blob: ac27058428c1228a20ffcaa965716ac68226ba01 [file] [log] [blame]
Marc Kupietz095185b2025-10-27 14:41:43 +01001import argparse, os
dazae3bc92e2020-11-04 11:06:26 +01002import spacy
3from spacy.tokens import Doc
Marc Kupietz095185b2025-10-27 14:41:43 +01004import logging, sys, time, signal
dazae3bc92e2020-11-04 11:06:26 +01005from lib.CoNLL_Annotation import get_token_type
6import my_utils.file_utils as fu
7from germalemma import GermaLemma
8
Marc Kupietz095185b2025-10-27 14:41:43 +01009# Dependency parsing safety limits
10DEFAULT_PARSE_TIMEOUT = 30 # seconds per sentence
11DEFAULT_MAX_SENTENCE_LENGTH = 500 # tokens
12
13class TimeoutException(Exception):
14 pass
15
16def timeout_handler(signum, frame):
17 raise TimeoutException("Dependency parsing timeout")
18
19def safe_dependency_parse(spacy_model, text, timeout=DEFAULT_PARSE_TIMEOUT, max_length=DEFAULT_MAX_SENTENCE_LENGTH):
20 """
21 Safely parse a sentence with timeout and length limits.
22
23 Args:
24 spacy_model: Loaded spaCy model
25 text: Text to parse
26 timeout: Maximum seconds to wait for parsing
27 max_length: Maximum sentence length in tokens
28
29 Returns:
30 tuple: (spacy_doc, success, warning_message)
31 """
32 # Check sentence length
33 if len(text.split()) > max_length:
34 # Process without dependency parsing for long sentences
35 disabled_components = ["ner", "parser"]
36 doc = spacy_model(text, disable=disabled_components)
37 return doc, False, f"Sentence too long ({len(text.split())} tokens > {max_length}), dependency parsing skipped"
38
39 # Set up timeout
40 old_handler = signal.signal(signal.SIGALRM, timeout_handler)
41 signal.alarm(timeout)
42
43 try:
44 doc = spacy_model(text)
45 signal.alarm(0) # Cancel alarm
46 signal.signal(signal.SIGALRM, old_handler)
47 return doc, True, None
48 except TimeoutException:
49 signal.alarm(0) # Cancel alarm
50 signal.signal(signal.SIGALRM, old_handler)
51 # Retry without dependency parsing
52 disabled_components = ["ner", "parser"]
53 doc = spacy_model(text, disable=disabled_components)
54 return doc, False, f"Dependency parsing timeout after {timeout}s, processed without dependencies"
55 except Exception as e:
56 signal.alarm(0) # Cancel alarm
57 signal.signal(signal.SIGALRM, old_handler)
58 # Retry without dependency parsing
59 disabled_components = ["ner", "parser"]
60 doc = spacy_model(text, disable=disabled_components)
61 return doc, False, f"Dependency parsing error: {str(e)}, processed without dependencies"
62
Marc Kupietz88eea722025-10-26 15:21:14 +010063def format_morphological_features(token):
64 """
65 Extract and format morphological features from a spaCy token for CoNLL-U output.
66
67 Args:
68 token: spaCy token object
69
70 Returns:
71 str: Formatted morphological features string for CoNLL-U 5th column
72 Returns "_" if no features are available
73 """
74 if not hasattr(token, 'morph') or not token.morph:
75 return "_"
76
77 morph_dict = token.morph.to_dict()
78 if not morph_dict:
79 return "_"
80
81 # Format as CoNLL-U format: Feature=Value|Feature2=Value2
82 features = []
83 for feature, value in sorted(morph_dict.items()):
84 features.append(f"{feature}={value}")
85
86 return "|".join(features)
87
dazae3bc92e2020-11-04 11:06:26 +010088
89class WhitespaceTokenizer(object):
90 def __init__(self, vocab):
91 self.vocab = vocab
92
93 def __call__(self, text):
94 words = text.split(' ')
95 # All tokens 'own' a subsequent space character in this tokenizer
96 spaces = [True] * len(words)
97 return Doc(self.vocab, words=words, spaces=spaces)
98
99
daza85347472020-11-23 18:43:33 +0100100def get_conll_str(anno_obj, spacy_doc, use_germalemma):
101 # First lines are comments. (metadata)
102 conll_lines = anno_obj.metadata # Then we want: [ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC]
dazae3bc92e2020-11-04 11:06:26 +0100103 for ix, token in enumerate(spacy_doc):
Marc Kupietz88eea722025-10-26 15:21:14 +0100104 morph_features = format_morphological_features(token)
dazae3bc92e2020-11-04 11:06:26 +0100105 if use_germalemma == "True":
Marc Kupietz88eea722025-10-26 15:21:14 +0100106 content = (str(ix), token.text, find_germalemma(token.text, token.tag_, token.lemma_), token.pos_, token.tag_, morph_features, "_", "_", "_", "_")
dazae3bc92e2020-11-04 11:06:26 +0100107 else:
Marc Kupietz88eea722025-10-26 15:21:14 +0100108 content = (str(ix), token.text, token.lemma_, token.pos_, token.tag_, morph_features, "_", "_", "_", "_") # Pure SpaCy!
