daza | 972aabc | 2020-09-01 16:41:30 +0200 | [diff] [blame^] | 1 | from CoNLL_Annotation import * |
| 2 | from collections import Counter |
| 3 | import pandas as pd |
| 4 | |
| 5 | |
| 6 | def eval_lemma(sys, gld): |
| 7 | match, err, symbol = 0, 0, [] |
| 8 | mistakes = [] |
| 9 | for i, gld_tok in enumerate(gld.tokens): |
| 10 | if gld_tok.lemma == sys.tokens[i].lemma: |
| 11 | match += 1 |
| 12 | elif not sys.tokens[i].lemma.isalnum(): # This was added because Turku does not lemmatize symbols (it only copies them) => ERR ((',', '--', ','), 43642) |
| 13 | symbol.append(sys.tokens[i].lemma) |
| 14 | if sys.tokens[i].word == sys.tokens[i].lemma: |
| 15 | match += 1 |
| 16 | else: |
| 17 | err += 1 |
| 18 | else: |
| 19 | err += 1 |
| 20 | mistakes.append((gld_tok.word, gld_tok.lemma, sys.tokens[i].lemma)) |
| 21 | return match, err, symbol, mistakes |
| 22 | |
| 23 | |
| 24 | |
| 25 | if __name__ == "__main__": |
| 26 | |
| 27 | # Read the Original TiGeR Annotations |
| 28 | gld_filename = "/home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09" |
| 29 | gld_generator = read_conll_generator(gld_filename, token_class=CoNLL09_Token) |
| 30 | |
| 31 | # Read the Annotations Generated by the Automatic Parser [Turku] |
| 32 | sys_filename = "/home/daza/datasets/TIGER_conll/tiger_turku_parsed.conllu" |
| 33 | sys_generator = read_conll_generator(sys_filename, token_class=CoNLLUP_Token) |
| 34 | |
| 35 | lemma_all_match, lemma_all_err, lemma_all_mistakes = 0, 0, [] |
| 36 | lemma_all_symbols = [] |
| 37 | |
| 38 | for i, (s,g) in enumerate(zip(sys_generator, gld_generator)): |
| 39 | assert len(s.tokens) == len(g.tokens), "Token Mismatch!" |
| 40 | lemma_match, lemma_err, lemma_sym, mistakes = eval_lemma(s,g) |
| 41 | lemma_all_match += lemma_match |
| 42 | lemma_all_err += lemma_err |
| 43 | lemma_all_mistakes += mistakes |
| 44 | lemma_all_symbols += lemma_sym |
| 45 | |
| 46 | print(f"Lemma Matches = {lemma_all_match} || Errors = {lemma_all_err} || Symbol Chars = {len(lemma_all_symbols)}") |
| 47 | print(f"Lemma Accuracy = {lemma_all_match*100/(lemma_all_match + lemma_all_err)}%") |
| 48 | lemma_miss_df = pd.DataFrame(lemma_all_mistakes, columns =['Gold_Word', 'Gold_Lemma', 'Sys_Lemma']).value_counts() |
| 49 | lemma_miss_df.to_csv(path_or_buf="LemmaErrors.tsv", sep="\t") |
| 50 | |
| 51 | # |
| 52 | # the_count = Counter(lemma_all_mistakes).most_common(100) |
| 53 | # for x in the_count: |
| 54 | # print(x) |
| 55 | |
| 56 | |