[t].getCheck() == t0 {
// Remember state for backtracking to last tokenend state
goto PARSECHAR
} else if epsilonState != 0 {
t0 = epsilonState
epsilonState = 0 // reset
buffo = epsilonOffset
if DEBUG {
fmt.Println("Get from epsilon stack and set buffo!", showBuffer(buffer, buffo, buffi))
}
goto PARSECHAR
}
return false
}