blob: 75a1eb5f7b7f14202d4f8c8a96a2f08878ebfc34 [file] [log] [blame]
daza54e072e2020-11-04 11:06:26 +01001import argparse
2import spacy
3from spacy.tokens import Doc
4import logging, sys, time
5from lib.CoNLL_Annotation import get_token_type
6import my_utils.file_utils as fu
7from germalemma import GermaLemma
8
9
10class WhitespaceTokenizer(object):
11 def __init__(self, vocab):
12 self.vocab = vocab
13
14 def __call__(self, text):
15 words = text.split(' ')
16 # All tokens 'own' a subsequent space character in this tokenizer
17 spaces = [True] * len(words)
18 return Doc(self.vocab, words=words, spaces=spaces)
19
20
21def get_conll_str(spacy_doc, use_germalemma):
22 conll_lines = [] # We want: [ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC]
23 for ix, token in enumerate(spacy_doc):
24 if use_germalemma == "True":
25 content = (str(ix), token.text, find_germalemma(token.text, token.tag_, token.lemma_), token.pos_, token.tag_, "_", "_", "_", "_", "_")
26 else:
27 content = (str(ix), token.text, token.lemma_, token.pos_, token.tag_, "_", "_", "_", "_", "_") # Pure SpaCy!
28 conll_lines.append("\t".join(content))
29 return "\n".join(conll_lines)
30
31
32# def freeling_lemma_lookup():
33# dicts_path = "/home/daza/Frameworks/FreeLing/data/de/dictionary/entries/"
34
35def find_germalemma(word, pos, spacy_lemma):
36 simplify_pos = {"ADJA":"ADJ", "ADJD":"ADJ",
37 "NA":"N", "NE":"N", "NN":"N",
38 "ADV":"ADV", "PAV":"ADV", "PROAV":"ADV", "PAVREL":"ADV", "PWAV":"ADV", "PWAVREL":"ADV",
39 "VAFIN":"V", "VAIMP":"V", "VAINF":"V", "VAPP":"V", "VMFIN":"V", "VMINF":"V",
40 "VMPP":"V", "VVFIN":"V", "VVIMP":"V", "VVINF":"V", "VVIZU":"V","VVPP":"V"
41 }
42 # simplify_pos = {"VERB": "V", "ADV": "ADV", "ADJ": "ADJ", "NOUN":"N", "PROPN": "N"}
43 try:
44 return lemmatizer.find_lemma(word, simplify_pos.get(pos, "UNK"))
45 except:
46 return spacy_lemma
47
48
49if __name__ == "__main__":
50 """
51 EXAMPLE:
52 python systems/parse_spacy.py --corpus_name Tiger \
53 -i /home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09 \
54 -o /home/daza/datasets/TIGER_conll/tiger_spacy_parsed.conllu \
55 -t /home/daza/datasets/TIGER_conll/tiger_all.txt
56
57 python systems/parse_spacy.py --corpus_name DE_GSD --gld_token_type CoNLLUP_Token \
58 -i /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.conllu \
59 -o /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.parsed.germalemma.conllu \
60 -t/home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.txt
61 """
62
63 parser = argparse.ArgumentParser()
64 parser.add_argument("-i", "--input_file", help="Input Corpus", required=True)
65 parser.add_argument("-n", "--corpus_name", help="Corpus Name", default="Corpus")
66 parser.add_argument("-o", "--output_file", help="File where the Predictions will be saved", required=True)
67 parser.add_argument("-t", "--text_file", help="Output Plain Text File", default=None)
68 parser.add_argument("-gtt", "--gld_token_type", help="CoNLL Format of the Gold Data", default="CoNLL09_Token")
69 parser.add_argument("-ugl", "--use_germalemma", help="Use Germalemma lemmatizer on top of SpaCy", default="True")
70 parser.add_argument("-c", "--comment_str", help="CoNLL Format of comentaries inside the file", default="#")
71 args = parser.parse_args()
72
73 file_has_next, chunk_ix = True, 0
74 CHUNK_SIZE = 10000
75
76 # =====================================================================================
77 # LOGGING INFO ...
78 # =====================================================================================
79 logger = logging.getLogger(__name__)
80 console_hdlr = logging.StreamHandler(sys.stdout)
81 file_hdlr = logging.FileHandler(filename=f"logs/Parse_{args.corpus_name}.SpaCy.log")
82 logging.basicConfig(level=logging.INFO, handlers=[console_hdlr, file_hdlr])
83 logger.info(f"Chunking {args.corpus_name} Corpus in chunks of {CHUNK_SIZE} Sentences")
84
85 # =====================================================================================
86 # POS TAG DOCUMENTS
87 # =====================================================================================
88 spacy_de = spacy.load("de_core_news_lg", disable=["ner", "parser"])
89 spacy_de.tokenizer = WhitespaceTokenizer(spacy_de.vocab) # We won't re-tokenize to respect how the source CoNLL are tokenized!
90 write_out = open(args.output_file, "w")
91 lemmatizer = GermaLemma()
92 if args.text_file: write_plain = open(args.text_file, "w")
93
94 start = time.time()
95 total_processed_sents = 0
96 line_generator = fu.file_generator(args.input_file)
97 while file_has_next:
98 sents, gld, file_has_next = fu.get_file_text_chunk(line_generator, chunk_size=CHUNK_SIZE, token_class=get_token_type(args.gld_token_type), comment_str=args.comment_str)
99 if len(sents) == 0: break
100 total_processed_sents += len(sents)
101 logger.info(f"Already processed {total_processed_sents} sentences...")
102 for doc in spacy_de.pipe(sents, batch_size=1000, n_process=10):
103 conll_str = get_conll_str(doc, use_germalemma=args.use_germalemma)
104 write_out.write(conll_str)
105 write_out.write("\n\n")
106 if args.text_file:
107 write_plain.write(" ".join([x.text for x in doc])+"\n")
108
109 end = time.time()
110 logger.info(f"Processing {args.corpus_name} took {(end - start)} seconds!")
111