blob: f056d583d5cc7cab3f616d7d7a79c76091b087d2 [file] [log] [blame]
#!/usr/bin/Rscript
library(RKorAPClient)
library(ggplot2)
library(raster)
library(broom)
devAskNewPage(ask = FALSE)
mapfile <- "demo/data/cache/map-v2.rds"
fetchAndPrepareMap <- function(map, pick) {
cat("Downloading GADM map data for ", map, "\n")
sp <- readRDS(url(sprintf("https://biogeo.ucdavis.edu/data/gadm3.6/Rsp/gadm36_%s_sp.rds", map)))
if (pick > 0) {
sp@polygons <- sp@polygons[pick]
sp@data <- sp@data[pick,]
}
sp
}
fetchMaps <- function(maps, picks) {
if (file.exists(mapfile)) {
df <- readRDS(mapfile)
} else {
cat("Downloading and caching GADM map data.\nPlease note that the GADM map data is licensed for academic use and other non-commercial use, only.\nSee https://gadm.org/license.html\n")
df <- broom::tidy(Reduce(bind, mapply(fetchAndPrepareMap, maps, picks)))
dir.create(dirname(mapfile), recursive = TRUE, showWarnings = FALSE)
saveRDS(df, mapfile)
}
df$grp <- floor(as.numeric(as.character(df$group)))
df
}
map <- fetchMaps(c("DEU_1", "AUT_0", "CHE_0", "LUX_0", "BEL_3", "ITA_1", "LIE_0"), c(0, 0, 0, 0, 34, 17, 0))
geoDistrib <- function(query, kco = new("KorAPConnection", verbose=TRUE)) {
regions <- readRDS("demo/data/regions.rds")
regions$freq <- NA
regions$url <- NA
plot <- NULL
vc <- ""
for (i in 1:nrow(regions)) {
if (!is.na(regions[i,]$query)) {
cat(as.character(regions[i,]$region), "\n")
regions[i,]$total <- corpusStats(kco, vc=paste0(vc, regions[i,]$query))@tokens
if (regions[i,]$total == 0) {
regions[i,]$afreq <- 0
regions[i,]$freq <- NA
} else {
kqo <- corpusQuery(kco, query, vc=paste0(vc, regions[i,]$query))
regions[i,]$afreq <- kqo@totalResults
regions[i,]$freq <- regions[i,]$afreq / regions[i,]$total
regions[i,]$url <- kqo@webUIRequestUrl
}
cat(regions[i,]$afreq, regions[i,]$total, regions[i,]$freq, "\n")
cat("\n\n")
}
}
plot <- updatePlot(query, map, regions)
print(plot)
plot
}
updatePlot <- function(query, map, regions) {
map$ipm <- sapply(map$grp, function(grp) regions$freq[grp] * 10^6)
map$region <- sapply(map$grp, function(grp) regions$region[grp])
map$url <- sapply(map$grp, function(grp) regions$url[grp])
regionsPlot <- ggplot(map) +
geom_polygon(aes(x=long, y=lat, group=group, fill=ipm, hack=region), colour= "black", size=.1) +
theme(axis.line.x = element_blank(),
axis.line.y = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.line=element_blank(),axis.text.x=element_blank(),
axis.text.y=element_blank(),axis.ticks=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank()) +
coord_equal(ratio=1.5) +
labs(title = sprintf("Regional distribution of \u201c%s\u201d", query))
print(regionsPlot)
regionsPlot
}
#geoDistrib("wegen dem [tt/p=NN]")
geoDistrib("heuer")
#geoDistrib("Sonnabend")
#geoDistrib("eh")