| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 1 | import argparse | 
|  | 2 | import spacy | 
|  | 3 | from spacy.tokens import Doc | 
|  | 4 | import logging, sys, time | 
|  | 5 | from lib.CoNLL_Annotation import get_token_type | 
|  | 6 | import my_utils.file_utils as fu | 
|  | 7 | from germalemma import GermaLemma | 
|  | 8 |  | 
|  | 9 |  | 
|  | 10 | class WhitespaceTokenizer(object): | 
|  | 11 | def __init__(self, vocab): | 
|  | 12 | self.vocab = vocab | 
|  | 13 |  | 
|  | 14 | def __call__(self, text): | 
|  | 15 | words = text.split(' ') | 
|  | 16 | # All tokens 'own' a subsequent space character in this tokenizer | 
|  | 17 | spaces = [True] * len(words) | 
|  | 18 | return Doc(self.vocab, words=words, spaces=spaces) | 
|  | 19 |  | 
|  | 20 |  | 
| daza | 8534747 | 2020-11-23 18:43:33 +0100 | [diff] [blame] | 21 | def get_conll_str(anno_obj, spacy_doc, use_germalemma): | 
|  | 22 | #  First lines are comments. (metadata) | 
|  | 23 | conll_lines = anno_obj.metadata # Then we want: [ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC] | 
| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 24 | for ix, token in enumerate(spacy_doc): | 
|  | 25 | if use_germalemma == "True": | 
|  | 26 | content = (str(ix), token.text, find_germalemma(token.text, token.tag_, token.lemma_), token.pos_, token.tag_, "_", "_", "_", "_", "_") | 
|  | 27 | else: | 
|  | 28 | content = (str(ix), token.text, token.lemma_, token.pos_, token.tag_, "_", "_", "_", "_", "_") # Pure SpaCy! | 
|  | 29 | conll_lines.append("\t".join(content)) | 
|  | 30 | return "\n".join(conll_lines) | 
|  | 31 |  | 
| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 32 |  | 
|  | 33 | def find_germalemma(word, pos, spacy_lemma): | 
|  | 34 | simplify_pos = {"ADJA":"ADJ", "ADJD":"ADJ", | 
|  | 35 | "NA":"N", "NE":"N", "NN":"N", | 
|  | 36 | "ADV":"ADV", "PAV":"ADV", "PROAV":"ADV", "PAVREL":"ADV", "PWAV":"ADV", "PWAVREL":"ADV", | 
|  | 37 | "VAFIN":"V", "VAIMP":"V", "VAINF":"V", "VAPP":"V", "VMFIN":"V", "VMINF":"V", | 
|  | 38 | "VMPP":"V", "VVFIN":"V", "VVIMP":"V", "VVINF":"V", "VVIZU":"V","VVPP":"V" | 
|  | 39 | } | 
|  | 40 | # simplify_pos = {"VERB": "V", "ADV": "ADV", "ADJ": "ADJ", "NOUN":"N", "PROPN": "N"} | 
|  | 41 | try: | 
|  | 42 | return lemmatizer.find_lemma(word, simplify_pos.get(pos, "UNK")) | 
|  | 43 | except: | 
|  | 44 | return spacy_lemma | 
|  | 45 |  | 
|  | 46 |  | 
|  | 47 | if __name__ == "__main__": | 
|  | 48 | """ | 
|  | 49 | EXAMPLE: | 
| daza | 8534747 | 2020-11-23 18:43:33 +0100 | [diff] [blame] | 50 | --- TIGER Classic Orthography --- | 
| daza | d7d7075 | 2021-01-12 18:17:49 +0100 | [diff] [blame] | 51 | python systems/parse_spacy.py --corpus_name Tiger --gld_token_type CoNLL09_Token \ | 
| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 52 | -i /home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09 \ | 
|  | 53 | -o /home/daza/datasets/TIGER_conll/tiger_spacy_parsed.conllu \ | 
|  | 54 | -t /home/daza/datasets/TIGER_conll/tiger_all.txt | 
| daza | d7d7075 | 2021-01-12 18:17:49 +0100 | [diff] [blame] | 55 |  | 
|  | 56 | python systems/parse_spacy.py --corpus_name TigerOld_test \ | 
|  | 57 | -i /home/daza/datasets/TIGER_conll/data_splits/test/Tiger.OldOrth.test.conll \ | 
|  | 58 | -o /home/daza/datasets/TIGER_conll/tiger_spacy_parsed.test.conllu | 
