| // Copyright 2013 Google Inc. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <math.h> |
| #include <pthread.h> |
| |
| #define MAX_STRING 100 |
| #define EXP_TABLE_SIZE 1000 |
| #define MAX_EXP 6 |
| #define MAX_SENTENCE_LENGTH 1000 |
| #define MAX_CODE_LENGTH 40 |
| |
| const int vocab_hash_size = 30000000; // Maximum 30 * 0.7 = 21M words in the vocabulary |
| |
| typedef float real; // Precision of float numbers |
| |
| struct vocab_word { |
| long long cn; |
| int *point; |
| char *word, *code, codelen; |
| }; |
| |
| char train_file[MAX_STRING], output_file[MAX_STRING]; |
| char save_vocab_file[MAX_STRING], read_vocab_file[MAX_STRING]; |
| struct vocab_word *vocab; |
| int binary = 0, type = 1, debug_mode = 2, window = 5, min_count = 5, num_threads = 12, min_reduce = 1; |
| int *vocab_hash; |
| long long vocab_max_size = 1000, vocab_size = 0, layer1_size = 100; |
| long long train_words = 0, word_count_actual = 0, iter = 5, file_size = 0, classes = 0; |
| real alpha = 0.025, starting_alpha, sample = 1e-3; |
| real *syn0, *syn1, *syn1neg, *syn1nce, *expTable; |
| clock_t start; |
| |
| real *syn1_window, *syn1neg_window, *syn1nce_window; |
| int w_offset, window_layer_size; |
| |
| int window_hidden_size = 500; |
| real *syn_window_hidden, *syn_hidden_word, *syn_hidden_word_neg, *syn_hidden_word_nce; |
| |
| int hs = 0, negative = 5; |
| const int table_size = 1e8; |
| int *table; |
| |
| //constrastive negative sampling |
| char negative_classes_file[MAX_STRING]; |
| int *word_to_group; |
| int *group_to_table; //group_size*table_size |
| int class_number; |
| |
| //nce |
| real* noise_distribution; |
| int nce = 0; |
| |
| //param caps |
| real CAP_VALUE = 50; |
| int cap = 0; |
| |
| void capParam(real* array, int index){ |
| if(array[index] > CAP_VALUE) |
| array[index] = CAP_VALUE; |
| else if(array[index] < -CAP_VALUE) |
| array[index] = -CAP_VALUE; |
| } |
| |
| real hardTanh(real x){ |
| if(x>=1){ |
| return 1; |
| } |
| else if(x<=-1){ |
| return -1; |
| } |
| else{ |
| return x; |
| } |
| } |
| |
| real dHardTanh(real x, real g){ |
| if(x > 1 && g > 0){ |
| return 0; |
| } |
| if(x < -1 && g < 0){ |
| return 0; |
| } |
| return 1; |
| } |
| |
| int isEndOfSentence(char* word){ |
| return strcmp("</s>", word) == 0; |
| } |
| |
| void InitUnigramTable() { |
| int a, i; |
| long long train_words_pow = 0; |
| real d1, power = 0.75; |
| table = (int *)malloc(table_size * sizeof(int)); |
| for (a = 0; a < vocab_size; a++) train_words_pow += pow(vocab[a].cn, power); |
| i = 0; |
| d1 = pow(vocab[i].cn, power) / (real)train_words_pow; |
| for (a = 0; a < table_size; a++) { |
| table[a] = i; |
| if (a / (real)table_size > d1) { |
| i++; |
| d1 += pow(vocab[i].cn, power) / (real)train_words_pow; |
| } |
| if (i >= vocab_size) i = vocab_size - 1; |
| } |
| |
| noise_distribution = (real *)calloc(vocab_size, sizeof(real)); |
| for (a = 0; a < vocab_size; a++) noise_distribution[a] = pow(vocab[a].cn, power)/(real)train_words_pow; |
| } |
| |
| // Reads a single word from a file, assuming space + tab + EOL to be word boundaries |
| void ReadWord(char *word, FILE *fin) { |
| int a = 0, ch; |
| while (!feof(fin)) { |
| ch = fgetc(fin); |
| if (ch == 13) continue; |
| if ((ch == ' ') || (ch == '\t') || (ch == '\n')) { |
| if (a > 0) { |
| if (ch == '\n') ungetc(ch, fin); |
| break; |
| } |
| if (ch == '\n') { |
| strcpy(word, (char *)"</s>"); |
| return; |
| } else continue; |
| } |
| word[a] = ch; |
| a++; |
| if (a >= MAX_STRING - 1) a--; // Truncate too long words |
| } |
| word[a] = 0; |
| } |
| |
| // Returns hash value of a word |
| int GetWordHash(char *word) { |
| unsigned long long a, hash = 0; |
| for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a]; |
| hash = hash % vocab_hash_size; |
| return hash; |
| } |
| |
