blob: 2ac31c3805fc791851d5de338d7fefba4e00f790 [file] [log] [blame]
package datok
import (
"bufio"
"compress/gzip"
"fmt"
"io"
"log"
"os"
)
const (
MAMAGIC = "MATOK"
EOT = 4
)
type MatrixTokenizer struct {
sigma map[rune]int
sigmaASCII [256]int
array []uint32
stateCount int
// Special symbols in sigma
epsilon int
unknown int
identity int
}
// ToMatrix turns the intermediate tokenizer into a
// matrix representation.
func (auto *Automaton) ToMatrix() *MatrixTokenizer {
mat := &MatrixTokenizer{
sigma: make(map[rune]int),
unknown: auto.unknown,
identity: auto.identity,
epsilon: auto.epsilon,
stateCount: auto.stateCount,
}
max := 0
for num, sym := range auto.sigmaRev {
if int(sym) < 256 {
mat.sigmaASCII[int(sym)] = num
}
mat.sigma[sym] = num
if num > auto.sigmaCount {
panic("sigmaCount is smaller")
}
if num > max {
max = num
}
}
// Add final entry to the list (maybe not necessary actually)
remember := make([]bool, auto.stateCount+2)
// lower sigmaCount, as no final value exists
mat.array = make([]uint32, (auto.stateCount+1)*(max+1))
// Store all transitions in matrix
var toMatrix func([]uint32, int)
toMatrix = func(matrix []uint32, start int) {
if start > auto.stateCount {
panic("stateCount is smaller")
}
if remember[start] {
return
}
remember[start] = true
for alpha, t := range auto.transitions[start] {
matrix[(alpha-1)*auto.stateCount+start] = uint32(t.end)
// Mark nontoken transitions
if t.nontoken {
matrix[(alpha-1)*auto.stateCount+start] |= FIRSTBIT
}
toMatrix(matrix, t.end)
}
}
toMatrix(mat.array, 1)
return mat
}
// Type of tokenizer
func (MatrixTokenizer) Type() string {
return MAMAGIC
}
// Save stores the matrix data in a file
func (mat *MatrixTokenizer) Save(file string) (n int64, err error) {
f, err := os.Create(file)
if err != nil {
log.Println(err)
return 0, err
}
defer f.Close()
gz := gzip.NewWriter(f)
defer gz.Close()
n, err = mat.WriteTo(gz)
if err != nil {
log.Println(err)
return n, err
}
gz.Flush()
return n, nil
}
// WriteTo stores the matrix data in an io.Writer.
func (mat *MatrixTokenizer) WriteTo(w io.Writer) (n int64, err error) {
wb := bufio.NewWriter(w)
defer wb.Flush()
// Store magical header
all, err := wb.Write([]byte(MAMAGIC))
if err != nil {
log.Println(err)
return int64(all), err
}
// Get sigma as a list
// In datok it's 16 - 4*4
sigmalist := make([]rune, len(mat.sigma)+16)
max := 0
for sym, num := range mat.sigma {
sigmalist[num] = sym
if num > max {
max = num
}
}
// Add final entry to the list (maybe not necessary actually)
sigmalist = sigmalist[:max+1]
buf := make([]byte, 0, 14)
bo.PutUint16(buf[0:2], VERSION)
bo.PutUint16(buf[2:4], uint16(mat.epsilon))
bo.PutUint16(buf[4:6], uint16(mat.unknown))
bo.PutUint16(buf[6:8], uint16(mat.identity))
bo.PutUint32(buf[8:12], uint32(mat.stateCount))
bo.PutUint16(buf[12:14], uint16(len(sigmalist)))
more, err := wb.Write(buf[0:14])
if err != nil {
log.Println(err)
return int64(all), err
}
all += more
// Write sigma
for _, sym := range sigmalist {
more, err = wb.WriteRune(sym)
if err != nil {
log.Println(err)
return int64(all), err
}
all += more
}
if err != nil {
log.Println(err)
return int64(all), err
}
// Test marker - could be checksum
more, err = wb.Write([]byte("M"))
if err != nil {
log.Println(err)
return int64(all), err
}
all += more
for _, x := range mat.array {
bo.PutUint32(buf[0:4], uint32(x))
more, err = wb.Write(buf[0:4])
if err != nil {
log.Println(err)
return int64(all), err
}
all += more
if more != 4 {
log.Println("Can not write base uint32")
return int64(all), err
}
}
return int64(all), err
}
// LoadDatokFile reads a double array represented tokenizer
// from a file.
