| library(tidyllm) |
| |
| # Helper function to skip if no API keys are available |
| skip_if_no_api_key <- function() { |
| skip_if_not( |
| nzchar(Sys.getenv("OPENAI_API_KEY")) || |
| nzchar(Sys.getenv("ANTHROPIC_API_KEY")) || |
| nzchar(Sys.getenv("GOOGLE_API_KEY")), |
| "No API keys found (need OPENAI_API_KEY, ANTHROPIC_API_KEY, or GOOGLE_API_KEY)" |
| ) |
| } |
| |
| # Helper function to find README.md file in current or parent directories |
| find_readme_path <- function() { |
| readme_paths <- c("Readme.md", "../Readme.md", "../../Readme.md") |
| for (path in readme_paths) { |
| if (file.exists(path)) { |
| return(path) |
| } |
| } |
| return(NULL) |
| } |
| |
| # Helper function to read README content |
| read_readme_content <- function() { |
| readme_path <- find_readme_path() |
| if (is.null(readme_path)) { |
| return(NULL) |
| } |
| readme_content <- readLines(readme_path) |
| |
| # Find the line with "## Installation" and truncate before it |
| installation_line <- grep("^## Installation", readme_content, ignore.case = TRUE) |
| if (length(installation_line) > 0) { |
| readme_content <- readme_content[1:(installation_line[1] - 1)] |
| } |
| |
| paste(readme_content, collapse = "\n") |
| } |
| |
| # Helper function to call LLM API using tidyllm |
| call_llm_api <- function(prompt, max_tokens = 500, temperature = 0.1, model = LLM_MODEL) { |
| cat("Calling LLM API with model:", model, "\n") |
| # Only print prompt up to the beginning of README content |
| readme_start <- regexpr("README Documentation:", prompt, fixed = TRUE) |
| if (readme_start > 0) { |
| prompt_preview <- substr(prompt, 1, readme_start - 1) |
| cat("Prompt (up to README):\n", prompt_preview, "\n") |
| } else { |
| cat("Prompt:\n", prompt, "\n") |
| } |
| tryCatch( |
| { |
| # Determine the provider based on model name |
| if (grepl("^gpt-", model, ignore.case = TRUE)) { |
| provider <- openai() |
| } else if (grepl("^claude-", model, ignore.case = TRUE)) { |
| provider <- claude() |
| } else if (grepl("^gemini-", model, ignore.case = TRUE)) { |
| # Debug Gemini API key |
| provider <- gemini() |
| } else { |
| stop(paste("Unsupported model:", model, "- supported prefixes: gpt-, claude-, gemini-")) |
| } |
| |
| # Use tidyllm unified API |
| result <- llm_message(prompt) |> |
| chat( |
| .provider = provider, |
| .model = model, |
| .temperature = temperature, |
| .max_tries = 3 |
| ) |
| |
| # Extract the reply text |
| get_reply(result) |
| }, |
| error = function(e) { |
| if (grepl("429", as.character(e))) { |
| skip("LLM API rate limit exceeded - please try again later or check your API key/credits") |
| } else if (grepl("401", as.character(e))) { |
| skip("LLM API authentication failed - please check your API keys (OPENAI_API_KEY, ANTHROPIC_API_KEY, or GOOGLE_API_KEY)") |
| } else { |
| stop(paste("LLM API error:", as.character(e))) |
| } |
| } |
| ) |
| } |
| |
| # Configuration variables |
| # LLM_MODEL <- "gpt-4o-mini" # OpenAI model option |
| # LLM_MODEL <- "claude-3-5-sonnet-latest" # Claude model option |
| # LLM_MODEL <- "claude-3-7-sonnet-latest" # Claude model option |
| # LLM_MODEL <- "claude-sonnet-4-0" # Claude model option |
| LLM_MODEL <- "gemini-2.5-pro" # Google Gemini model option |
| # LLM_MODEL <- "gemini-1.5-pro" # Google Gemini model option |
| # LLM_MODEL <- "gemini-2.5-flash" # Google Gemini model option (faster) |
| |
| # Helper function to create README-guided prompt |
| create_readme_prompt <- function(task_description, specific_task) { |
| readme_text <- read_readme_content() |
| if (is.null(readme_text)) { |
| stop("README.md not found") |
| } |
| |
| paste0( |
| "You are an expert R programmer. Based on the following README documentation for the RKorAPClient package, ", |
| task_description, "\n\n", |
| "README Documentation:\n", |
| readme_text, |
| "\n\nTask: ", specific_task, |
