daza | ff42f63 | 2020-10-08 14:46:32 +0200 | [diff] [blame^] | 1 | from lib.CoNLL_Annotation import * |
| 2 | from collections import Counter |
| 3 | import pandas as pd |
| 4 | import numpy as np |
| 5 | from sklearn.metrics import precision_recall_fscore_support as eval_f1 |
| 6 | from tabulate import tabulate |
| 7 | import logging, argparse, sys |
| 8 | from datetime import datetime |
| 9 | |
| 10 | |
| 11 | def eval_lemma(sys, gld): |
| 12 | match, err, symbol = 0, 0, [] |
| 13 | mistakes = [] |
| 14 | for i, gld_tok in enumerate(gld.tokens): |
| 15 | if gld_tok.lemma == sys.tokens[i].lemma: |
| 16 | match += 1 |
| 17 | elif not sys.tokens[i].lemma.isalnum(): # This was added because Turku does not lemmatize symbols (it only copies them) => ERR ((',', '--', ','), 43642) |
| 18 | symbol.append(sys.tokens[i].lemma) |
| 19 | if sys.tokens[i].word == sys.tokens[i].lemma: |
| 20 | match += 1 |
| 21 | else: |
| 22 | err += 1 |
| 23 | else: |
| 24 | err += 1 |
| 25 | mistakes.append((gld_tok.word, gld_tok.lemma, sys.tokens[i].lemma)) |
| 26 | return match, err, symbol, mistakes |
| 27 | |
| 28 | |
| 29 | def eval_pos(sys, gld): |
| 30 | match, mistakes = 0, [] |
| 31 | y_gld, y_pred = [], [] |
| 32 | for i, gld_tok in enumerate(gld.tokens): |
| 33 | y_gld.append(gld_tok.pos_tag) |
| 34 | y_pred.append(sys.tokens[i].pos_tag) |
| 35 | all_pos_labels.add(gld_tok.pos_tag) |
| 36 | if gld_tok.pos_tag == sys.tokens[i].pos_tag: |
| 37 | match += 1 |
| 38 | else: |
| 39 | mistakes.append((gld_tok.word, gld_tok.pos_tag, sys.tokens[i].pos_tag)) |
| 40 | return y_gld, y_pred, match, mistakes |
| 41 | |
| 42 | |
| 43 | |
| 44 | if __name__ == "__main__": |
| 45 | """ |
| 46 | EVALUATIONS: |
| 47 | python TIGER/evaluate.py -t Turku\ |
| 48 | --sys_file /home/daza/datasets/TIGER_conll/tiger_turku_parsed.conllu \ |
| 49 | --gld_file /home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09 |
| 50 | |
| 51 | python TIGER/evaluate.py -t SpaCy\ |
| 52 | --sys_file /home/daza/datasets/TIGER_conll/tiger_spacy_parsed.conllu \ |
| 53 | --gld_file /home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09 |
| 54 | |
| 55 | python TIGER/evaluate.py -t RNNTagger\ |
| 56 | --sys_file /home/daza/datasets/TIGER_conll/tiger_all.parsed.RNNTagger.conll \ |
| 57 | --gld_file /home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09 |
| 58 | |
| 59 | python TIGER/evaluate.py -t TreeTagger\ |
| 60 | --sys_file /home/daza/datasets/TIGER_conll/tiger_all.parsed.TreeTagger.conll \ |
| 61 | --gld_file /home/daza/datasets/TIGER_conll/tiger_release_aug07.corrected.16012013.conll09 |
| 62 | """ |
| 63 | |
| 64 | # ===================================================================================== |
| 65 | # INPUT PARAMS |
| 66 | # ===================================================================================== |
| 67 | parser = argparse.ArgumentParser() |
| 68 | parser.add_argument("-s", "--sys_file", help="System output in CoNLL-U Format", required=True) |
| 69 | parser.add_argument("-g", "--gld_file", help="Gold Labels to evaluate in CoNLL-U Format", required=True) |
| 70 | parser.add_argument("-t", "--type_sys", help="Which system produced the outputs", default="system") |
| 71 | args = parser.parse_args() |
| 72 | |
| 73 | # ===================================================================================== |
| 74 | # LOGGING INFO ... |
| 75 | # ===================================================================================== |
| 76 | logger = logging.getLogger(__name__) |
| 77 | console_hdlr = logging.StreamHandler(sys.stdout) |
| 78 | file_hdlr = logging.FileHandler(filename=f"logs/Eval_Tiger.{args.type_sys}.log") |
