blob: de8291774112d9afe6bb50abd2339373674b5290 [file] [log] [blame]
dazad1403802020-10-08 14:46:32 +02001import spacy
2from spacy.tokens import Doc
3import logging, sys, time
4from lib.CoNLL_Annotation import CoNLL09_Token
5import my_utils.file_utils as fu
6from germalemma import GermaLemma
7
8
9TIGER_CORPUS = "/home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09"
10OUTPUT_FILE = "/home/daza/datasets/TIGER_conll/tiger_spacy_parsed.conllu"
11TEXT_OUTPUT = "/home/daza/datasets/TIGER_conll/tiger_all.txt"
12
13
14class WhitespaceTokenizer(object):
15 def __init__(self, vocab):
16 self.vocab = vocab
17
18 def __call__(self, text):
19 words = text.split(' ')
20 # All tokens 'own' a subsequent space character in this tokenizer
21 spaces = [True] * len(words)
22 return Doc(self.vocab, words=words, spaces=spaces)
23
24
25def get_conll_str(spacy_doc):
26 conll_lines = [] # We want: [ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC]
27 for ix, token in enumerate(spacy_doc):
28 content = (str(ix), token.text, find_germalemma(token.text, token.tag_, token.lemma_), token.pos_, token.tag_, "_", "_", "_", "_", "_")
29 conll_lines.append("\t".join(content))
30 return "\n".join(conll_lines)
31
32
33# def freeling_lemma_lookup():
34# dicts_path = "/home/daza/Frameworks/FreeLing/data/de/dictionary/entries/"
35
36def find_germalemma(word, pos, spacy_lemma):
37 simplify_pos = {"ADJA":"ADJ", "ADJD":"ADJ",
38 "NA":"N", "NE":"N", "NN":"N",
39 "ADV":"ADV", "PAV":"ADV", "PROAV":"ADV", "PAVREL":"ADV", "PWAV":"ADV", "PWAVREL":"ADV",
40 "VAFIN":"V", "VAIMP":"V", "VAINF":"V", "VAPP":"V", "VMFIN":"V", "VMINF":"V",
41 "VMPP":"V", "VVFIN":"V", "VVIMP":"V", "VVINF":"V", "VVIZU":"V","VVPP":"V"
42 }
43 # simplify_pos = {"VERB": "V", "ADV": "ADV", "ADJ": "ADJ", "NOUN":"N", "PROPN": "N"}
44 try:
45 return lemmatizer.find_lemma(word, simplify_pos.get(pos, "UNK"))
46 except:
47 return spacy_lemma
48
49
50if __name__ == "__main__":
51 file_has_next, chunk_ix = True, 0
52 CHUNK_SIZE = 10000
53
54 # =====================================================================================
55 # LOGGING INFO ...
56 # =====================================================================================
57 logger = logging.getLogger(__name__)
58 console_hdlr = logging.StreamHandler(sys.stdout)
59 file_hdlr = logging.FileHandler(filename=f"logs/Parse_Tiger.SpaCy.log")
60 logging.basicConfig(level=logging.INFO, handlers=[console_hdlr, file_hdlr])
61 logger.info(f"Chunking TIGER Corpus in chunks of {CHUNK_SIZE} Sentences")
62
63 # =====================================================================================
64 # POS TAG DOCUMENTS
65 # =====================================================================================
66 spacy_de = spacy.load("de_core_news_lg", disable=["ner", "parser"])
67 spacy_de.tokenizer = WhitespaceTokenizer(spacy_de.vocab) # We won't re-tokenize to respect how the source CoNLL are tokenized!
68 write_out = open(OUTPUT_FILE, "w")
69 lemmatizer = GermaLemma()
70 write_plain = open(TEXT_OUTPUT, "w")
71
72 start = time.time()
73 total_processed_sents = 0
74 line_generator = fu.file_generator(TIGER_CORPUS)
75 while file_has_next:
76 sents, gld, file_has_next = fu.get_file_text_chunk(line_generator, chunk_size=CHUNK_SIZE, token_class=CoNLL09_Token)
77 total_processed_sents += len(sents)
78 logger.info(f"Already processed {total_processed_sents} sentences...")
79 for doc in spacy_de.pipe(sents, batch_size=1000, n_process=10):
80 conll_str = get_conll_str(doc)
81 write_out.write(conll_str)
82 write_out.write("\n\n")
83 write_plain.write(" ".join([x.text for x in doc])+"\n") # OPTIONAL: This can be commented for efficiency...
84
85 end = time.time()
86 logger.info(f"Processing File {TIGER_CORPUS} took {(end - start)} seconds!")
87