| from sys import stdin |
| import argparse |
| import spacy |
| from spacy.tokens import Doc |
| import logging, sys, time |
| from lib.CoNLL_Annotation import get_token_type |
| import my_utils.file_utils as fu |
| from germalemma import GermaLemma |
| |
| def format_morphological_features(token): |
| """ |
| Extract and format morphological features from a spaCy token for CoNLL-U output. |
| |
| Args: |
| token: spaCy token object |
| |
| Returns: |
| str: Formatted morphological features string for CoNLL-U 5th column |
| Returns "_" if no features are available |
| """ |
| if not hasattr(token, 'morph') or not token.morph: |
| return "_" |
| |
| morph_dict = token.morph.to_dict() |
| if not morph_dict: |
| return "_" |
| |
| # Format as CoNLL-U format: Feature=Value|Feature2=Value2 |
| features = [] |
| for feature, value in sorted(morph_dict.items()): |
| features.append(f"{feature}={value}") |
| |
| return "|".join(features) |
| |
| |
| def format_dependency_relations(doc): |
| """ |
| Extract and format dependency relations from a spaCy doc for CoNLL-U output. |
| |
| Args: |
| doc: spaCy Doc object |
| |
| Returns: |
| list: List of tuples (head_id, deprel) for each token |
| """ |
| dependencies = [] |
| for i, token in enumerate(doc): |
| # HEAD column: 1-based index of the head token (0 for root) |
| if token.dep_ == "ROOT": |
| head_id = 0 |
| else: |
| # Find the 1-based index of the head token |
| head_id = None |
| for j, potential_head in enumerate(doc): |
| if potential_head == token.head: |
| head_id = j + 1 |
| break |
| if head_id is None: |
| head_id = 0 # Fallback to root if head not found |
| |
| # DEPREL column: dependency relation |
| deprel = token.dep_ if token.dep_ else "_" |
| |
| dependencies.append((head_id, deprel)) |
| |
| return dependencies |
| |
| |
| class WhitespaceTokenizer(object): |
| def __init__(self, vocab): |
| self.vocab = vocab |
| |
| def __call__(self, text): |
| words = text.split(' ') |
| # All tokens 'own' a subsequent space character in this tokenizer |
| spaces = [True] * len(words) |
| return Doc(self.vocab, words=words, spaces=spaces) |
| |
| |
| def get_conll_str(anno_obj, spacy_doc, use_germalemma, use_dependencies): |
| # First lines are comments. (metadata) |
| conll_lines = anno_obj.metadata # Then we want: [ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC] |
| |
| # Get dependency relations if enabled |
| dependencies = format_dependency_relations(spacy_doc) if use_dependencies == "True" else None |
| |
| for ix, token in enumerate(spacy_doc): |
| morph_features = format_morphological_features(token) |
| |
| # Get HEAD and DEPREL columns |
| if dependencies: |
| head_id, deprel = dependencies[ix] |
| else: |
| head_id, deprel = "_", "_" |
| |
| if use_germalemma == "True": |
| content = (str(ix+1), token.text, find_germalemma(token.text, token.tag_, token.lemma_), token.pos_, token.tag_, morph_features, str(head_id), deprel, "_", "_") |
| else: |
| content = (str(ix+1), token.text, token.lemma_, token.pos_, token.tag_, morph_features, str(head_id), deprel, "_", "_") # Pure SpaCy! |
| conll_lines.append("\t".join(content)) |
| return "\n".join(conll_lines) |
| |
| |
| def find_germalemma(word, pos, spacy_lemma): |
| simplify_pos = {"ADJA":"ADJ", "ADJD":"ADJ", |
| "NA":"N", "NE":"N", "NN":"N", |
| "ADV":"ADV", "PAV":"ADV", "PROAV":"ADV", "PAVREL":"ADV", "PWAV":"ADV", "PWAVREL":"ADV", |
| "VAFIN":"V", "VAIMP":"V", "VAINF":"V", "VAPP":"V", "VMFIN":"V", "VMINF":"V", |
| "VMPP":"V", "VVFIN":"V", "VVIMP":"V", "VVINF":"V", "VVIZU":"V","VVPP":"V" |
| } |
| # simplify_pos = {"VERB": "V", "ADV": "ADV", "ADJ": "ADJ", "NOUN":"N", "PROPN": "N"} |
| try: |
| return lemmatizer.find_lemma(word, simplify_pos.get(pos, "UNK")) |
| except: |
| return spacy_lemma |
| |
| |
| if __name__ == "__main__": |
| """ |
| --- Example Real Data TEST --- |
| |
| cat /export/netapp/kupietz/N-GRAMM-STUDIE/conllu/zca18.conllu | python systems/parse_spacy_pipe.py \ |
| --corpus_name DeReKo_zca18 --comment_str "#" > output_zca18.conll |