dazae3bc92e2020-11-04 11:06:26 +0100109 conll_lines.append("\t".join(content))
110 return "\n".join(conll_lines)
111
dazae3bc92e2020-11-04 11:06:26 +0100112
113def find_germalemma(word, pos, spacy_lemma):
114 simplify_pos = {"ADJA":"ADJ", "ADJD":"ADJ",
115 "NA":"N", "NE":"N", "NN":"N",
116 "ADV":"ADV", "PAV":"ADV", "PROAV":"ADV", "PAVREL":"ADV", "PWAV":"ADV", "PWAVREL":"ADV",
117 "VAFIN":"V", "VAIMP":"V", "VAINF":"V", "VAPP":"V", "VMFIN":"V", "VMINF":"V",
118 "VMPP":"V", "VVFIN":"V", "VVIMP":"V", "VVINF":"V", "VVIZU":"V","VVPP":"V"
119 }
120 # simplify_pos = {"VERB": "V", "ADV": "ADV", "ADJ": "ADJ", "NOUN":"N", "PROPN": "N"}
121 try:
122 return lemmatizer.find_lemma(word, simplify_pos.get(pos, "UNK"))
123 except:
124 return spacy_lemma
125
126
127if __name__ == "__main__":
128 """
129 EXAMPLE:
daza85347472020-11-23 18:43:33 +0100130 --- TIGER Classic Orthography ---
dazad7d70752021-01-12 18:17:49 +0100131 python systems/parse_spacy.py --corpus_name Tiger --gld_token_type CoNLL09_Token \
dazae3bc92e2020-11-04 11:06:26 +0100132 -i /home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09 \
133 -o /home/daza/datasets/TIGER_conll/tiger_spacy_parsed.conllu \
134 -t /home/daza/datasets/TIGER_conll/tiger_all.txt
dazad7d70752021-01-12 18:17:49 +0100135
136 python systems/parse_spacy.py --corpus_name TigerOld_test \
137 -i /home/daza/datasets/TIGER_conll/data_splits/test/Tiger.OldOrth.test.conll \
138 -o /home/daza/datasets/TIGER_conll/tiger_spacy_parsed.test.conllu
daza85347472020-11-23 18:43:33 +0100139
140 --- TIGER New Orthography ---
dazad7d70752021-01-12 18:17:49 +0100141 python systems/parse_spacy.py --corpus_name TigerNew \
daza85347472020-11-23 18:43:33 +0100142 -i /home/daza/datasets/TIGER_conll/Tiger.NewOrth.train.conll \
143 -o /home/daza/datasets/TIGER_conll/Tiger.NewOrth.train.spacy_parsed.conllu \
144 -t /home/daza/datasets/TIGER_conll/Tiger.NewOrth.train.txt
dazad7d70752021-01-12 18:17:49 +0100145
146 python systems/parse_spacy.py --corpus_name TigerNew_test \
147 -i /home/daza/datasets/TIGER_conll/data_splits/test/Tiger.NewOrth.test.conll \
148 -o /home/daza/datasets/TIGER_conll/Tiger.NewOrth.test.spacy_parsed.conllu
daza85347472020-11-23 18:43:33 +0100149
150 --- German GSD Universal Deps ---
dazad7d70752021-01-12 18:17:49 +0100151 python systems/parse_spacy.py --corpus_name DE_GSD \
dazae3bc92e2020-11-04 11:06:26 +0100152 -i /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.conllu \
153 -o /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.parsed.germalemma.conllu \
daza85347472020-11-23 18:43:33 +0100154 -t /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.txt
155
156
157 --- Real Data TEST ---
dazad7d70752021-01-12 18:17:49 +0100158 time python systems/parse_spacy.py --corpus_name DeReKo_a00 --comment_str "#" \
daza85347472020-11-23 18:43:33 +0100159 -i /export/netapp/kupietz/N-GRAMM-STUDIE/conllu/a00.conllu.gz \
160 -o /export/netapp/kupietz/N-GRAMM-STUDIE/conllu/0_SpaCyParsed/a00.spacy.gl.conllu
dazae3bc92e2020-11-04 11:06:26 +0100161 """
162
163 parser = argparse.ArgumentParser()
164 parser.add_argument("-i", "--input_file", help="Input Corpus", required=True)
165 parser.add_argument("-n", "--corpus_name", help="Corpus Name", default="Corpus")
166 parser.add_argument("-o", "--output_file", help="File where the Predictions will be saved", required=True)
167 parser.add_argument("-t", "--text_file", help="Output Plain Text File", default=None)
dazad7d70752021-01-12 18:17:49 +0100168 parser.add_argument("-sm", "--spacy_model", help="Spacy model containing the pipeline to tag", default="de_core_news_lg")
169 parser.add_argument("-gtt", "--gld_token_type", help="CoNLL Format of the Gold Data", default="CoNLLUP_Token")
dazae3bc92e2020-11-04 11:06:26 +0100170 parser.add_argument("-ugl", "--use_germalemma", help="Use Germalemma lemmatizer on top of SpaCy", default="True")
171 parser.add_argument("-c", "--comment_str", help="CoNLL Format of comentaries inside the file", default="#")
172 args = parser.parse_args()
173
174 file_has_next, chunk_ix = True, 0
dazad7d70752021-01-12 18:17:49 +0100175 CHUNK_SIZE = 20000
176 SPACY_BATCH = 2000
177 SPACY_PROC = 10
dazae3bc92e2020-11-04 11:06:26 +0100178
179 # =====================================================================================
180 # LOGGING INFO ...
