blob: 14e5a9fca74a6d55840e4ac6e6418bc5f1ee8cfc [file] [log] [blame]
import argparse, os
import spacy
from spacy.language import Language
from spacy.tokens import Doc
import logging, sys, time
from lib.CoNLL_Annotation import get_token_type
import my_utils.file_utils as fu
from germalemma import GermaLemma
@Language.factory("my_component")
class WhitespaceTokenizer(object):
def __init__(self, nlp, name):
self.vocab = nlp.vocab
def __call__(self, text):
words = text.split(' ')
# All tokens 'own' a subsequent space character in this tokenizer
spaces = [True] * len(words)
return Doc(self.vocab, words=words, spaces=spaces)
def get_conll_str(anno_obj, spacy_doc, use_germalemma):
# First lines are comments. (metadata)
conll_lines = anno_obj.metadata # Then we want: [ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC]
for ix, token in enumerate(spacy_doc):
if use_germalemma == "True":
content = (str(ix), token.text, find_germalemma(token.text, token.tag_, token.lemma_), token.pos_, token.tag_, "_", "_", "_", "_", "_")
else:
content = (str(ix), token.text, token.lemma_, token.pos_, token.tag_, "_", "_", "_", "_", "_") # Pure SpaCy!
conll_lines.append("\t".join(content))
return "\n".join(conll_lines)
# def freeling_lemma_lookup():
# dicts_path = "/home/daza/Frameworks/FreeLing/data/de/dictionary/entries/"
def find_germalemma(word, pos, spacy_lemma):
simplify_pos = {"ADJA":"ADJ", "ADJD":"ADJ",
"NA":"N", "NE":"N", "NN":"N",
"ADV":"ADV", "PAV":"ADV", "PROAV":"ADV", "PAVREL":"ADV", "PWAV":"ADV", "PWAVREL":"ADV",
"VAFIN":"V", "VAIMP":"V", "VAINF":"V", "VAPP":"V", "VMFIN":"V", "VMINF":"V",
"VMPP":"V", "VVFIN":"V", "VVIMP":"V", "VVINF":"V", "VVIZU":"V","VVPP":"V"
}
# simplify_pos = {"VERB": "V", "ADV": "ADV", "ADJ": "ADJ", "NOUN":"N", "PROPN": "N"}
try:
return lemmatizer.find_lemma(word, simplify_pos.get(pos, "UNK"))
except:
return spacy_lemma
if __name__ == "__main__":
"""
EXAMPLE:
--- TIGER Classic Orthography ---
python systems/parse_spacy3.py --corpus_name TigerTestNew \
-i /home/daza/datasets/TIGER_conll/data_splits/test/Tiger.NewOrth.test.conll \
-o /home/daza/datasets/TIGER_conll/tiger_spacy3_parsed.conllu
"""
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--input_file", help="Input Corpus", required=True)
parser.add_argument("-n", "--corpus_name", help="Corpus Name", default="Corpus")
parser.add_argument("-o", "--output_file", help="File where the Predictions will be saved", required=True)
parser.add_argument("-sm", "--spacy_model", help="Spacy model containing the pipeline to tag", default="de_core_news_sm")
parser.add_argument("-gtt", "--gld_token_type", help="CoNLL Format of the Gold Data", default="CoNLLUP_Token")
parser.add_argument("-ugl", "--use_germalemma", help="Use Germalemma lemmatizer on top of SpaCy", default="True")
parser.add_argument("-c", "--comment_str", help="CoNLL Format of comentaries inside the file", default="#")
args = parser.parse_args()
file_has_next, chunk_ix = True, 0
CHUNK_SIZE = 1000
SPACY_BATCH = 100
SPACY_PROC = 4
# =====================================================================================
# LOGGING INFO ...
# =====================================================================================
logger = logging.getLogger(__name__)
console_hdlr = logging.StreamHandler(sys.stdout)
file_hdlr = logging.FileHandler(filename=f"logs/Parse_{args.corpus_name}.SpaCy.log")
logging.basicConfig(level=logging.INFO, handlers=[console_hdlr, file_hdlr])
logger.info(f"Chunking {args.corpus_name} Corpus in chunks of {CHUNK_SIZE} Sentences")
# =====================================================================================
# POS TAG DOCUMENTS
# =====================================================================================
if os.path.exists(args.spacy_model):
pass # Load Custom Trained model
else:
# try:
spacy_de = spacy.load(args.spacy_model, disable=["ner", "parser"])
spacy_de.tokenizer = WhitespaceTokenizer(spacy_de, "keep_original_tokens") # We won't re-tokenize to respect how the source CoNLL are tokenized!
# except:
# print(f"Check if model {args.spacy_model} is a valid SpaCy Pipeline or if the Path containing the trained model exists!")
# exit()
write_out = open(args.output_file, "w")
lemmatizer = GermaLemma()
if ".gz" == args.input_file[-3:]:
in_file = fu.expand_file(args.input_file)
else:
in_file = args.input_file
start = time.time()
total_processed_sents = 0
line_generator = fu.file_generator(in_file)
while file_has_next:
annos, file_has_next = fu.get_file_annos_chunk(line_generator, chunk_size=CHUNK_SIZE, token_class=get_token_type(args.gld_token_type), comment_str=args.comment_str)
if len(annos) == 0: break
total_processed_sents += len(annos)
logger.info(f"Already processed {total_processed_sents} sentences...")
sents = [a.get_sentence() for a in annos]
for ix, doc in enumerate(spacy_de.pipe(sents, batch_size=SPACY_BATCH, n_process=SPACY_PROC)):
conll_str = get_conll_str(annos[ix], doc, use_germalemma=args.use_germalemma)
write_out.write(conll_str)
write_out.write("\n\n")
end = time.time()
logger.info(f"Processing {args.corpus_name} took {(end - start)} seconds!")