| "\n\nProvide only the R code without explanations." |
| ) |
| } |
| |
| # Helper function to extract R code from markdown code blocks |
| extract_r_code <- function(response_text) { |
| # Remove markdown code blocks if present |
| code <- gsub("```[rR]?\\n?", "", response_text) |
| code <- gsub("```\\n?$", "", code) |
| # Remove leading/trailing whitespace |
| trimws(code) |
| } |
| |
| # Helper function to test code syntax |
| test_code_syntax <- function(code) { |
| tryCatch( |
| { |
| parse(text = code) |
| TRUE |
| }, |
| error = function(e) { |
| cat("Syntax error:", as.character(e), "\n") |
| FALSE |
| } |
| ) |
| } |
| |
| # Helper function to run code if RUN_LLM_CODE is set |
| run_code_if_enabled <- function(code, test_name) { |
| if (nzchar(Sys.getenv("RUN_LLM_CODE")) && Sys.getenv("RUN_LLM_CODE") == "true") { |
| cat("Running generated code for", test_name, "...\n") |
| tryCatch( |
| { |
| result <- eval(parse(text = code)) |
| cat("Code executed successfully. Result type:", class(result), "\n") |
| if (is.data.frame(result)) { |
| cat("Result dimensions:", nrow(result), "rows,", ncol(result), "columns\n") |
| if (nrow(result) > 0) { |
| cat("First few rows:\n") |
| print(head(result, 3)) |
| } |
| } else { |
| cat("Result preview:\n") |
| print(result) |
| } |
| return(TRUE) |
| }, |
| error = function(e) { |
| cat("Runtime error:", as.character(e), "\n") |
| return(FALSE) |
| } |
| ) |
| } else { |
| cat("Skipping code execution (set RUN_LLM_CODE=true to enable)\n") |
| return(NA) |
| } |
| } |
| |
| test_that(paste(LLM_MODEL, "can solve frequency query task with README guidance"), { |
| # Skip if offline |
| skip_if_offline() |
| |
| # Skip if no API keys are set |
| skip_if_no_api_key() |
| |
| # Check for README file |
| skip_if_not(!is.null(find_readme_path()), "Readme.md not found in current or parent directories") |
| |
| # Create the prompt with README context and task |
| prompt <- create_readme_prompt( |
| "write R code to perform a frequency query for the word 'Demokratie' across the past three years. The code should use the RKorAPClient package and return a data frame.", |
| "Write R code to query frequency of 'Demokratie' from the past three years using RKorAPClient." |
| ) |
| |
| # Call LLM API |
| generated_response <- call_llm_api(prompt, max_tokens = 500) |
| generated_code <- extract_r_code(generated_response) |
| |
| # Basic checks on the generated code |
| expect_true(grepl("KorAPConnection", generated_code), "Generated code should include KorAPConnection") |
| expect_true(grepl("frequencyQuery", generated_code), "Generated code should include frequencyQuery") |
| expect_true(grepl("Demokratie", generated_code), "Generated code should include the search term 'Demokratie'") |
| last_year <- as.numeric(format(Sys.Date(), "%Y")) - 1 |
| |
| expect_true(grepl("Date in", generated_code), "Generated code should vc restriction on years") |
| |
| # Check that the generated code contains essential RKorAPClient patterns |
| # expect_true(grepl("\\|>", generated_code) || grepl("%>%", generated_code), "Generated code should use pipe operators") |
| |
| # Test code syntax |
| syntax_valid <- test_code_syntax(generated_code) |
| expect_true(syntax_valid, "Generated code should be syntactically valid R code") |
| |
| # Print the generated code for manual inspection |
| cat("Generated code:\n", generated_code, "\n") |
| |
| # Run the code if RUN_LLM_CODE is set |
| execution_result <- run_code_if_enabled(generated_code, "frequency query") |
| if (!is.na(execution_result)) { |
| expect_true(execution_result, "Generated code should execute without runtime errors") |
| } |
| }) |
| |
| |
| test_that(paste(LLM_MODEL, "can solve collocation analysis task with README guidance"), { |
| # Skip if offline |
| skip_if_offline() |
| |
| # Skip if no API keys are set |
| skip_if_no_api_key() |
| |
| # Check for README file |
