blob: 36f6de3c8b4b4cf9ab99d4738a3d35b22d5c498a [file] [log] [blame]
daza48606ba2021-02-10 14:16:41 +01001from sys import stdin
2import argparse
3import spacy
4from spacy.tokens import Doc
5import logging, sys, time
6from lib.CoNLL_Annotation import get_token_type
7import my_utils.file_utils as fu
8from germalemma import GermaLemma
9
10
11class WhitespaceTokenizer(object):
12 def __init__(self, vocab):
13 self.vocab = vocab
14
15 def __call__(self, text):
16 words = text.split(' ')
17 # All tokens 'own' a subsequent space character in this tokenizer
18 spaces = [True] * len(words)
19 return Doc(self.vocab, words=words, spaces=spaces)
20
21
22def get_conll_str(anno_obj, spacy_doc, use_germalemma):
23 # First lines are comments. (metadata)
24 conll_lines = anno_obj.metadata # Then we want: [ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC]
25 for ix, token in enumerate(spacy_doc):
26 if use_germalemma == "True":
27 content = (str(ix), token.text, find_germalemma(token.text, token.tag_, token.lemma_), token.pos_, token.tag_, "_", "_", "_", "_", "_")
28 else:
29 content = (str(ix), token.text, token.lemma_, token.pos_, token.tag_, "_", "_", "_", "_", "_") # Pure SpaCy!
30 conll_lines.append("\t".join(content))
31 return "\n".join(conll_lines)
32
33
34def find_germalemma(word, pos, spacy_lemma):
35 simplify_pos = {"ADJA":"ADJ", "ADJD":"ADJ",
36 "NA":"N", "NE":"N", "NN":"N",
37 "ADV":"ADV", "PAV":"ADV", "PROAV":"ADV", "PAVREL":"ADV", "PWAV":"ADV", "PWAVREL":"ADV",
38 "VAFIN":"V", "VAIMP":"V", "VAINF":"V", "VAPP":"V", "VMFIN":"V", "VMINF":"V",
39 "VMPP":"V", "VVFIN":"V", "VVIMP":"V", "VVINF":"V", "VVIZU":"V","VVPP":"V"
40 }
41 # simplify_pos = {"VERB": "V", "ADV": "ADV", "ADJ": "ADJ", "NOUN":"N", "PROPN": "N"}
42 try:
43 return lemmatizer.find_lemma(word, simplify_pos.get(pos, "UNK"))
44 except:
45 return spacy_lemma
46
47
48if __name__ == "__main__":
49 """
50 --- Example Real Data TEST ---
51
52 cat /export/netapp/kupietz/N-GRAMM-STUDIE/conllu/zca18.conllu | python systems/parse_spacy_pipe.py \
53 --corpus_name DeReKo_zca18 --comment_str "#" > output_zca18.conll
54 """
55
56 parser = argparse.ArgumentParser()
57 parser.add_argument("-n", "--corpus_name", help="Corpus Name", default="Corpus")
58 parser.add_argument("-sm", "--spacy_model", help="Spacy model containing the pipeline to tag", default="de_core_news_lg")
59 parser.add_argument("-gtt", "--gld_token_type", help="CoNLL Format of the Gold Data", default="CoNLLUP_Token")
60 parser.add_argument("-ugl", "--use_germalemma", help="Use Germalemma lemmatizer on top of SpaCy", default="True")
61 parser.add_argument("-c", "--comment_str", help="CoNLL Format of comentaries inside the file", default="#")
62 args = parser.parse_args()
63
64 file_has_next, chunk_ix = True, 0
65 CHUNK_SIZE = 20000
66 SPACY_BATCH = 2000
67 SPACY_PROC = 10
68
69 # =====================================================================================
70 # LOGGING INFO ...
71 # =====================================================================================
72 logger = logging.getLogger(__name__)
73 console_hdlr = logging.StreamHandler(sys.stderr)
74 file_hdlr = logging.FileHandler(filename=f"logs/Parse_{args.corpus_name}.SpaCy.log")
75 logging.basicConfig(level=logging.INFO, handlers=[console_hdlr, file_hdlr])
76 logger.info(f"Chunking {args.corpus_name} Corpus in chunks of {CHUNK_SIZE} Sentences")
77
78 # =====================================================================================
79 # POS TAG DOCUMENTS
80 # =====================================================================================
81 spacy_de = spacy.load(args.spacy_model, disable=["ner", "parser"])
82 spacy_de.tokenizer = WhitespaceTokenizer(spacy_de.vocab) # We won't re-tokenize to respect how the source CoNLL are tokenized!
83 lemmatizer = GermaLemma()
84
85 start = time.time()
86 total_processed_sents = 0
87
88 while file_has_next:
Marc Kupietza01314f2021-02-11 17:02:08 +010089 annos, file_has_next = fu.get_file_annos_chunk(stdin, chunk_size=CHUNK_SIZE, token_class=get_token_type(args.gld_token_type), comment_str=args.comment_str, our_foundry="spacy")
daza48606ba2021-02-10 14:16:41 +010090 if len(annos) == 0: break
91 total_processed_sents += len(annos)
92 logger.info(f"Already processed {total_processed_sents} sentences...")
93 sents = [a.get_sentence() for a in annos]
94 for ix, doc in enumerate(spacy_de.pipe(sents, batch_size=SPACY_BATCH, n_process=SPACY_PROC)):
95 conll_str = get_conll_str(annos[ix], doc, use_germalemma=args.use_germalemma)
96 print(conll_str+ "\n")
97
98 end = time.time()
99 logger.info(f"Processing {args.corpus_name} took {(end - start)} seconds!")
100