| """ |
| |
| parser = argparse.ArgumentParser() |
| parser.add_argument("-n", "--corpus_name", help="Corpus Name", default="Corpus") |
| parser.add_argument("-sm", "--spacy_model", help="Spacy model containing the pipeline to tag", default="de_core_news_lg") |
| parser.add_argument("-gtt", "--gld_token_type", help="CoNLL Format of the Gold Data", default="CoNLLUP_Token") |
| parser.add_argument("-ugl", "--use_germalemma", help="Use Germalemma lemmatizer on top of SpaCy", default="True") |
| parser.add_argument("-udp", "--use_dependencies", help="Include dependency parsing (adds HEAD/DEPREL columns, set to False for faster processing)", default="True") |
| parser.add_argument("-c", "--comment_str", help="CoNLL Format of comentaries inside the file", default="#") |
| args = parser.parse_args() |
| |
| file_has_next, chunk_ix = True, 0 |
| CHUNK_SIZE = 20000 |
| SPACY_BATCH = 2000 |
| SPACY_PROC = 10 |
| |
| # ===================================================================================== |
| # LOGGING INFO ... |
| # ===================================================================================== |
| logger = logging.getLogger(__name__) |
| console_hdlr = logging.StreamHandler(sys.stderr) |
| file_hdlr = logging.FileHandler(filename=f"logs/Parse_{args.corpus_name}.SpaCy.log") |
| logging.basicConfig(level=logging.INFO, handlers=[console_hdlr, file_hdlr]) |
| |
| # Override with environment variables if set (useful for Docker) |
| import os |
| if os.getenv("SPACY_USE_DEPENDENCIES") is not None: |
| args.use_dependencies = os.getenv("SPACY_USE_DEPENDENCIES", "True") |
| logger.info(f"Using SPACY_USE_DEPENDENCIES environment variable: {args.use_dependencies}") |
| |
| if os.getenv("SPACY_USE_GERMALEMMA") is not None: |
| args.use_germalemma = os.getenv("SPACY_USE_GERMALEMMA", "True") |
| logger.info(f"Using SPACY_USE_GERMALEMMA environment variable: {args.use_germalemma}") |
| |
| logger.info(f"Chunking {args.corpus_name} Corpus in chunks of {CHUNK_SIZE} Sentences") |
| |
| # ===================================================================================== |
| # POS TAG DOCUMENTS |
| # ===================================================================================== |
| # Configure which components to disable based on dependency parsing option |
| disabled_components = ["ner"] |
| if args.use_dependencies != "True": |
| disabled_components.append("parser") |
| logger.info("Dependency parsing disabled for faster processing") |
| else: |
| logger.info("Dependency parsing enabled (slower but includes HEAD/DEPREL)") |
| |
| spacy_de = spacy.load(args.spacy_model, disable=disabled_components) |
| spacy_de.tokenizer = WhitespaceTokenizer(spacy_de.vocab) # We won't re-tokenize to respect how the source CoNLL are tokenized! |
| lemmatizer = GermaLemma() |
| |
| # Log version information |
| logger.info(f"spaCy version: {spacy.__version__}") |
| logger.info(f"spaCy model: {args.spacy_model}") |
| logger.info(f"spaCy model version: {spacy_de.meta.get('version', 'unknown')}") |
| try: |
| import germalemma |
| logger.info(f"GermaLemma version: {germalemma.__version__}") |
| except AttributeError: |
| logger.info("GermaLemma version: unknown (no __version__ attribute)") |
| |
| start = time.time() |
| total_processed_sents = 0 |
| |
| while file_has_next: |
| annos, file_has_next = fu.get_file_annos_chunk(stdin, chunk_size=CHUNK_SIZE, token_class=get_token_type(args.gld_token_type), comment_str=args.comment_str, our_foundry="spacy") |
| if len(annos) == 0: break |
| total_processed_sents += len(annos) |
| logger.info(f"Already processed {total_processed_sents} sentences...") |
| sents = [a.get_sentence() for a in annos] |
| for ix, doc in enumerate(spacy_de.pipe(sents, batch_size=SPACY_BATCH, n_process=SPACY_PROC)): |
| conll_str = get_conll_str(annos[ix], doc, use_germalemma=args.use_germalemma, use_dependencies=args.use_dependencies) |
| print(conll_str+ "\n") |
| |
| end = time.time() |
| logger.info(f"Processing {args.corpus_name} took {(end - start)} seconds!") |
| |