| import spacy | |
| import sys | |
| from spacy.lang.de import German | |
| # slower and more accurate: ("de_dep_news_trf") | |
| model = sys.argv[1] | |
| if model == 'dep': | |
| nlp = spacy.load("de_core_news_sm") | |
| elif model == 'stat': | |
| nlp = spacy.load("de_core_news_sm", exclude=["parser"]) | |
| nlp.enable_pipe("senter") | |
| elif model == 'sentencizer': | |
| nlp = German() | |
| nlp.add_pipe("sentencizer") | |
| # Create a Sentence Splitter based on dependency parsing. | |
| with open(sys.argv[2], 'r') as f: | |
| contents = f.read() | |
| doc = nlp(contents) | |
| for sent in doc.sents: | |
| print(sent.text) | |
| print("</eos>") |