| package datok |
| |
| import ( |
| "bufio" |
| "compress/gzip" |
| "io" |
| "log" |
| "os" |
| ) |
| |
| const ( |
| MAMAGIC = "MATOK" |
| EOT = 4 |
| ) |
| |
| type MatrixTokenizer struct { |
| sigma map[rune]int |
| sigmaASCII [256]int |
| array []uint32 |
| stateCount int |
| |
| // Special symbols in sigma |
| epsilon int |
| unknown int |
| identity int |
| } |
| |
| // ToMatrix turns the intermediate tokenizer into a |
| // matrix representation. |
| func (auto *Automaton) ToMatrix() *MatrixTokenizer { |
| |
| mat := &MatrixTokenizer{ |
| sigma: make(map[rune]int), |
| unknown: auto.unknown, |
| identity: auto.identity, |
| epsilon: auto.epsilon, |
| stateCount: auto.stateCount, |
| } |
| |
| max := 0 |
| |
| // Init with identity |
| if mat.identity != -1 { |
| for i := 0; i < 256; i++ { |
| mat.sigmaASCII[i] = mat.identity |
| } |
| max = mat.identity |
| } |
| |
| for num, sym := range auto.sigmaRev { |
| if int(sym) < 256 { |
| mat.sigmaASCII[int(sym)] = num |
| } |
| mat.sigma[sym] = num |
| if num > auto.sigmaCount { |
| panic("sigmaCount is smaller") |
| } |
| |
| // Find max |
| // see https://dev.to/jobinrjohnson/branchless-programming-does-it-really-matter-20j4 |
| max -= ((max - num) & ((max - num) >> 31)) |
| // if num > max { |
| // max = num |
| // } |
| } |
| // Add final entry to the list (maybe not necessary actually) |
| |
| remember := make([]bool, auto.stateCount+2) |
| |
| // lower sigmaCount, as no final value exists |
| mat.array = make([]uint32, (auto.stateCount+1)*(max+1)) |
| |
| // Store all transitions in matrix |
| var toMatrix func([]uint32, int) |
| |
| toMatrix = func(matrix []uint32, start int) { |
| if start > auto.stateCount { |
| panic("stateCount is smaller") |
| } |
| if remember[start] { |
| return |
| } |
| remember[start] = true |
| for alpha, t := range auto.transitions[start] { |
| matrix[(alpha-1)*auto.stateCount+start] = uint32(t.end) |
| |
| // Mark nontoken transitions |
| if t.nontoken { |
| matrix[(alpha-1)*auto.stateCount+start] |= FIRSTBIT |
| } |
| |
| toMatrix(matrix, t.end) |
| } |
| } |
| |
| toMatrix(mat.array, 1) |
| |
| return mat |
| } |
| |
| // Type of tokenizer |
| func (MatrixTokenizer) Type() string { |
| return MAMAGIC |
| } |
| |
| // Save stores the matrix data in a file |
| func (mat *MatrixTokenizer) Save(file string) (n int64, err error) { |
| f, err := os.Create(file) |
| if err != nil { |
| log.Println(err) |
| return 0, err |
| } |
| defer f.Close() |
| gz := gzip.NewWriter(f) |
| defer gz.Close() |
| n, err = mat.WriteTo(gz) |
| if err != nil { |
| log.Println(err) |
| return n, err |
| } |
| gz.Flush() |
| return n, nil |
| } |
| |
| // WriteTo stores the matrix data in an io.Writer. |
| func (mat *MatrixTokenizer) WriteTo(w io.Writer) (n int64, err error) { |
| |
| wb := bufio.NewWriter(w) |
| defer wb.Flush() |
| |
| // Store magical header |
| all, err := wb.Write([]byte(MAMAGIC)) |
| if err != nil { |
| log.Println(err) |
| return int64(all), err |
| } |
| |
| // Get sigma as a list |
| // In datok it's 16 - 4*4 |
| sigmalist := make([]rune, len(mat.sigma)+16) |
| max := 0 |
| for sym, num := range mat.sigma { |
