blob: 839cd372d022bd7e14c0c84ecfa2d385de687f0b [file] [log] [blame]
dazae3bc92e2020-11-04 11:06:26 +01001from lib.CoNLL_Annotation import *
2from collections import Counter, defaultdict
3import pandas as pd
4import numpy as np
5from sklearn.metrics import precision_recall_fscore_support as eval_f1
6from tabulate import tabulate
7import logging, argparse, sys
8from datetime import datetime
9
10
11tree_tagger_fixes = {
12 "die": "der",
13 "eine": "ein",
14 "dass": "daß",
15 "keine": "kein",
16 "dies": "dieser",
17 "erst": "erster",
18 "andere": "anderer",
19 "alle": "aller",
20 "Sie": "sie",
21 "wir": "uns",
22 "alle": "aller",
23 "wenige": "wenig"
24}
25
26
27def save_evaluated(all_sys, all_gld, out_path, print_gold=True):
28 with open(out_path, "w") as out:
29 if print_gold:
30 out.write(f"ORIGINAL_CORPUS_TAGS\n\nTAG\tGLD_COUNT\tSYS_COUNT\n")
31 for g_tag,g_count in sorted(all_gld.items()):
32 s_count = all_sys.get(g_tag, 0)
33 out.write(f"{g_tag}\t{g_count}\t{s_count}\n")
34
35 out.write("\n\nSYSTEM_ONLY_TAGS\n\nTAG\tG_COUNT\tSYS_COUNT\n")
36 for s_tag,s_count in sorted(all_sys.items()):
37 g_count = all_gld.get(s_tag, 0)
38 if g_count == 0:
39 out.write(f"{s_tag}\t{g_count}\t{s_count}\n")
40
41
42
43def eval_lemma(sys, gld):
44 match, err, symbol = 0, 0, []
45 y_gld, y_pred, mistakes = [], [], []
46 for i, gld_tok in enumerate(gld.tokens):
dazae3bc92e2020-11-04 11:06:26 +010047 sys_lemma = sys.tokens[i].lemma
dazad7d70752021-01-12 18:17:49 +010048 # sys_lemma = tree_tagger_fixes.get(sys.tokens[i].lemma, sys.tokens[i].lemma) # Omit TreeTagger "errors" because of article lemma disagreement
dazae3bc92e2020-11-04 11:06:26 +010049 y_gld.append(gld_tok.pos_tag)
50 y_pred.append(sys_lemma)
51 if gld_tok.lemma == sys_lemma:
52 match += 1
53 elif not sys.tokens[i].lemma.isalnum(): # Turku does not lemmatize symbols (it only copies them) => ERR ((',', '--', ','), 43642)
54 symbol.append(sys.tokens[i].lemma)
55 if sys.tokens[i].word == sys.tokens[i].lemma:
56 match += 1
57 else:
58 err += 1
59 else:
60 err += 1
61 mistakes.append((gld_tok.word, gld_tok.lemma, sys.tokens[i].lemma))
62 return y_gld, y_pred, match, err, symbol, mistakes
63
64
65def eval_pos(sys, gld):
66 match, mistakes = 0, []
67 y_gld, y_pred = [], []
68 for i, gld_tok in enumerate(gld.tokens):
69 y_gld.append(gld_tok.pos_tag)
70 y_pred.append(sys.tokens[i].pos_tag)
71 # pos_all_pred[gld_tok.pos_tag] += 1
72 # pos_all_gold[sys.tokens[i].pos_tag] += 1
73 if gld_tok.pos_tag == sys.tokens[i].pos_tag:
74 match += 1
75 elif gld_tok.pos_tag == "$." and sys.tokens[i].pos_tag == "$":
76 match += 1
77 y_pred = y_pred[:-1] + ["$."]