| skip_if_not(!is.null(find_readme_path()), "Readme.md not found in current or parent directories") |
| |
| # Create the prompt for collocation analysis |
| prompt <- create_readme_prompt( |
| paste("Write R code to perform a collocation analysis for the lemma 'leverage' based on the current English Wikipedia Corpus using default parameters", "and show the three highest collocates according to their log dice score. |
| "), |
| "Write R code to perform collocation analysis for lemma 'leverage' using RKorAPClient." |
| ) |
| |
| # Call LLM API |
| generated_response <- call_llm_api(prompt, max_tokens = 500) |
| generated_code <- extract_r_code(generated_response) |
| |
| # Basic checks on the generated code |
| expect_true(grepl("KorAPConnection", generated_code), "Generated code should include KorAPConnection") |
| expect_true(grepl("collocationAnalysis", generated_code), "Generated code should include collocationAnalysis") |
| expect_true(grepl("tt/l=leverage", generated_code), "Generated code should include the search the lemma 'leverage'") |
| # expect_true(grepl("auth", generated_code), "Generated code should include auth() for collocation analysis") |
| expect_true(grepl("instance/english", generated_code, fixed = TRUE), "Generated code should include the specified KorAP URL") |
| |
| # Test code syntax |
| syntax_valid <- test_code_syntax(generated_code) |
| expect_true(syntax_valid, "Generated code should be syntactically valid R code") |
| |
| # Print the generated code for manual inspection |
| cat("Generated collocation analysis code:\n", generated_code, "\n") |
| |
| # Run the code if RUN_LLM_CODE is set |
| execution_result <- run_code_if_enabled(generated_code, "collocation analysis") |
| if (!is.na(execution_result)) { |
| expect_true(execution_result, "Generated code should execute without runtime errors") |
| } |
| }) |
| |
| test_that(paste(LLM_MODEL, "can solve corpus query task with README guidance"), { |
| # Skip if offline |
| skip_if_offline() |
| |
| # Skip if no API keys are set |
| skip_if_no_api_key() |
| |
| # Check for README file |
| skip_if_not(!is.null(find_readme_path()), "Readme.md not found in current or parent directories") |
| |
| # Create the prompt for corpus query |
| prompt <- create_readme_prompt( |
| "write R code to perform a simple corpus query for 'Hello world' and fetch all results. The code should use the RKorAPClient package.", |
| "Write R code to query 'Hello world' and fetch all results using RKorAPClient." |
| ) |
| |
| # Call LLM API |
| generated_response <- call_llm_api(prompt, max_tokens = 300) |
| generated_code <- extract_r_code(generated_response) |
| |
| # Basic checks on the generated code |
| expect_true(grepl("KorAPConnection", generated_code), "Generated code should include KorAPConnection") |
| expect_true(grepl("corpusQuery", generated_code), "Generated code should include corpusQuery") |
| expect_true(grepl("Hello world", generated_code), "Generated code should include the search term 'Hello world'") |
| expect_true(grepl("fetchAll", generated_code), "Generated code should include fetchAll") |
| |
| # Check that the generated code follows the README example pattern |
| expect_true( |
| grepl("\\|>", generated_code) || grepl("%>%", generated_code), |
| "Generated code should use pipe operators" |
| ) |
| |
| # Test code syntax |
| syntax_valid <- test_code_syntax(generated_code) |
| expect_true(syntax_valid, "Generated code should be syntactically valid R code") |
| |
| # Print the generated code for manual inspection |
| cat("Generated corpus query code:\n", generated_code, "\n") |
| |
| # Run the code if RUN_LLM_CODE is set |
| execution_result <- run_code_if_enabled(generated_code, "corpus query") |
| if (!is.na(execution_result)) { |
| expect_true(execution_result, "Generated code should execute without runtime errors") |
| } |
| }) |