| daza | 8534747 | 2020-11-23 18:43:33 +0100 | [diff] [blame] | 59 |  | 
|  | 60 | --- TIGER New Orthography --- | 
| daza | d7d7075 | 2021-01-12 18:17:49 +0100 | [diff] [blame] | 61 | python systems/parse_spacy.py --corpus_name TigerNew \ | 
| daza | 8534747 | 2020-11-23 18:43:33 +0100 | [diff] [blame] | 62 | -i /home/daza/datasets/TIGER_conll/Tiger.NewOrth.train.conll \ | 
|  | 63 | -o /home/daza/datasets/TIGER_conll/Tiger.NewOrth.train.spacy_parsed.conllu \ | 
|  | 64 | -t /home/daza/datasets/TIGER_conll/Tiger.NewOrth.train.txt | 
| daza | d7d7075 | 2021-01-12 18:17:49 +0100 | [diff] [blame] | 65 |  | 
|  | 66 | python systems/parse_spacy.py --corpus_name TigerNew_test \ | 
|  | 67 | -i /home/daza/datasets/TIGER_conll/data_splits/test/Tiger.NewOrth.test.conll \ | 
|  | 68 | -o /home/daza/datasets/TIGER_conll/Tiger.NewOrth.test.spacy_parsed.conllu | 
| daza | 8534747 | 2020-11-23 18:43:33 +0100 | [diff] [blame] | 69 |  | 
|  | 70 | --- German GSD Universal Deps --- | 
| daza | d7d7075 | 2021-01-12 18:17:49 +0100 | [diff] [blame] | 71 | python systems/parse_spacy.py --corpus_name DE_GSD \ | 
| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 72 | -i /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.conllu \ | 
|  | 73 | -o /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.parsed.germalemma.conllu \ | 
| daza | 8534747 | 2020-11-23 18:43:33 +0100 | [diff] [blame] | 74 | -t /home/daza/datasets/ud-treebanks-v2.2/UD_German-GSD/de_gsd-ud-test.txt | 
|  | 75 |  | 
|  | 76 |  | 
|  | 77 | --- Real Data TEST  --- | 
| daza | d7d7075 | 2021-01-12 18:17:49 +0100 | [diff] [blame] | 78 | time python systems/parse_spacy.py --corpus_name DeReKo_a00 --comment_str "#" \ | 
| daza | 8534747 | 2020-11-23 18:43:33 +0100 | [diff] [blame] | 79 | -i /export/netapp/kupietz/N-GRAMM-STUDIE/conllu/a00.conllu.gz \ | 
|  | 80 | -o /export/netapp/kupietz/N-GRAMM-STUDIE/conllu/0_SpaCyParsed/a00.spacy.gl.conllu | 
| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 81 | """ | 
|  | 82 |  | 
|  | 83 | parser = argparse.ArgumentParser() | 
|  | 84 | parser.add_argument("-i", "--input_file", help="Input Corpus", required=True) | 
|  | 85 | parser.add_argument("-n", "--corpus_name", help="Corpus Name", default="Corpus") | 
|  | 86 | parser.add_argument("-o", "--output_file", help="File where the Predictions will be saved", required=True) | 
|  | 87 | parser.add_argument("-t", "--text_file", help="Output Plain Text File", default=None) | 
| daza | d7d7075 | 2021-01-12 18:17:49 +0100 | [diff] [blame] | 88 | parser.add_argument("-sm", "--spacy_model", help="Spacy model containing the pipeline to tag", default="de_core_news_lg") | 
|  | 89 | parser.add_argument("-gtt", "--gld_token_type", help="CoNLL Format of the Gold Data", default="CoNLLUP_Token") | 
| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 90 | parser.add_argument("-ugl", "--use_germalemma", help="Use Germalemma lemmatizer on top of SpaCy", default="True") | 
|  | 91 | parser.add_argument("-c", "--comment_str", help="CoNLL Format of comentaries inside the file", default="#") | 
|  | 92 | args = parser.parse_args() | 
|  | 93 |  | 
|  | 94 | file_has_next, chunk_ix = True, 0 | 
| daza | d7d7075 | 2021-01-12 18:17:49 +0100 | [diff] [blame] | 95 | CHUNK_SIZE = 20000 | 