78 else:
79 mistakes.append((gld_tok.word, gld_tok.pos_tag, sys.tokens[i].pos_tag))
80 return y_gld, y_pred, match, mistakes
81
82
83
84if __name__ == "__main__":
85 """
86 EVALUATIONS:
87
88 ********** TIGER CORPUS ALL ************
89
dazad7d70752021-01-12 18:17:49 +010090 python systems/evaluate.py -t Turku --corpus_name Tiger --gld_token_type CoNLL09_Token \
dazae3bc92e2020-11-04 11:06:26 +010091 --sys_file /home/daza/datasets/TIGER_conll/tiger_turku_parsed.conllu \
92 --gld_file /home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09
93
dazad7d70752021-01-12 18:17:49 +010094 python systems/evaluate.py -t SpaCy --corpus_name Tiger --gld_token_type CoNLL09_Token \
dazae3bc92e2020-11-04 11:06:26 +010095 --sys_file /home/daza/datasets/TIGER_conll/tiger_spacy_parsed.conllu \
96 --gld_file /home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09
97
dazad7d70752021-01-12 18:17:49 +010098 python systems/evaluate.py -t RNNTagger --corpus_name Tiger --gld_token_type CoNLL09_Token \
dazae3bc92e2020-11-04 11:06:26 +010099 --sys_file /home/daza/datasets/TIGER_conll/tiger_all.parsed.RNNTagger.conll \
100 --gld_file /home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09
101
dazad7d70752021-01-12 18:17:49 +0100102 python systems/evaluate.py -t TreeTagger --corpus_name Tiger --gld_token_type CoNLL09_Token \
dazae3bc92e2020-11-04 11:06:26 +0100103 --sys_file /home/daza/datasets/TIGER_conll/tiger_all.parsed.TreeTagger.conll \
104 --gld_file /home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09
105
dazad7d70752021-01-12 18:17:49 +0100106
107 ********** TIGER CORPUS TEST ************
108
109 python systems/evaluate.py -t SpaCy --corpus_name TigerTestOld \
110 --sys_file /home/daza/datasets/TIGER_conll/tiger_spacy_parsed.test.conllu \
111 --gld_file /home/daza/datasets/TIGER_conll/data_splits/test/Tiger.OldOrth.test.conll
112
113 python systems/evaluate.py -t SpaCy --corpus_name TigerTestNew \
114 --sys_file /home/daza/datasets/TIGER_conll/Tiger.NewOrth.test.spacy_parsed.conllu\
115 --gld_file /home/daza/datasets/TIGER_conll/data_splits/test/Tiger.NewOrth.test.conll
116
117
118 python systems/evaluate.py -t Turku --corpus_name TigerTestNew \
119 --sys_file /home/daza/datasets/TIGER_conll/sys_outputs/Tiger.NewOrth.test.turku_parsed.conllu \
120 --gld_file /home/daza/datasets/TIGER_conll/data_splits/test/Tiger.NewOrth.test.conll
121
dazae3bc92e2020-11-04 11:06:26 +0100122 ********** UNIVERSAL DEPENDENCIES TEST-SET ************
123
dazad7d70752021-01-12 18:17:49 +0100124 python systems/evaluate.py -t Turku --corpus_name DE_GSD \
dazae3bc92e2020-11-04 11:06:26 +0100125 --sys_file /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.conllu.parsed.0.conllu \
126 --gld_file /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.conllu
127
dazad7d70752021-01-12 18:17:49 +0100128 python systems/evaluate.py -t SpaCyGL --corpus_name DE_GSD \
dazae3bc92e2020-11-04 11:06:26 +0100129 --sys_file /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.parsed.germalemma.conllu \
130 --gld_file /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.conllu
131
dazad7d70752021-01-12 18:17:49 +0100132 python systems/evaluate.py -t SpaCy --corpus_name DE_GSD \
dazae3bc92e2020-11-04 11:06:26 +0100133 --sys_file /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.parsed.conllu \
134 --gld_file /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.conllu
135
dazad7d70752021-01-12 18:17:49 +0100136 python systems/evaluate.py -t RNNTagger --corpus_name DE_GSD \
dazae3bc92e2020-11-04 11:06:26 +0100137 --sys_file /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.RNNtagger.parsed.conll \
138 --gld_file /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.conllu
139
dazad7d70752021-01-12 18:17:49 +0100140 python systems/evaluate.py -t TreeTagger --corpus_name DE_GSD \
dazae3bc92e2020-11-04 11:06:26 +0100141 --sys_file /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.treetagger.parsed.conll \
142 --gld_file /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.conllu
143
144 """
145
146 # =====================================================================================
147 # INPUT PARAMS
148 # =====================================================================================
149 parser = argparse.ArgumentParser()
150 parser.add_argument("-s", "--sys_file", help="System output in CoNLL-U Format", required=True)
151 parser.add_argument("-g", "--gld_file", help="Gold Labels to evaluate in CoNLL-U Format", required=True)
dazae3bc92e2020-11-04 11:06:26 +0100152 parser.add_argument("-c", "--corpus_name", help="Corpus Name for Gold Labels", required=True)
dazad7d70752021-01-12 18:17:49 +0100153 parser.add_argument("-t", "--type_sys", help="Which system produced the outputs", default="system")
154 parser.add_argument("-gtt", "--gld_token_type", help="CoNLL Format of the Gold Data", default="CoNLLUP_Token")
dazae3bc92e2020-11-04 11:06:26 +0100155 parser.add_argument("-cs", "--comment_str", help="CoNLL Format of comentaries inside the file", default="#")
156 args = parser.parse_args()
157
158 # =====================================================================================
159 # LOGGING INFO ...