| sigmalist[num] = sym |
| |
| // Find max |
| // see https://dev.to/jobinrjohnson/branchless-programming-does-it-really-matter-20j4 |
| max -= ((max - num) & ((max - num) >> 31)) |
| // if num > max { |
| // max = num |
| // } |
| } |
| |
| // Add final entry to the list (maybe not necessary actually) |
| sigmalist = sigmalist[:max+1] |
| |
| buf := make([]byte, 0, 14) |
| bo.PutUint16(buf[0:2], VERSION) |
| bo.PutUint16(buf[2:4], uint16(mat.epsilon)) |
| bo.PutUint16(buf[4:6], uint16(mat.unknown)) |
| bo.PutUint16(buf[6:8], uint16(mat.identity)) |
| bo.PutUint32(buf[8:12], uint32(mat.stateCount)) |
| bo.PutUint16(buf[12:14], uint16(len(sigmalist))) |
| more, err := wb.Write(buf[0:14]) |
| if err != nil { |
| log.Println(err) |
| return int64(all), err |
| } |
| |
| all += more |
| |
| // Write sigma |
| for _, sym := range sigmalist { |
| |
| more, err = wb.WriteRune(sym) |
| if err != nil { |
| log.Println(err) |
| return int64(all), err |
| } |
| all += more |
| } |
| |
| if err != nil { |
| log.Println(err) |
| return int64(all), err |
| } |
| |
| // Test marker - could be checksum |
| more, err = wb.Write([]byte("M")) |
| if err != nil { |
| log.Println(err) |
| return int64(all), err |
| } |
| all += more |
| |
| for _, x := range mat.array { |
| bo.PutUint32(buf[0:4], uint32(x)) |
| more, err = wb.Write(buf[0:4]) |
| if err != nil { |
| log.Println(err) |
| return int64(all), err |
| } |
| all += more |
| if more != 4 { |
| log.Println("Can not write base uint32") |
| return int64(all), err |
| } |
| } |
| |
| return int64(all), err |
| } |
| |
| // LoadDatokFile reads a double array represented tokenizer |
| // from a file. |
| func LoadMatrixFile(file string) *MatrixTokenizer { |
| f, err := os.Open(file) |
| if err != nil { |
| log.Println(err) |
| return nil |
| } |
| defer f.Close() |
| |
| gz, err := gzip.NewReader(f) |
| if err != nil { |
| log.Println(err) |
| return nil |
| } |
| defer gz.Close() |
| |
| // Todo: Read the whole file! |
| return ParseMatrix(gz) |
| } |
| |
| // LoadMatrixFile reads a matrix represented tokenizer |
| // from an io.Reader |
| func ParseMatrix(ior io.Reader) *MatrixTokenizer { |
| |
| // Initialize tokenizer with default values |
| mat := &MatrixTokenizer{ |
| sigma: make(map[rune]int), |
| epsilon: 0, |
| unknown: 0, |
| identity: 0, |
| stateCount: 0, |
| } |
| |
| r := bufio.NewReader(ior) |
| |
| buf := make([]byte, 1024) |
| buf = buf[0:len(MAMAGIC)] |
| |
| _, err := r.Read(buf) |
| |
| if err != nil { |
| log.Println(err) |
| return nil |
| } |
| |
| if string(MAMAGIC) != string(buf) { |
| log.Println("Not a matok file") |
| return nil |
| } |
| |
| more, err := io.ReadFull(r, buf[0:14]) |
| if err != nil { |
| log.Println(err) |
| return nil |
| } |
| |
| if more != 14 { |
| log.Println("Read bytes do not fit") |
| return nil |
| } |
| |
| version := bo.Uint16(buf[0:2]) |
| |
| if version != VERSION { |
| log.Println("Version not compatible") |
| return nil |
| } |
| |
| mat.epsilon = int(bo.Uint16(buf[2:4])) |
| mat.unknown = int(bo.Uint16(buf[4:6])) |
| mat.identity = int(bo.Uint16(buf[6:8])) |
| mat.stateCount = int(bo.Uint32(buf[8:12])) |
