blob: f0d0d4cff067ef5d743700bd34cd00e9f1e0b3f8 [file] [log] [blame]
import argparse, time, json
import my_utils.file_utils as fu
from lib.CoNLL_Annotation import get_token_type
if __name__ == "__main__":
"""
--- TIGER New Orthography ---
python DeReKo/spacy_train/conll2spacy.py --corpus_name TigerNew --gld_token_type CoNLLUP_Token \
-i /home/daza/datasets/TIGER_conll/data_splits/train/Tiger.NewOrth.train.conll \
-o DeReKo/spacy_train/Tiger.NewOrth.train.json \
-t DeReKo/spacy_train/Tiger.NewOrth.train.txt
python DeReKo/spacy_train/conll2spacy.py --corpus_name TigerNew --gld_token_type CoNLLUP_Token \
-i /home/daza/datasets/TIGER_conll/data_splits/test/Tiger.NewOrth.test.conll \
-o DeReKo/spacy_train/Tiger.NewOrth.test.json \
-t DeReKo/spacy_train/Tiger.NewOrth.test.txt
"""
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--input_file", help="Input Corpus", required=True)
parser.add_argument("-n", "--corpus_name", help="Corpus Name", default="Corpus")
parser.add_argument("-o", "--output_file", help="File where the Predictions will be saved", required=True)
parser.add_argument("-t", "--text_file", help="Output Plain Text File", default=None)
parser.add_argument("-gtt", "--gld_token_type", help="CoNLL Format of the Gold Data", default="CoNLL09_Token")
parser.add_argument("-c", "--comment_str", help="CoNLL Format of comentaries inside the file", default="#")
args = parser.parse_args()
file_has_next, chunk_ix = True, 0
CHUNK_SIZE = 60000
write_out = open(args.output_file, "w")
if args.text_file: write_plain = open(args.text_file, "w")
if ".gz" == args.input_file[-3:]:
in_file = fu.expand_file(args.input_file)
else:
in_file = args.input_file
start = time.time()
total_processed_sents = 0
line_generator = fu.file_generator(in_file)
while file_has_next:
annos, file_has_next = fu.get_file_annos_chunk(line_generator, chunk_size=CHUNK_SIZE, token_class=get_token_type(args.gld_token_type), comment_str=args.comment_str)
if len(annos) == 0: break
total_processed_sents += len(annos)
print(f"Already processed {total_processed_sents} sentences...")
spacy_docs = []
for anno_id, anno in enumerate(annos):
plain_text, token_objs = [], []
for ix, tok in enumerate(anno.tokens):
token_objs.append({"id": ix, "orth":tok.word, "tag": tok.pos_tag})
plain_text.append(tok.word)
plain_text_str = " ".join(plain_text)
sent_obj = {
"id": anno_id,
"meta": anno.metadata,
"paragraphs": [{
"raw": plain_text_str,
"sentences": [{
"tokens": token_objs
}]
}]
}
spacy_docs.append(sent_obj)
if args.text_file:
write_plain.write(plain_text_str + "\n")
write_out.write(json.dumps(spacy_docs))
end = time.time()
print(f"Processing {args.corpus_name} took {(end - start)} seconds!")