| 79 | logging.basicConfig(level=logging.INFO, handlers=[console_hdlr, file_hdlr]) |
| 80 | now_is = datetime.now().strftime('%Y-%m-%d %H:%M:%S') |
| 81 | logger.info(f"\n\nEvaluating TIGER Corpus {now_is}") |
| 82 | |
| 83 | # Read the Original TiGeR Annotations |
| 84 | gld_generator = read_conll_generator(args.gld_file, token_class=CoNLL09_Token) |
| 85 | # Read the Annotations Generated by the Automatic Parser [Turku, SpaCy, RNNTagger] |
| 86 | if args.type_sys == "RNNTagger": |
| 87 | sys_generator = read_conll_generator(args.sys_file, token_class=RNNTagger_Token) |
| 88 | elif args.type_sys == "TreeTagger": |
| 89 | sys_generator = read_conll_generator(args.sys_file, token_class=RNNTagger_Token, sent_sep="</S>") |
| 90 | else: |
| 91 | sys_generator = read_conll_generator(args.sys_file, token_class=CoNLLUP_Token) |
| 92 | |
| 93 | lemma_all_match, lemma_all_err, lemma_all_mistakes = 0, 0, [] |
| 94 | lemma_all_symbols = [] |
| 95 | pos_all_match, pos_all_err, pos_all_mistakes = 0, 0, [] |
| 96 | pos_all_pred, pos_all_gld = [], [] |
| 97 | all_pos_labels = set() |
| 98 | |
| 99 | for i, (s,g) in enumerate(zip(sys_generator, gld_generator)): |
| 100 | # print([x.word for x in s.tokens]) |
| 101 | # print([x.word for x in g.tokens]) |
| 102 | assert len(s.tokens) == len(g.tokens), f"Token Mismatch! S={len(s.tokens)} G={len(g.tokens)} IX={i+1}" |
| 103 | # Lemmas ... |
| 104 | lemma_match, lemma_err, lemma_sym, mistakes = eval_lemma(s,g) |
| 105 | lemma_all_match += lemma_match |
| 106 | lemma_all_err += lemma_err |
| 107 | lemma_all_mistakes += mistakes |
| 108 | lemma_all_symbols += lemma_sym |
| 109 | # POS Tags ... |
| 110 | pos_gld, pos_pred, pos_match, pos_mistakes = eval_pos(s, g) |
| 111 | pos_all_pred += pos_pred |
| 112 | pos_all_gld += pos_gld |
| 113 | pos_all_match += pos_match |
| 114 | pos_all_err += len(pos_mistakes) |
| 115 | pos_all_mistakes += pos_mistakes |
| 116 | |
| 117 | # Lemmas ... |
| 118 | logger.info(f"Lemma Matches = {lemma_all_match} || Errors = {lemma_all_err} || Symbol Chars = {len(lemma_all_symbols)}") |
| 119 | logger.info(f"Lemma Accuracy = {(lemma_all_match*100/(lemma_all_match + lemma_all_err)):.2f}%\n") |
| 120 | lemma_miss_df = pd.DataFrame(lemma_all_mistakes, columns =['Gold_Word', 'Gold_Lemma', 'Sys_Lemma']).value_counts() |
| 121 | lemma_miss_df.to_csv(path_or_buf=f"outputs/LemmaErrors.{args.type_sys}.tsv", sep="\t") |
| 122 | |
| 123 | # POS Tags ... |
| 124 | logger.info(f"POS Matches = {pos_all_match} || Errors = {pos_all_err}") |
| 125 | logger.info(f"POS Tagging Accuracy = {(pos_all_match*100/(pos_all_match + pos_all_err)):.2f}%\n") |
| 126 | pos_miss_df = pd.DataFrame(pos_all_mistakes, columns =['Gold_Word', 'Gold_POS', 'Sys_POS']).value_counts() |
| 127 | pos_miss_df.to_csv(path_or_buf=f"outputs/POS-Errors.{args.type_sys}.tsv", sep="\t") |
| 128 | |
| 129 | ordered_labels = sorted(all_pos_labels) |
| 130 | p_labels, r_labels, f_labels, support = eval_f1(y_true=pos_all_gld, y_pred=pos_all_pred, labels=ordered_labels , average=None) |
| 131 | scores_per_label = zip(ordered_labels, [x*100 for x in p_labels], [x*100 for x in r_labels], [x*100 for x in f_labels]) |
| 132 | logger.info("\n\n") |
| 133 | logger.info(tabulate(scores_per_label, headers=["POS Tag","Precision", "Recall", "F1"], floatfmt=".2f")) |
| 134 | p_labels, r_labels, f_labels, support = eval_f1(y_true=np.array(pos_all_gld), y_pred=np.array(pos_all_pred), average='micro', zero_division=0) |
| 135 | logger.info(f"Total Prec = {p_labels*100}\tRec = {r_labels*100}\tF1 = {f_labels*100}") |
| 136 | |
| 137 | |