| sigmaCount := int(bo.Uint16(buf[12:14])) |
| arraySize := (mat.stateCount + 1) * sigmaCount |
| |
| // Init with identity |
| if mat.identity != -1 { |
| for i := 0; i < 256; i++ { |
| mat.sigmaASCII[i] = mat.identity |
| } |
| } |
| |
| for x := 0; x < sigmaCount; x++ { |
| sym, _, err := r.ReadRune() |
| if err == nil && sym != 0 { |
| if int(sym) < 256 { |
| mat.sigmaASCII[int(sym)] = x |
| } |
| mat.sigma[sym] = x |
| } |
| } |
| |
| _, err = io.ReadFull(r, buf[0:1]) |
| |
| if err != nil { |
| log.Print(err) |
| return nil |
| } |
| |
| if string("M") != string(buf[0:1]) { |
| log.Println("Not a matok file") |
| return nil |
| } |
| |
| // Read based on length |
| mat.array = make([]uint32, arraySize) |
| |
| dataArray, err := io.ReadAll(r) |
| |
| if err == io.EOF { |
| log.Println(err) |
| return nil |
| } |
| |
| if len(dataArray) < arraySize*4 { |
| log.Println("Not enough bytes read", len(dataArray), arraySize*4) |
| return nil |
| } |
| |
| for x := 0; x < arraySize; x++ { |
| mat.array[x] = bo.Uint32(dataArray[x*4 : (x*4)+4]) |
| } |
| |
| return mat |
| } |
| |
| // Transduce input to ouutput |
| func (mat *MatrixTokenizer) Transduce(r io.Reader, w io.Writer) bool { |
| return mat.TransduceTokenWriter(r, NewTokenWriter(w, SIMPLE)) |
| } |
| |
| // TransduceTokenWriter transduces an input string against |
| // the matrix FSA. The rules are always greedy. If the |
| // automaton fails, it takes the last possible token ending |
| // branch. |
| func (mat *MatrixTokenizer) TransduceTokenWriter(r io.Reader, w *TokenWriter) bool { |
| var a int |
| var t0 uint32 |
| t := uint32(1) // Initial state |
| var ok, rewindBuffer bool |
| |
| // Remember the last position of a possible tokenend, |
| // in case the automaton fails. |
| epsilonState := uint32(0) |
| epsilonOffset := 0 |
| |
| // Remember if the last transition was epsilon |
| sentenceEnd := false |
| |
| // Remember if a text end was already set |
| textEnd := false |
| |
| buffer := make([]rune, 1024) |
| bufft := 0 // Buffer token offset |
| buffc := 0 // Buffer current symbol |
| buffi := 0 // Buffer length |
| |
| // The buffer is organized as follows: |
| // [ t[....c..]..i] |
| |
| reader := bufio.NewReader(r) |
| defer w.Flush() |
| |
| var char rune |
| |
| var err error |
| eof := false |
| eot := false |
| newchar := true |
| |
| PARSECHARM: |
| for { |
| |
| if newchar { |
| // Get from reader if buffer is empty |
| if buffc >= buffi { |
| if eof { |
| break |
| } |
| char, _, err = reader.ReadRune() |
| |
| // No more runes to read |
| if err != nil { |
| if err == io.EOF { |
| eof = true |
| break |
| } |
| |
| log.Fatalln(err) |
| os.Exit(1) |
| return false |
| } |
| |
| buffer[buffi] = char |
| buffi++ |
| } |
| |
| char = buffer[buffc] |
| |
| if DEBUG { |
| log.Println("Current char", string(char), int(char), showBufferNew(buffer, bufft, buffc, buffi)) |
| } |
| |
| eot = false |
| |
| // TODO: |
| // Better not repeatedly check for a! |
| // Possibly keep a buffer with a. |
| if int(char) < 256 { |
| eot = int(char) == EOT |
| |
| // mat.SigmaASCII[] is initialized with mat.identity |
