daza | 0498a6a | 2020-10-06 12:03:12 +0200 | [diff] [blame^] | 1 | from CoNLL_Annotation import * |
| 2 | from collections import Counter |
| 3 | import pandas as pd |
| 4 | import numpy as np |
| 5 | from sklearn.metrics import precision_recall_fscore_support as eval_f1 |
| 6 | from tabulate import tabulate |
| 7 | |
| 8 | |
| 9 | def eval_lemma(sys, gld): |
| 10 | match, err, symbol = 0, 0, [] |
| 11 | mistakes = [] |
| 12 | for i, gld_tok in enumerate(gld.tokens): |
| 13 | if gld_tok.lemma == sys.tokens[i].lemma: |
| 14 | match += 1 |
| 15 | elif not sys.tokens[i].lemma.isalnum(): # This was added because Turku does not lemmatize symbols (it only copies them) => ERR ((',', '--', ','), 43642) |
| 16 | symbol.append(sys.tokens[i].lemma) |
| 17 | if sys.tokens[i].word == sys.tokens[i].lemma: |
| 18 | match += 1 |
| 19 | else: |
| 20 | err += 1 |
| 21 | else: |
| 22 | err += 1 |
| 23 | mistakes.append((gld_tok.word, gld_tok.lemma, sys.tokens[i].lemma)) |
| 24 | return match, err, symbol, mistakes |
| 25 | |
| 26 | |
| 27 | def eval_pos(sys, gld): |
| 28 | match, mistakes = 0, [] |
| 29 | y_gld, y_pred = [], [] |
| 30 | for i, gld_tok in enumerate(gld.tokens): |
| 31 | y_gld.append(gld_tok.pos_tag) |
| 32 | y_pred.append(sys.tokens[i].pos_tag) |
| 33 | all_pos_labels.add(gld_tok.pos_tag) |
| 34 | all_pos_labels.add(sys.tokens[i].pos_tag) |
| 35 | if gld_tok.pos_tag == sys.tokens[i].pos_tag: |
| 36 | match += 1 |
| 37 | else: |
| 38 | mistakes.append((gld_tok.word, gld_tok.pos_tag, sys.tokens[i].pos_tag)) |
| 39 | return y_gld, y_pred, match, mistakes |
| 40 | |
| 41 | |
| 42 | |
| 43 | if __name__ == "__main__": |
| 44 | |
| 45 | # Read the Original TiGeR Annotations |
| 46 | gld_filename = "/home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09" |
| 47 | gld_generator = read_conll_generator(gld_filename, token_class=CoNLL09_Token) |
| 48 | |
| 49 | # Read the Annotations Generated by the Automatic Parser [Turku] |
| 50 | sys_filename = "/home/daza/datasets/TIGER_conll/tiger_turku_parsed.conllu" |
| 51 | sys_generator = read_conll_generator(sys_filename, token_class=CoNLLUP_Token) |
| 52 | |
| 53 | lemma_all_match, lemma_all_err, lemma_all_mistakes = 0, 0, [] |
| 54 | lemma_all_symbols = [] |
| 55 | pos_all_match, pos_all_err, pos_all_mistakes = 0, 0, [] |
| 56 | pos_all_pred, pos_all_gld = [], [] |
| 57 | all_pos_labels = set() |
| 58 | |
| 59 | for i, (s,g) in enumerate(zip(sys_generator, gld_generator)): |
| 60 | assert len(s.tokens) == len(g.tokens), "Token Mismatch!" |
| 61 | # Lemmas ... |
| 62 | lemma_match, lemma_err, lemma_sym, mistakes = eval_lemma(s,g) |
| 63 | lemma_all_match += lemma_match |
| 64 | lemma_all_err += lemma_err |
| 65 | lemma_all_mistakes += mistakes |
| 66 | lemma_all_symbols += lemma_sym |
| 67 | # POS Tags ... |
| 68 | pos_gld, pos_pred, pos_match, pos_mistakes = eval_pos(s, g) |
| 69 | pos_all_pred += pos_pred |
| 70 | pos_all_gld += pos_gld |
| 71 | pos_all_match += pos_match |
| 72 | pos_all_err += len(pos_mistakes) |
| 73 | pos_all_mistakes += pos_mistakes |
| 74 | |
| 75 | # Lemmas ... |
| 76 | print(f"Lemma Matches = {lemma_all_match} || Errors = {lemma_all_err} || Symbol Chars = {len(lemma_all_symbols)}") |
| 77 | print(f"Lemma Accuracy = {(lemma_all_match*100/(lemma_all_match + lemma_all_err)):.2f}%\n") |
| 78 | lemma_miss_df = pd.DataFrame(lemma_all_mistakes, columns =['Gold_Word', 'Gold_Lemma', 'Sys_Lemma']).value_counts() |
| 79 | lemma_miss_df.to_csv(path_or_buf="LemmaErrors.tsv", sep="\t") |
| 80 | |
| 81 | # POS Tags ... |
| 82 | print(f"POS Matches = {pos_all_match} || Errors = {pos_all_err}") |
| 83 | print(f"POS Tagging Accuracy = {(pos_all_match*100/(pos_all_match + pos_all_err)):.2f}%\n") |
| 84 | pos_miss_df = pd.DataFrame(pos_all_mistakes, columns =['Gold_Word', 'Gold_POS', 'Sys_POS']).value_counts() |
| 85 | pos_miss_df.to_csv(path_or_buf="POS-Errors.tsv", sep="\t") |
| 86 | |
| 87 | ordered_labels = sorted(all_pos_labels) |
| 88 | p_labels, r_labels, f_labels, support = eval_f1(y_true=pos_all_gld, y_pred=pos_all_pred, labels=ordered_labels , average=None) |
| 89 | scores_per_label = zip(ordered_labels, [x*100 for x in p_labels], [x*100 for x in r_labels], [x*100 for x in f_labels]) |
| 90 | print("\n\n") |
| 91 | print(tabulate(scores_per_label, headers=["POS Tag","Precision", "Recall", "F1"], floatfmt=".2f")) |
| 92 | print("\n Total Prec, Rec, and F1 Score: ") |
| 93 | p_labels, r_labels, f_labels, support = eval_f1(y_true=np.array(pos_all_gld), y_pred=np.array(pos_all_pred), average='micro', zero_division=0) |
| 94 | print(p_labels*100, r_labels*100, f_labels*100) |
| 95 | |
| 96 | |