| from CoNLL_Annotation import * |
| from collections import Counter |
| import pandas as pd |
| |
| |
| def eval_lemma(sys, gld): |
| match, err, symbol = 0, 0, [] |
| mistakes = [] |
| for i, gld_tok in enumerate(gld.tokens): |
| if gld_tok.lemma == sys.tokens[i].lemma: |
| match += 1 |
| elif not sys.tokens[i].lemma.isalnum(): # This was added because Turku does not lemmatize symbols (it only copies them) => ERR ((',', '--', ','), 43642) |
| symbol.append(sys.tokens[i].lemma) |
| if sys.tokens[i].word == sys.tokens[i].lemma: |
| match += 1 |
| else: |
| err += 1 |
| else: |
| err += 1 |
| mistakes.append((gld_tok.word, gld_tok.lemma, sys.tokens[i].lemma)) |
| return match, err, symbol, mistakes |
| |
| |
| |
| if __name__ == "__main__": |
| |
| # Read the Original TiGeR Annotations |
| gld_filename = "/home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09" |
| gld_generator = read_conll_generator(gld_filename, token_class=CoNLL09_Token) |
| |
| # Read the Annotations Generated by the Automatic Parser [Turku] |
| sys_filename = "/home/daza/datasets/TIGER_conll/tiger_turku_parsed.conllu" |
| sys_generator = read_conll_generator(sys_filename, token_class=CoNLLUP_Token) |
| |
| lemma_all_match, lemma_all_err, lemma_all_mistakes = 0, 0, [] |
| lemma_all_symbols = [] |
| |
| for i, (s,g) in enumerate(zip(sys_generator, gld_generator)): |
| assert len(s.tokens) == len(g.tokens), "Token Mismatch!" |
| lemma_match, lemma_err, lemma_sym, mistakes = eval_lemma(s,g) |
| lemma_all_match += lemma_match |
| lemma_all_err += lemma_err |
| lemma_all_mistakes += mistakes |
| lemma_all_symbols += lemma_sym |
| |
| print(f"Lemma Matches = {lemma_all_match} || Errors = {lemma_all_err} || Symbol Chars = {len(lemma_all_symbols)}") |
| print(f"Lemma Accuracy = {lemma_all_match*100/(lemma_all_match + lemma_all_err)}%") |
| lemma_miss_df = pd.DataFrame(lemma_all_mistakes, columns =['Gold_Word', 'Gold_Lemma', 'Sys_Lemma']).value_counts() |
| lemma_miss_df.to_csv(path_or_buf="LemmaErrors.tsv", sep="\t") |
| |
| # |
| # the_count = Counter(lemma_all_mistakes).most_common(100) |
| # for x in the_count: |
| # print(x) |
| |
| |