| // Returns position of a word in the vocabulary; if the word is not found, returns -1 |
| int SearchVocab(char *word) { |
| unsigned int hash = GetWordHash(word); |
| while (1) { |
| if (vocab_hash[hash] == -1) return -1; |
| if (!strcmp(word, vocab[vocab_hash[hash]].word)) return vocab_hash[hash]; |
| hash = (hash + 1) % vocab_hash_size; |
| } |
| return -1; |
| } |
| |
| // Reads a word and returns its index in the vocabulary |
| int ReadWordIndex(FILE *fin) { |
| char word[MAX_STRING]; |
| ReadWord(word, fin); |
| if (feof(fin)) return -1; |
| return SearchVocab(word); |
| } |
| |
| // Adds a word to the vocabulary |
| int AddWordToVocab(char *word) { |
| unsigned int hash, length = strlen(word) + 1; |
| if (length > MAX_STRING) length = MAX_STRING; |
| vocab[vocab_size].word = (char *)calloc(length, sizeof(char)); |
| strcpy(vocab[vocab_size].word, word); |
| vocab[vocab_size].cn = 0; |
| vocab_size++; |
| // Reallocate memory if needed |
| if (vocab_size + 2 >= vocab_max_size) { |
| vocab_max_size += 1000; |
| vocab = (struct vocab_word *)realloc(vocab, vocab_max_size * sizeof(struct vocab_word)); |
| } |
| hash = GetWordHash(word); |
| while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; |
| vocab_hash[hash] = vocab_size - 1; |
| return vocab_size - 1; |
| } |
| |
| // Used later for sorting by word counts |
| int VocabCompare(const void *a, const void *b) { |
| return ((struct vocab_word *)b)->cn - ((struct vocab_word *)a)->cn; |
| } |
| |
| // Sorts the vocabulary by frequency using word counts |
| void SortVocab() { |
| int a, size; |
| unsigned int hash; |
| // Sort the vocabulary and keep </s> at the first position |
| qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare); |
| for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; |
| size = vocab_size; |
| train_words = 0; |
| for (a = 0; a < size; a++) { |
| // Words occuring less than min_count times will be discarded from the vocab |
| if ((vocab[a].cn < min_count) && (a != 0)) { |
| vocab_size--; |
| free(vocab[a].word); |
| } else { |
| // Hash will be re-computed, as after the sorting it is not actual |
| hash=GetWordHash(vocab[a].word); |
| while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; |
| vocab_hash[hash] = a; |
| train_words += vocab[a].cn; |
| } |
| } |
| vocab = (struct vocab_word *)realloc(vocab, (vocab_size + 1) * sizeof(struct vocab_word)); |
| // Allocate memory for the binary tree construction |
| for (a = 0; a < vocab_size; a++) { |
| vocab[a].code = (char *)calloc(MAX_CODE_LENGTH, sizeof(char)); |
| vocab[a].point = (int *)calloc(MAX_CODE_LENGTH, sizeof(int)); |
| } |
| } |
| |
| // Reduces the vocabulary by removing infrequent tokens |
| void ReduceVocab() { |
| int a, b = 0; |
| unsigned int hash; |
| for (a = 0; a < vocab_size; a++) if (vocab[a].cn > min_reduce) { |
| vocab[b].cn = vocab[a].cn; |
| vocab[b].word = vocab[a].word; |
| b++; |
| } else free(vocab[a].word); |
| vocab_size = b; |
| for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; |
| for (a = 0; a < vocab_size; a++) { |
| // Hash will be re-computed, as it is not actual |
| hash = GetWordHash(vocab[a].word); |
| while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; |
| vocab_hash[hash] = a; |
| } |
| fflush(stdout); |
| min_reduce++; |
| } |
| |
| // Create binary Huffman tree using the word counts |
| // Frequent words will have short uniqe binary codes |
| void CreateBinaryTree() { |
| long long a, b, i, min1i, min2i, pos1, pos2, point[MAX_CODE_LENGTH]; |
| char code[MAX_CODE_LENGTH]; |
| long long *count = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long)); |
| long long *binary = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long)); |
| long long *parent_node = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long)); |
| for (a = 0; a < vocab_size; a++) count[a] = vocab[a].cn; |