|  | 96 | SPACY_BATCH = 2000 | 
|  | 97 | SPACY_PROC = 10 | 
| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 98 |  | 
|  | 99 | # ===================================================================================== | 
|  | 100 | #                    LOGGING INFO ... | 
|  | 101 | # ===================================================================================== | 
|  | 102 | logger = logging.getLogger(__name__) | 
|  | 103 | console_hdlr = logging.StreamHandler(sys.stdout) | 
|  | 104 | file_hdlr = logging.FileHandler(filename=f"logs/Parse_{args.corpus_name}.SpaCy.log") | 
|  | 105 | logging.basicConfig(level=logging.INFO, handlers=[console_hdlr, file_hdlr]) | 
|  | 106 | logger.info(f"Chunking {args.corpus_name} Corpus in chunks of {CHUNK_SIZE} Sentences") | 
|  | 107 |  | 
|  | 108 | # ===================================================================================== | 
|  | 109 | #                    POS TAG DOCUMENTS | 
|  | 110 | # ===================================================================================== | 
| daza | d7d7075 | 2021-01-12 18:17:49 +0100 | [diff] [blame] | 111 | spacy_de = spacy.load(args.spacy_model, disable=["ner", "parser"]) | 
| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 112 | spacy_de.tokenizer = WhitespaceTokenizer(spacy_de.vocab) # We won't re-tokenize to respect how the source CoNLL are tokenized! | 
|  | 113 | write_out = open(args.output_file, "w") | 
|  | 114 | lemmatizer = GermaLemma() | 
|  | 115 | if args.text_file: write_plain = open(args.text_file, "w") | 
|  | 116 |  | 
| daza | 8534747 | 2020-11-23 18:43:33 +0100 | [diff] [blame] | 117 | if ".gz" == args.input_file[-3:]: | 
|  | 118 | in_file = fu.expand_file(args.input_file) | 
|  | 119 | else: | 
|  | 120 | in_file = args.input_file | 
|  | 121 |  | 
| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 122 | start = time.time() | 
|  | 123 | total_processed_sents = 0 | 
| daza | 8534747 | 2020-11-23 18:43:33 +0100 | [diff] [blame] | 124 | line_generator = fu.file_generator(in_file) | 
| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 125 | while file_has_next: | 
| daza | 8534747 | 2020-11-23 18:43:33 +0100 | [diff] [blame] | 126 | annos, file_has_next = fu.get_file_annos_chunk(line_generator, chunk_size=CHUNK_SIZE, 		token_class=get_token_type(args.gld_token_type), comment_str=args.comment_str) | 
|  | 127 | if len(annos) == 0: break | 
|  | 128 | total_processed_sents += len(annos) | 
| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 129 | logger.info(f"Already processed {total_processed_sents} sentences...") | 
| daza | 8534747 | 2020-11-23 18:43:33 +0100 | [diff] [blame] | 130 | sents = [a.get_sentence() for a in annos] | 
|  | 131 | for ix, doc in enumerate(spacy_de.pipe(sents, batch_size=SPACY_BATCH, n_process=SPACY_PROC)): | 
|  | 132 | conll_str = get_conll_str(annos[ix], doc, use_germalemma=args.use_germalemma) | 
| daza | e3bc92e | 2020-11-04 11:06:26 +0100 | [diff] [blame] | 133 | write_out.write(conll_str) | 
|  | 134 | write_out.write("\n\n") | 
|  | 135 | if args.text_file: | 
|  | 136 | write_plain.write(" ".join([x.text for x in doc])+"\n") | 
|  | 137 |  | 
|  | 138 | end = time.time() | 
|  | 139 | logger.info(f"Processing {args.corpus_name} took {(end - start)} seconds!") | 
|  | 140 |  |