blob: fbac04b6b4b50aaa6cab1f50337be7f8ebc3573e [file] [log] [blame]
library(tidyllm)
# Helper function to skip if no API keys are available
skip_if_no_api_key <- function() {
skip_if_not(nzchar(Sys.getenv("OPENAI_API_KEY")) ||
nzchar(Sys.getenv("ANTHROPIC_API_KEY")) ||
nzchar(Sys.getenv("GOOGLE_API_KEY")),
"No API keys found (need OPENAI_API_KEY, ANTHROPIC_API_KEY, or GOOGLE_API_KEY)")
}
# Helper function to find README.md file in current or parent directories
find_readme_path <- function() {
readme_paths <- c("Readme.md", "../Readme.md", "../../Readme.md")
for (path in readme_paths) {
if (file.exists(path)) {
return(path)
}
}
return(NULL)
}
# Helper function to read README content
read_readme_content <- function() {
readme_path <- find_readme_path()
if (is.null(readme_path)) {
return(NULL)
}
readme_content <- readLines(readme_path)
paste(readme_content, collapse = "\n")
}
# Helper function to call LLM API using tidyllm
call_llm_api <- function(prompt, max_tokens = 500, temperature = 0.1, model = LLM_MODEL) {
tryCatch({
# Determine the provider based on model name
if (grepl("^gpt-", model, ignore.case = TRUE)) {
provider <- openai()
} else if (grepl("^claude-", model, ignore.case = TRUE)) {
provider <- claude()
} else if (grepl("^gemini-", model, ignore.case = TRUE)) {
# Debug Gemini API key
provider <- gemini()
} else {
stop(paste("Unsupported model:", model, "- supported prefixes: gpt-, claude-, gemini-"))
}
# Use tidyllm unified API
result <- llm_message(prompt) |>
chat(
.provider = provider,
.model = model,
.temperature = temperature,
.max_tries = 3
)
# Extract the reply text
get_reply(result)
}, error = function(e) {
if (grepl("429", as.character(e))) {
skip("LLM API rate limit exceeded - please try again later or check your API key/credits")
} else if (grepl("401", as.character(e))) {
skip("LLM API authentication failed - please check your API keys (OPENAI_API_KEY, ANTHROPIC_API_KEY, or GOOGLE_API_KEY)")
} else {
stop(paste("LLM API error:", as.character(e)))
}
})
}
# Configuration variables
#LLM_MODEL <- "gpt-4o-mini" # OpenAI model option
LLM_MODEL <- "claude-3-5-sonnet-latest" # Claude model option
#LLM_MODEL <- "claude-3-7-sonnet-latest" # Claude model option
#LLM_MODEL <- "claude-sonnet-4-0" # Claude model option
#LLM_MODEL <- "gemini-2.5-pro" # Google Gemini model option
#LLM_MODEL <- "gemini-1.5-pro" # Google Gemini model option
#LLM_MODEL <- "gemini-2.5-flash" # Google Gemini model option (faster)
KORAP_URL <- "https://korap.ids-mannheim.de/instance/wiki"
# Helper function to create README-guided prompt
create_readme_prompt <- function(task_description, specific_task) {
readme_text <- read_readme_content()
if (is.null(readme_text)) {
stop("README.md not found")
}
paste0(
"You are an expert R programmer. Based on the following README documentation for the RKorAPClient package, ",
task_description, "\n\n",
"IMPORTANT: Use the KorAP URL '", KORAP_URL, "' as the 1st parameter (KorAPUrl) in KorAPConnection.\n\n",
"README Documentation:\n",
readme_text,
"\n\nTask: ", specific_task,
"\n\nProvide only the R code without explanations."
)
}
# Helper function to extract R code from markdown code blocks
extract_r_code <- function(response_text) {
# Remove markdown code blocks if present
code <- gsub("```[rR]?\\n?", "", response_text)
code <- gsub("```\\n?$", "", code)
# Remove leading/trailing whitespace
trimws(code)
}
# Helper function to test code syntax
test_code_syntax <- function(code) {
tryCatch({
parse(text = code)
TRUE
}, error = function(e) {
cat("Syntax error:", as.character(e), "\n")
FALSE
})
}
# Helper function to run code if RUN_LLM_CODE is set
run_code_if_enabled <- function(code, test_name) {
if (nzchar(Sys.getenv("RUN_LLM_CODE")) && Sys.getenv("RUN_LLM_CODE") == "true") {
cat("Running generated code for", test_name, "...\n")
tryCatch({
result <- eval(parse(text = code))
cat("Code executed successfully. Result type:", class(result), "\n")
if (is.data.frame(result)) {
cat("Result dimensions:", nrow(result), "rows,", ncol(result), "columns\n")
if (nrow(result) > 0) {
cat("First few rows:\n")
print(head(result, 3))
}
} else {
cat("Result preview:\n")
print(result)
}
return(TRUE)
}, error = function(e) {
cat("Runtime error:", as.character(e), "\n")
return(FALSE)
})
} else {
cat("Skipping code execution (set RUN_LLM_CODE=true to enable)\n")
return(NA)
}
}
test_that(paste(LLM_MODEL, "can solve frequency query task with README guidance"), {
# Skip if offline
skip_if_offline()
# Skip if no API keys are set
skip_if_no_api_key()
# Check for README file
skip_if_not(!is.null(find_readme_path()), "Readme.md not found in current or parent directories")
# Create the prompt with README context and task
prompt <- create_readme_prompt(
"write R code to perform a frequency query for the word 'Demokratie' across the past three years. The code should use the RKorAPClient package and return a data frame.",
"Write R code to query frequency of 'Demokratie' from the past three years using RKorAPClient."