181 # =====================================================================================
182 logger = logging.getLogger(__name__)
183 console_hdlr = logging.StreamHandler(sys.stdout)
184 file_hdlr = logging.FileHandler(filename=f"logs/Parse_{args.corpus_name}.SpaCy.log")
185 logging.basicConfig(level=logging.INFO, handlers=[console_hdlr, file_hdlr])
186 logger.info(f"Chunking {args.corpus_name} Corpus in chunks of {CHUNK_SIZE} Sentences")
187
188 # =====================================================================================
189 # POS TAG DOCUMENTS
190 # =====================================================================================
dazad7d70752021-01-12 18:17:49 +0100191 spacy_de = spacy.load(args.spacy_model, disable=["ner", "parser"])
dazae3bc92e2020-11-04 11:06:26 +0100192 spacy_de.tokenizer = WhitespaceTokenizer(spacy_de.vocab) # We won't re-tokenize to respect how the source CoNLL are tokenized!
193 write_out = open(args.output_file, "w")
194 lemmatizer = GermaLemma()
Marc Kupietzf629a402025-10-26 21:54:33 +0100195
196 # Log version information
197 logger.info(f"spaCy version: {spacy.__version__}")
198 logger.info(f"spaCy model: {args.spacy_model}")
199 logger.info(f"spaCy model version: {spacy_de.meta.get('version', 'unknown')}")
200 try:
201 import germalemma
202 logger.info(f"GermaLemma version: {germalemma.__version__}")
203 except AttributeError:
204 logger.info("GermaLemma version: unknown (no __version__ attribute)")
dazae3bc92e2020-11-04 11:06:26 +0100205 if args.text_file: write_plain = open(args.text_file, "w")
206
daza85347472020-11-23 18:43:33 +0100207 if ".gz" == args.input_file[-3:]:
208 in_file = fu.expand_file(args.input_file)
209 else:
210 in_file = args.input_file
211
dazae3bc92e2020-11-04 11:06:26 +0100212 start = time.time()
213 total_processed_sents = 0
daza85347472020-11-23 18:43:33 +0100214 line_generator = fu.file_generator(in_file)
dazae3bc92e2020-11-04 11:06:26 +0100215 while file_has_next:
daza85347472020-11-23 18:43:33 +0100216 annos, file_has_next = fu.get_file_annos_chunk(line_generator, chunk_size=CHUNK_SIZE, token_class=get_token_type(args.gld_token_type), comment_str=args.comment_str)
217 if len(annos) == 0: break
218 total_processed_sents += len(annos)
dazae3bc92e2020-11-04 11:06:26 +0100219 logger.info(f"Already processed {total_processed_sents} sentences...")
daza85347472020-11-23 18:43:33 +0100220 sents = [a.get_sentence() for a in annos]
221 for ix, doc in enumerate(spacy_de.pipe(sents, batch_size=SPACY_BATCH, n_process=SPACY_PROC)):
222 conll_str = get_conll_str(annos[ix], doc, use_germalemma=args.use_germalemma)
dazae3bc92e2020-11-04 11:06:26 +0100223 write_out.write(conll_str)
224 write_out.write("\n\n")
225 if args.text_file:
226 write_plain.write(" ".join([x.text for x in doc])+"\n")
227
228 end = time.time()
229 logger.info(f"Processing {args.corpus_name} took {(end - start)} seconds!")
230