func LoadMatrixFile(file string) *MatrixTokenizer {
f, err := os.Open(file)
if err != nil {
log.Println(err)
return nil
}
defer f.Close()
gz, err := gzip.NewReader(f)
if err != nil {
log.Println(err)
return nil
}
defer gz.Close()
// Todo: Read the whole file!
return ParseMatrix(gz)
}
// LoadMatrixFile reads a matrix represented tokenizer
// from an io.Reader
func ParseMatrix(ior io.Reader) *MatrixTokenizer {
// Initialize tokenizer with default values
mat := &MatrixTokenizer{
sigma: make(map[rune]int),
epsilon: 0,
unknown: 0,
identity: 0,
stateCount: 0,
}
r := bufio.NewReader(ior)
buf := make([]byte, 1024)
buf = buf[0:len(MAMAGIC)]
_, err := r.Read(buf)
if err != nil {
log.Println(err)
return nil
}
if string(MAMAGIC) != string(buf) {
log.Println("Not a matok file")
return nil
}
more, err := io.ReadFull(r, buf[0:14])
if err != nil {
log.Println(err)
return nil
}
if more != 14 {
log.Println("Read bytes do not fit")
return nil
}
version := bo.Uint16(buf[0:2])
if version != VERSION {
log.Println("Version not compatible")
return nil
}
mat.epsilon = int(bo.Uint16(buf[2:4]))
mat.unknown = int(bo.Uint16(buf[4:6]))
mat.identity = int(bo.Uint16(buf[6:8]))
mat.stateCount = int(bo.Uint32(buf[8:12]))
sigmaCount := int(bo.Uint16(buf[12:14]))
arraySize := (mat.stateCount + 1) * sigmaCount
for x := 0; x < sigmaCount; x++ {
sym, _, err := r.ReadRune()
if err == nil && sym != 0 {
if int(sym) < 256 {
mat.sigmaASCII[int(sym)] = x
}
mat.sigma[sym] = x
}
}
_, err = io.ReadFull(r, buf[0:1])
if err != nil {
log.Print(err)
return nil
}
if string("M") != string(buf[0:1]) {
log.Println("Not a matok file")
return nil
}
// Read based on length
mat.array = make([]uint32, arraySize)
dataArray, err := io.ReadAll(r)
if err == io.EOF {
log.Println(err)
return nil
}
if len(dataArray) < arraySize*4 {
log.Println("Not enough bytes read", len(dataArray), arraySize*4)
return nil
}
for x := 0; x < arraySize; x++ {
mat.array[x] = bo.Uint32(dataArray[x*4 : (x*4)+4])
}
return mat
}
// Transduce input to ouutput
func (mat *MatrixTokenizer) Transduce(r io.Reader, w io.Writer) bool {
return mat.TransduceTokenWriter(r, NewTokenWriter(w))
}
// TransduceTokenWriter transduces an input string against
// the matrix FSA. The rules are always greedy. If the
// automaton fails, it takes the last possible token ending
// branch.
func (mat *MatrixTokenizer) TransduceTokenWriter(r io.Reader, w *TokenWriter) bool {
var a int
var t0 uint32
t := uint32(1) // Initial state
var ok, rewindBuffer bool
// Remember the last position of a possible tokenend,
// in case the automaton fails.
epsilonState := uint32(0)
epsilonOffset := 0
// Remember if the last transition was epsilon
sentenceEnd := false
// Remember if a text end was already set
textEnd := false
buffer := make([]rune, 1024)
bufft := 0 // Buffer token offset
buffc := 0 // Buffer current symbol
buffi := 0 // Buffer length
// The buffer is organized as follows:
// [ t[....c..]..i]
reader := bufio.NewReader(r)
defer w.Flush()
var char rune
var err error
eof := false
eot := false
newchar := true
PARSECHARM:
for {
if newchar {
// Get from reader if buffer is empty
if buffc >= buffi {
if eof {
break
}
char, _, err = reader.ReadRune()
// No more runes to read
if err != nil {
eof = true
break
}
buffer[buffi] = char
buffi++
}
char = buffer[buffc]
if DEBUG {
fmt.Println("Current char", string(char), int(char), showBufferNew(buffer, bufft, buffc, buffi))
}
eot = false
// TODO:
// Better not repeatedly check for a!