160 # =====================================================================================
161 logger = logging.getLogger(__name__)
162 console_hdlr = logging.StreamHandler(sys.stdout)
163 file_hdlr = logging.FileHandler(filename=f"logs/Eval_{args.corpus_name}.{args.type_sys}.log")
164 logging.basicConfig(level=logging.INFO, handlers=[console_hdlr, file_hdlr])
165 now_is = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
166 logger.info(f"\n\nEvaluating {args.corpus_name} Corpus {now_is}")
167
168 # Read the Original GOLD Annotations [CoNLL09, CoNLLUP]
169 gld_generator = read_conll_generator(args.gld_file, token_class=get_token_type(args.gld_token_type), comment_str=args.comment_str)
170 # Read the Annotations Generated by the Automatic Parser [Turku, SpaCy, RNNTagger]
171 if args.type_sys == "RNNTagger":
172 sys_generator = read_conll_generator(args.sys_file, token_class=RNNTagger_Token, comment_str="#")
173 elif args.type_sys == "TreeTagger":
174 sys_generator = read_conll_generator(args.sys_file, token_class=RNNTagger_Token, sent_sep="</S>", comment_str="#")
175 else:
176 sys_generator = read_conll_generator(args.sys_file, token_class=CoNLLUP_Token, comment_str="#")
177
178 lemma_all_match, lemma_all_err, lemma_all_mistakes = 0, 0, []
179 lemma_all_symbols, sys_only_lemmas = [], []
180 pos_all_match, pos_all_err, pos_all_mistakes = 0, 0, []
181 pos_all_pred, pos_all_gld = [], []
182 lemma_all_pred, lemma_all_gld = [], []
183 n_sents = 0
184
185 for i, (s,g) in enumerate(zip(sys_generator, gld_generator)):
186 # print([x.word for x in s.tokens])
187 # print([x.word for x in g.tokens])
188 assert len(s.tokens) == len(g.tokens), f"Token Mismatch! S={len(s.tokens)} G={len(g.tokens)} IX={i+1}"
189 n_sents += 1
190 # Lemmas ...
191 lemma_gld, lemma_pred, lemma_match, lemma_err, lemma_sym, mistakes = eval_lemma(s,g)
192 lemma_all_match += lemma_match
193 lemma_all_err += lemma_err
194 lemma_all_mistakes += mistakes
195 lemma_all_symbols += lemma_sym
196 lemma_all_pred += lemma_pred
197 lemma_all_gld += lemma_gld
198 # POS Tags ...
199 pos_gld, pos_pred, pos_match, pos_mistakes = eval_pos(s, g)
200 pos_all_pred += pos_pred
201 pos_all_gld += pos_gld
202 pos_all_match += pos_match
203 pos_all_err += len(pos_mistakes)
204 pos_all_mistakes += pos_mistakes
205
206 logger.info(f"A total of {n_sents} sentences were analyzed")
207
208 # Lemmas ...
209 logger.info(f"Lemma Matches = {lemma_all_match} || Errors = {lemma_all_err} || Symbol Chars = {len(lemma_all_symbols)}")
210 logger.info(f"Lemma Accuracy = {(lemma_all_match*100/(lemma_all_match + lemma_all_err)):.2f}%\n")
211 lemma_miss_df = pd.DataFrame(lemma_all_mistakes, columns =['Gold_Word', 'Gold_Lemma', 'Sys_Lemma']).value_counts()
212 lemma_miss_df.to_csv(path_or_buf=f"outputs/LemmaErrors.{args.corpus_name}.{args.type_sys}.tsv", sep="\t")
213 save_evaluated(Counter(lemma_all_pred), Counter(lemma_all_gld),
214 f"outputs/Lemma-Catalogue.{args.corpus_name}.{args.type_sys}.txt", print_gold=False)
215
216 # POS Tags ...
217 logger.info(f"POS Matches = {pos_all_match} || Errors = {pos_all_err}")
218 logger.info(f"POS Tagging Accuracy = {(pos_all_match*100/(pos_all_match + pos_all_err)):.2f}%\n")
219 pos_miss_df = pd.DataFrame(pos_all_mistakes, columns =['Gold_Word', 'Gold_POS', 'Sys_POS']).value_counts()
220 pos_miss_df.to_csv(path_or_buf=f"outputs/POS-Errors.{args.corpus_name}.{args.type_sys}.tsv", sep="\t")
221 save_evaluated(Counter(pos_all_pred), Counter(pos_all_gld), f"outputs/POS-Catalogue.{args.corpus_name}.{args.type_sys}.txt")
222
223 ordered_labels = sorted(set(pos_all_gld))
224 p_labels, r_labels, f_labels, support = eval_f1(y_true=pos_all_gld, y_pred=pos_all_pred, labels=ordered_labels , average=None)
225 scores_per_label = zip(ordered_labels, [x*100 for x in p_labels], [x*100 for x in r_labels], [x*100 for x in f_labels])
226 logger.info("\n\n")
227 logger.info(tabulate(scores_per_label, headers=["POS Tag","Precision", "Recall", "F1"], floatfmt=".2f"))
228 p_labels, r_labels, f_labels, support = eval_f1(y_true=np.array(pos_all_gld), y_pred=np.array(pos_all_pred), average='macro', zero_division=0)
229 logger.info(f"Total Prec = {p_labels*100}\tRec = {r_labels*100}\tF1 = {f_labels*100}")
230
231