| from sys import stdin |
| import argparse |
| import spacy |
| from spacy.tokens import Doc |
| import logging, sys, time |
| from lib.CoNLL_Annotation import get_token_type |
| import my_utils.file_utils as fu |
| from germalemma import GermaLemma |
| |
| |
| class WhitespaceTokenizer(object): |
| def __init__(self, vocab): |
| self.vocab = vocab |
| |
| def __call__(self, text): |
| words = text.split(' ') |
| # All tokens 'own' a subsequent space character in this tokenizer |
| spaces = [True] * len(words) |
| return Doc(self.vocab, words=words, spaces=spaces) |
| |
| |
| def get_conll_str(anno_obj, spacy_doc, use_germalemma): |
| # First lines are comments. (metadata) |
| conll_lines = anno_obj.metadata # Then we want: [ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC] |
| for ix, token in enumerate(spacy_doc): |
| if use_germalemma == "True": |
| content = (str(ix), token.text, find_germalemma(token.text, token.tag_, token.lemma_), token.pos_, token.tag_, "_", "_", "_", "_", "_") |
| else: |
| content = (str(ix), token.text, token.lemma_, token.pos_, token.tag_, "_", "_", "_", "_", "_") # Pure SpaCy! |
| conll_lines.append("\t".join(content)) |
| return "\n".join(conll_lines) |
| |
| |
| def find_germalemma(word, pos, spacy_lemma): |
| simplify_pos = {"ADJA":"ADJ", "ADJD":"ADJ", |
| "NA":"N", "NE":"N", "NN":"N", |
| "ADV":"ADV", "PAV":"ADV", "PROAV":"ADV", "PAVREL":"ADV", "PWAV":"ADV", "PWAVREL":"ADV", |
| "VAFIN":"V", "VAIMP":"V", "VAINF":"V", "VAPP":"V", "VMFIN":"V", "VMINF":"V", |
| "VMPP":"V", "VVFIN":"V", "VVIMP":"V", "VVINF":"V", "VVIZU":"V","VVPP":"V" |
| } |
| # simplify_pos = {"VERB": "V", "ADV": "ADV", "ADJ": "ADJ", "NOUN":"N", "PROPN": "N"} |
| try: |
| return lemmatizer.find_lemma(word, simplify_pos.get(pos, "UNK")) |
| except: |
| return spacy_lemma |
| |
| |
| if __name__ == "__main__": |
| """ |
| --- Example Real Data TEST --- |
| |
| cat /export/netapp/kupietz/N-GRAMM-STUDIE/conllu/zca18.conllu | python systems/parse_spacy_pipe.py \ |
| --corpus_name DeReKo_zca18 --comment_str "#" > output_zca18.conll |
| """ |
| |
| parser = argparse.ArgumentParser() |
| parser.add_argument("-n", "--corpus_name", help="Corpus Name", default="Corpus") |
| parser.add_argument("-sm", "--spacy_model", help="Spacy model containing the pipeline to tag", default="de_core_news_lg") |
| parser.add_argument("-gtt", "--gld_token_type", help="CoNLL Format of the Gold Data", default="CoNLLUP_Token") |
| parser.add_argument("-ugl", "--use_germalemma", help="Use Germalemma lemmatizer on top of SpaCy", default="True") |
| parser.add_argument("-c", "--comment_str", help="CoNLL Format of comentaries inside the file", default="#") |
| args = parser.parse_args() |
| |
| file_has_next, chunk_ix = True, 0 |
| CHUNK_SIZE = 20000 |
| SPACY_BATCH = 2000 |
| SPACY_PROC = 10 |
| |
| # ===================================================================================== |
| # LOGGING INFO ... |
| # ===================================================================================== |
| logger = logging.getLogger(__name__) |
| console_hdlr = logging.StreamHandler(sys.stderr) |
| file_hdlr = logging.FileHandler(filename=f"logs/Parse_{args.corpus_name}.SpaCy.log") |
| logging.basicConfig(level=logging.INFO, handlers=[console_hdlr, file_hdlr]) |
| logger.info(f"Chunking {args.corpus_name} Corpus in chunks of {CHUNK_SIZE} Sentences") |
| |
| # ===================================================================================== |
| # POS TAG DOCUMENTS |
| # ===================================================================================== |
| spacy_de = spacy.load(args.spacy_model, disable=["ner", "parser"]) |
| spacy_de.tokenizer = WhitespaceTokenizer(spacy_de.vocab) # We won't re-tokenize to respect how the source CoNLL are tokenized! |
| lemmatizer = GermaLemma() |
| |
| start = time.time() |
| total_processed_sents = 0 |
| |
| while file_has_next: |
| annos, file_has_next = fu.get_file_annos_chunk(stdin, chunk_size=CHUNK_SIZE, token_class=get_token_type(args.gld_token_type), comment_str=args.comment_str, our_foundry="spacy") |
| if len(annos) == 0: break |
| total_processed_sents += len(annos) |
| logger.info(f"Already processed {total_processed_sents} sentences...") |
| sents = [a.get_sentence() for a in annos] |
| for ix, doc in enumerate(spacy_de.pipe(sents, batch_size=SPACY_BATCH, n_process=SPACY_PROC)): |
| conll_str = get_conll_str(annos[ix], doc, use_germalemma=args.use_germalemma) |
| print(conll_str+ "\n") |
| |
| end = time.time() |
| logger.info(f"Processing {args.corpus_name} took {(end - start)} seconds!") |
| |