| a = mat.sigmaASCII[int(char)] |
| } else { |
| a, ok = mat.sigma[char] |
| |
| // Use identity symbol if character is not in sigma |
| if !ok && mat.identity != -1 { |
| |
| // TODO: Maybe use unknown? |
| a = mat.identity |
| } |
| } |
| |
| t0 = t |
| |
| // Check for epsilon transitions and remember |
| |
| // TODO: Can t0 be negative here? |
| if mat.array[(mat.epsilon-1)*mat.stateCount+int(t0)] != 0 { |
| // Remember state for backtracking to last tokenend state |
| |
| // Maybe not necessary - and should be simpler! |
| // Just Remove |
| // t0 &= ^FIRSTBIT |
| epsilonState = t0 |
| epsilonOffset = buffc |
| |
| if DEBUG { |
| log.Println("epsilonOffset is set to", buffc) |
| } |
| } |
| } |
| |
| // can happen when no identity is defined. |
| // This shouldn't be tested in every loop |
| if a == 0 { |
| t = 0 |
| } else { |
| // Checks a transition based on t0, a and buffo |
| t = mat.array[(int(a)-1)*mat.stateCount+int(t0)] |
| } |
| |
| if DEBUG { |
| // Char is only relevant if set |
| log.Println("Check", t0, "-", a, "(", string(char), ")", "->", t) |
| } |
| |
| // Check if the transition is invalid according to the matrix |
| if t == 0 { |
| |
| if DEBUG { |
| log.Println("Match is not fine!") |
| } |
| |
| if !ok && a == mat.identity { |
| |
| // Try again with unknown symbol, in case identity failed |
| // Char is only relevant when set |
| if DEBUG { |
| log.Println("UNKNOWN symbol", string(char), "->", mat.unknown) |
| } |
| a = mat.unknown |
| |
| } else if a != mat.epsilon && epsilonState != 0 { |
| |
| // Try again with epsilon symbol, in case everything else failed |
| t0 = epsilonState |
| epsilonState = 0 // reset |
| buffc = epsilonOffset |
| a = mat.epsilon |
| |
| if DEBUG { |
| log.Println("Get from epsilon stack and set buffo!", showBufferNew(buffer, bufft, buffc, buffi)) |
| } |
| |
| } else { |
| |
| if DEBUG { |
| log.Println("Fail!") |
| } |
| |
| // w.Fail(bufft) |
| |
| // The following procedure means the automaton fails to consume a certain character. |
| // In the tokenization scenario, this means, the tokenizer will drop the old or current data as a |
| // token and start blank at the root node of the automaton for the remaining data. |
| // It may be beneficial to have something like a "drop()" event to capture these cases, |
| // as they are likely the result of a bad automaton design. |
| |
| // fmt.Println("Problem", len(buffer), buffc, bufft) |
| |
| if buffc-bufft <= 0 { |
| buffc++ |
| if buffc == 0 { |
| eof = true |
| break |
| } |
| } |
| // This will hopefully be branchless by the compiler |
| |
| if DEBUG { |
| log.Println("-> Flush buffer: [", string(buffer[bufft:buffc]), "]", showBufferNew(buffer, bufft, buffc, buffi)) |
| } |
| |
| w.Token(bufft, buffer[:buffc]) |
| |
| sentenceEnd = false |
| textEnd = false |
| |
| if DEBUG { |
| log.Println("-> Rewind buffer", bufft, buffc, buffi, epsilonOffset) |
| } |
| |
| copy(buffer[0:], buffer[buffc:buffi]) |
| |
| buffi -= buffc |
| epsilonState = 0 |
| |
| buffc = 0 |
| bufft = 0 |
| |
| a = mat.epsilon |
| |
| // Restart from root state |
| t = uint32(1) |
| newchar = true |
| // goto PARSECHARM |
| continue |