)
# Call LLM API
generated_response <- call_llm_api(prompt, max_tokens = 500)
generated_code <- extract_r_code(generated_response)
# Basic checks on the generated code
expect_true(grepl("KorAPConnection", generated_code), "Generated code should include KorAPConnection")
expect_true(grepl("frequencyQuery", generated_code), "Generated code should include frequencyQuery")
expect_true(grepl("Demokratie", generated_code), "Generated code should include the search term 'Demokratie'")
last_year <- as.numeric(format(Sys.Date(), "%Y")) - 1
expect_true(grepl("Date in ", generated_code), "Generated code should vc restriction on years")
expect_true(grepl(KORAP_URL, generated_code, fixed = TRUE), "Generated code should include the specified KorAP URL")
# Check that the generated code contains essential RKorAPClient patterns
# expect_true(grepl("\\|>", generated_code) || grepl("%>%", generated_code), "Generated code should use pipe operators")
# Test code syntax
syntax_valid <- test_code_syntax(generated_code)
expect_true(syntax_valid, "Generated code should be syntactically valid R code")
# Print the generated code for manual inspection
cat("Generated code:\n", generated_code, "\n")
# Run the code if RUN_LLM_CODE is set
execution_result <- run_code_if_enabled(generated_code, "frequency query")
if (!is.na(execution_result)) {
expect_true(execution_result, "Generated code should execute without runtime errors")
}
})
test_that(paste(LLM_MODEL, "can solve collocation analysis task with README guidance"), {
# Skip if offline
skip_if_offline()
# Skip if no API keys are set
skip_if_no_api_key()
# Check for README file
skip_if_not(!is.null(find_readme_path()), "Readme.md not found in current or parent directories")
# Create the prompt for collocation analysis
prompt <- create_readme_prompt(
"write R code to perform a collocation analysis for the lemma 'setzen'. The code should use the RKorAPClient package's collocationAnalysis function.",
"Write R code to perform collocation analysis for 'setzen' using RKorAPClient."
)
# Call LLM API
generated_response <- call_llm_api(prompt, max_tokens = 500)
generated_code <- extract_r_code(generated_response)
# Basic checks on the generated code
expect_true(grepl("KorAPConnection", generated_code), "Generated code should include KorAPConnection")
expect_true(grepl("collocationAnalysis", generated_code), "Generated code should include collocationAnalysis")
expect_true(grepl("setzen", generated_code), "Generated code should include the search term 'setzen'")
# expect_true(grepl("auth", generated_code), "Generated code should include auth() for collocation analysis")
expect_true(grepl(KORAP_URL, generated_code, fixed = TRUE), "Generated code should include the specified KorAP URL")
# Test code syntax
syntax_valid <- test_code_syntax(generated_code)
expect_true(syntax_valid, "Generated code should be syntactically valid R code")
# Print the generated code for manual inspection
cat("Generated collocation analysis code:\n", generated_code, "\n")
# Run the code if RUN_LLM_CODE is set
execution_result <- run_code_if_enabled(generated_code, "collocation analysis")
if (!is.na(execution_result)) {
expect_true(execution_result, "Generated code should execute without runtime errors")
}
})
test_that(paste(LLM_MODEL, "can solve corpus query task with README guidance"), {
# Skip if offline
skip_if_offline()
# Skip if no API keys are set
skip_if_no_api_key()
# Check for README file
skip_if_not(!is.null(find_readme_path()), "Readme.md not found in current or parent directories")
# Create the prompt for corpus query
prompt <- create_readme_prompt(
"write R code to perform a simple corpus query for 'Hello world' and fetch all results. The code should use the RKorAPClient package.",
"Write R code to query 'Hello world' and fetch all results using RKorAPClient."
)
# Call LLM API
generated_response <- call_llm_api(prompt, max_tokens = 300)
generated_code <- extract_r_code(generated_response)
# Basic checks on the generated code
expect_true(grepl("KorAPConnection", generated_code), "Generated code should include KorAPConnection")
expect_true(grepl("corpusQuery", generated_code), "Generated code should include corpusQuery")
expect_true(grepl("Hello world", generated_code), "Generated code should include the search term 'Hello world'")
expect_true(grepl("fetchAll", generated_code), "Generated code should include fetchAll")
expect_true(grepl(KORAP_URL, generated_code, fixed = TRUE), "Generated code should include the specified KorAP URL")
# Check that the generated code follows the README example pattern
expect_true(grepl("\\|>", generated_code) || grepl("%>%", generated_code),
"Generated code should use pipe operators")
# Test code syntax
syntax_valid <- test_code_syntax(generated_code)
expect_true(syntax_valid, "Generated code should be syntactically valid R code")
# Print the generated code for manual inspection
cat("Generated corpus query code:\n", generated_code, "\n")
# Run the code if RUN_LLM_CODE is set
execution_result <- run_code_if_enabled(generated_code, "corpus query")
if (!is.na(execution_result)) {
expect_true(execution_result, "Generated code should execute without runtime errors")
}
})