| daza | 972aabc | 2020-09-01 16:41:30 +0200 | [diff] [blame^] | 1 | from CoNLL_Annotation import * | 
|  | 2 | from collections import Counter | 
|  | 3 | import pandas as pd | 
|  | 4 |  | 
|  | 5 |  | 
|  | 6 | def eval_lemma(sys, gld): | 
|  | 7 | match, err, symbol = 0, 0, [] | 
|  | 8 | mistakes = [] | 
|  | 9 | for i, gld_tok in enumerate(gld.tokens): | 
|  | 10 | if gld_tok.lemma == sys.tokens[i].lemma: | 
|  | 11 | match += 1 | 
|  | 12 | elif not sys.tokens[i].lemma.isalnum(): # This was added because Turku does not lemmatize symbols (it only copies them) => ERR ((',', '--', ','), 43642) | 
|  | 13 | symbol.append(sys.tokens[i].lemma) | 
|  | 14 | if sys.tokens[i].word == sys.tokens[i].lemma: | 
|  | 15 | match += 1 | 
|  | 16 | else: | 
|  | 17 | err += 1 | 
|  | 18 | else: | 
|  | 19 | err += 1 | 
|  | 20 | mistakes.append((gld_tok.word, gld_tok.lemma, sys.tokens[i].lemma)) | 
|  | 21 | return match, err, symbol, mistakes | 
|  | 22 |  | 
|  | 23 |  | 
|  | 24 |  | 
|  | 25 | if __name__ == "__main__": | 
|  | 26 |  | 
|  | 27 | # Read the Original TiGeR Annotations | 
|  | 28 | gld_filename = "/home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09" | 
|  | 29 | gld_generator = read_conll_generator(gld_filename, token_class=CoNLL09_Token) | 
|  | 30 |  | 
|  | 31 | # Read the Annotations Generated by the Automatic Parser [Turku] | 
|  | 32 | sys_filename = "/home/daza/datasets/TIGER_conll/tiger_turku_parsed.conllu" | 
|  | 33 | sys_generator = read_conll_generator(sys_filename, token_class=CoNLLUP_Token) | 
|  | 34 |  | 
|  | 35 | lemma_all_match, lemma_all_err, lemma_all_mistakes = 0, 0, [] | 
|  | 36 | lemma_all_symbols = [] | 
|  | 37 |  | 
|  | 38 | for i, (s,g) in enumerate(zip(sys_generator, gld_generator)): | 
|  | 39 | assert len(s.tokens) == len(g.tokens), "Token Mismatch!" | 
|  | 40 | lemma_match, lemma_err, lemma_sym, mistakes = eval_lemma(s,g) | 
|  | 41 | lemma_all_match += lemma_match | 
|  | 42 | lemma_all_err += lemma_err | 
|  | 43 | lemma_all_mistakes += mistakes | 
|  | 44 | lemma_all_symbols += lemma_sym | 
|  | 45 |  | 
|  | 46 | print(f"Lemma Matches = {lemma_all_match} || Errors = {lemma_all_err} || Symbol Chars = {len(lemma_all_symbols)}") | 
|  | 47 | print(f"Lemma Accuracy = {lemma_all_match*100/(lemma_all_match + lemma_all_err)}%") | 
|  | 48 | lemma_miss_df = pd.DataFrame(lemma_all_mistakes, columns =['Gold_Word', 'Gold_Lemma', 'Sys_Lemma']).value_counts() | 
|  | 49 | lemma_miss_df.to_csv(path_or_buf="LemmaErrors.tsv", sep="\t") | 
|  | 50 |  | 
|  | 51 | # | 
|  | 52 | #     the_count = Counter(lemma_all_mistakes).most_common(100) | 
|  | 53 | #     for x in the_count: | 
|  | 54 | #         print(x) | 
|  | 55 |  | 
|  | 56 |  |