| } |
| |
| newchar = false |
| eot = false |
| continue |
| } |
| |
| // Transition was successful |
| rewindBuffer = false |
| |
| // Transition consumes no character |
| if a == mat.epsilon { |
| // Transition marks the end of a token - so flush the buffer |
| if buffc-bufft > 0 { |
| if DEBUG { |
| log.Println("-> Flush buffer: [", string(buffer[bufft:buffc]), "]", showBufferNew(buffer, bufft, buffc, buffi)) |
| } |
| w.Token(bufft, buffer[:buffc]) |
| rewindBuffer = true |
| sentenceEnd = false |
| textEnd = false |
| } else { |
| sentenceEnd = true |
| w.SentenceEnd(buffc) |
| } |
| |
| // Transition consumes a character |
| } else { |
| buffc++ |
| |
| // Transition does not produce a character |
| // Hopefully generated branchless code |
| if buffc-bufft == 1 && (t&FIRSTBIT) != 0 { |
| if DEBUG { |
| log.Println("Nontoken forward", showBufferNew(buffer, bufft, buffc, buffi)) |
| } |
| bufft++ |
| // rewindBuffer = true |
| } |
| } |
| |
| if eot { |
| eot = false |
| textEnd = true |
| w.TextEnd(buffc) |
| rewindBuffer = true |
| if DEBUG { |
| log.Println("END OF TEXT") |
| } |
| } |
| |
| // Rewind the buffer if necessary |
| if rewindBuffer { |
| |
| if DEBUG { |
| log.Println("-> Rewind buffer", bufft, buffc, buffi, epsilonOffset) |
| } |
| |
| copy(buffer[0:], buffer[buffc:buffi]) |
| |
| buffi -= buffc |
| // epsilonOffset -= buffo |
| epsilonOffset = 0 |
| epsilonState = 0 |
| |
| buffc = 0 |
| bufft = 0 |
| |
| if DEBUG { |
| log.Println("Remaining:", showBufferNew(buffer, bufft, buffc, buffi)) |
| } |
| } |
| |
| t &= ^FIRSTBIT |
| |
| newchar = true |
| |
| // TODO: |
| // Prevent endless epsilon loops! |
| } |
| |
| // Input reader is not yet finished |
| if !eof { |
| if DEBUG { |
| log.Println("Not at the end") |
| } |
| // This should never happen |
| return false |
| } |
| |
| if DEBUG { |
| log.Println("Entering final check") |
| } |
| |
| // Check epsilon transitions as long as possible |
| t0 = t |
| t = mat.array[(int(mat.epsilon)-1)*mat.stateCount+int(t0)] |
| a = mat.epsilon |
| newchar = false |
| // t can't be < 0 |
| if t != 0 { |
| // Remember state for backtracking to last tokenend state |
| goto PARSECHARM |
| |
| } else if epsilonState != 0 { |
| t0 = epsilonState |
| epsilonState = 0 // reset |
| buffc = epsilonOffset |
| if DEBUG { |
| log.Println("Get from epsilon stack and set buffo!", showBufferNew(buffer, bufft, buffc, buffi)) |
| } |
| goto PARSECHARM |
| } |
| |
| // something left in buffer |
| if buffc-bufft > 0 { |
| if DEBUG { |
| log.Println("-> Flush buffer: [", string(buffer[bufft:buffc]), "]", showBufferNew(buffer, bufft, buffc, buffi)) |
| } |
| w.Token(bufft, buffer[:buffc]) |
| sentenceEnd = false |
| textEnd = false |
| } |
| |
| // Add an additional sentence ending, if the file is over but no explicit |
| // sentence split was reached. This may be controversial and therefore |
| // optional via parameter. |
| if !sentenceEnd { |
| w.SentenceEnd(buffc) |
| if DEBUG { |
| log.Println("Sentence end") |
| } |
| } |
| |
| if !textEnd { |
| w.TextEnd(buffc) |
| if DEBUG { |
| log.Println("Text end") |
| } |
| } |
| |
| return true |
| } |