// Possibly keep a buffer with a.
if int(char) < 256 {
if int(char) == EOT {
eot = true
}
a = mat.sigmaASCII[int(char)]
} else {
a, ok = mat.sigma[char]
if !ok {
a = 0
}
}
// Use identity symbol if character is not in sigma
if a == 0 && mat.identity != -1 {
a = mat.identity
}
t0 = t
// Check for epsilon transitions and remember
// TODO: Can t0 be negative here?
if mat.array[(mat.epsilon-1)*mat.stateCount+int(t0)] != 0 {
// Remember state for backtracking to last tokenend state
// Maybe not necessary - and should be simpler!
// Just Remove
t0 &= ^FIRSTBIT
epsilonState = t0
epsilonOffset = buffc
if DEBUG {
fmt.Println("epsilonOffset is set to", buffc)
}
}
}
// Checks a transition based on t0, a and buffo
t = mat.array[(int(a)-1)*mat.stateCount+int(t0)]
if DEBUG {
// Char is only relevant if set
fmt.Println("Check", t0, "-", a, "(", string(char), ")", "->", t)
}
// Check if the transition is invalid according to the matrix
if t == 0 {
if DEBUG {
fmt.Println("Match is not fine!")
}
if !ok && a == mat.identity {
// Try again with unknown symbol, in case identity failed
// Char is only relevant when set
if DEBUG {
fmt.Println("UNKNOWN symbol", string(char), "->", mat.unknown)
}
a = mat.unknown
} else if a != mat.epsilon {
// Try again with epsilon symbol, in case everything else failed
t0 = epsilonState
epsilonState = 0 // reset
buffc = epsilonOffset
a = mat.epsilon
if DEBUG {
fmt.Println("Get from epsilon stack and set buffo!", showBufferNew(buffer, bufft, buffc, buffi))
}
} else {
break
}
newchar = false
eot = false
continue
}
// Transition was successful
rewindBuffer = false
// Transition consumes a character
if a != mat.epsilon {
buffc++
// Transition does not produce a character
if buffc-bufft == 1 && (t&FIRSTBIT) != 0 {
if DEBUG {
fmt.Println("Nontoken forward", showBufferNew(buffer, bufft, buffc, buffi))
}
bufft++
// rewindBuffer = true
}
} else {
// Transition marks the end of a token - so flush the buffer
if buffc-bufft > 0 {
if DEBUG {
fmt.Println("-> Flush buffer: [", string(buffer[bufft:buffc]), "]", showBufferNew(buffer, bufft, buffc, buffi))
}
w.Token(bufft, buffer[:buffc])
rewindBuffer = true
sentenceEnd = false
textEnd = false
} else {
sentenceEnd = true
w.SentenceEnd(buffc)
}
}
// Rewind the buffer if necessary
if rewindBuffer {
if DEBUG {
fmt.Println("-> Rewind buffer", bufft, buffc, buffi, epsilonOffset)
}
// TODO: Better as a ring buffer
for x, i := range buffer[buffc:buffi] {
buffer[x] = i
}
buffi -= buffc
// epsilonOffset -= buffo
epsilonOffset = 0
epsilonState = 0
buffc = 0
bufft = 0
if DEBUG {
fmt.Println("Remaining:", showBufferNew(buffer, bufft, buffc, buffi))
}
}
if eot {
eot = false
textEnd = true
w.TextEnd(buffc)
if DEBUG {
fmt.Println("END OF TEXT")
}
}
t &= ^FIRSTBIT
newchar = true
// TODO:
// Prevent endless epsilon loops!
}
// Input reader is not yet finished
if !eof {
if DEBUG {
fmt.Println("Not at the end")
}
return false
}
if DEBUG {
fmt.Println("Entering final check")
}
// Check epsilon transitions as long as possible
t0 = t
t = mat.array[(int(mat.epsilon)-1)*mat.stateCount+int(t0)]
a = mat.epsilon
newchar = false
// t can't be < 0
if t != 0 {
// Remember state for backtracking to last tokenend state
goto PARSECHARM
} else if epsilonState != 0 {
t0 = epsilonState
epsilonState = 0 // reset
buffc = epsilonOffset
if DEBUG {
fmt.Println("Get from epsilon stack and set buffo!", showBufferNew(buffer, bufft, buffc, buffi))
}
goto PARSECHARM
}
// Add an additional sentence ending, if the file is over but no explicit
// sentence split was reached. This may be controversial and therefore
// optional via parameter.
if !sentenceEnd {
w.SentenceEnd(buffc)
if DEBUG {
fmt.Println("Sentence end")
}
}
if !textEnd {
w.TextEnd(buffc)
if DEBUG {
fmt.Println("Text end")
}
}
return true
}