| for (a = vocab_size; a < vocab_size * 2; a++) count[a] = 1e15; |
| pos1 = vocab_size - 1; |
| pos2 = vocab_size; |
| // Following algorithm constructs the Huffman tree by adding one node at a time |
| for (a = 0; a < vocab_size - 1; a++) { |
| // First, find two smallest nodes 'min1, min2' |
| if (pos1 >= 0) { |
| if (count[pos1] < count[pos2]) { |
| min1i = pos1; |
| pos1--; |
| } else { |
| min1i = pos2; |
| pos2++; |
| } |
| } else { |
| min1i = pos2; |
| pos2++; |
| } |
| if (pos1 >= 0) { |
| if (count[pos1] < count[pos2]) { |
| min2i = pos1; |
| pos1--; |
| } else { |
| min2i = pos2; |
| pos2++; |
| } |
| } else { |
| min2i = pos2; |
| pos2++; |
| } |
| count[vocab_size + a] = count[min1i] + count[min2i]; |
| parent_node[min1i] = vocab_size + a; |
| parent_node[min2i] = vocab_size + a; |
| binary[min2i] = 1; |
| } |
| // Now assign binary code to each vocabulary word |
| for (a = 0; a < vocab_size; a++) { |
| b = a; |
| i = 0; |
| while (1) { |
| code[i] = binary[b]; |
| point[i] = b; |
| i++; |
| b = parent_node[b]; |
| if (b == vocab_size * 2 - 2) break; |
| } |
| vocab[a].codelen = i; |
| vocab[a].point[0] = vocab_size - 2; |
| for (b = 0; b < i; b++) { |
| vocab[a].code[i - b - 1] = code[b]; |
| vocab[a].point[i - b] = point[b] - vocab_size; |
| } |
| } |
| free(count); |
| free(binary); |
| free(parent_node); |
| } |
| |
| void LearnVocabFromTrainFile() { |
| char word[MAX_STRING]; |
| FILE *fin; |
| long long a, i; |
| for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; |
| fin = fopen(train_file, "rb"); |
| if (fin == NULL) { |
| printf("ERROR: training data file not found!\n"); |
| exit(1); |
| } |
| vocab_size = 0; |
| AddWordToVocab((char *)"</s>"); |
| int startOfLine = 1; |
| while (1) { |
| ReadWord(word, fin); |
| if (feof(fin)) break; |
| if (startOfLine) { |
| ReadWord(word, fin); |
| startOfLine = 0; |
| } |
| if(isEndOfSentence(word)){ |
| startOfLine = 1; |
| } |
| train_words++; |
| if ((debug_mode > 1) && (train_words % 100000 == 0)) { |
| printf("%lldK%c", train_words / 1000, 13); |
| fflush(stdout); |
| } |
| i = SearchVocab(word); |
| if (i == -1) { |
| a = AddWordToVocab(word); |
| vocab[a].cn = 1; |
| } else vocab[i].cn++; |
| if (vocab_size > vocab_hash_size * 0.7) ReduceVocab(); |
| } |
| SortVocab(); |
| if (debug_mode > 0) { |
| printf("Vocab size: %lld\n", vocab_size); |
| printf("Words in train file: %lld\n", train_words); |
| } |
| file_size = ftell(fin); |
| fclose(fin); |
| } |
| |
| void SaveVocab() { |
| long long i; |
| FILE *fo = fopen(save_vocab_file, "wb"); |
| for (i = 0; i < vocab_size; i++) fprintf(fo, "%s %lld\n", vocab[i].word, vocab[i].cn); |
| fclose(fo); |
| } |
| |
| void ReadVocab() { |
| long long a, i = 0; |
| char c; |
| char word[MAX_STRING]; |
| FILE *fin = fopen(read_vocab_file, "rb"); |
| if (fin == NULL) { |
| printf("Vocabulary file not found\n"); |
| exit(1); |
| } |
| for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; |
| vocab_size = 0; |
| while (1) { |
| ReadWord(word, fin); |
| if (feof(fin)) break; |
| a = AddWordToVocab(word); |
| fscanf(fin, "%lld%c", &vocab[a].cn, &c); |
| i++; |
| } |
| SortVocab(); |
| if (debug_mode > 0) { |
| printf("Vocab size: %lld\n", vocab_size); |
| printf("Words in train file: %lld\n", train_words); |
| } |
| fin = fopen(train_file, "rb"); |
| if (fin == NULL) { |
| printf("ERROR: training data file not found!\n"); |
| exit(1); |
| } |
| fseek(fin, 0, SEEK_END); |
| file_size = ftell(fin); |
| fclose(fin); |
| } |
| |
| void InitClassUnigramTable() { |
| long long a,c; |
| printf("loading class unigrams \n"); |
| FILE *fin = fopen(negative_classes_file, "rb"); |
| if (fin == NULL) { |
| printf("ERROR: class file not found!\n"); |
| exit(1); |
| } |
| word_to_group = (int *)malloc(vocab_size * sizeof(int)); |
| for(a = 0; a < vocab_size; a++) word_to_group[a] = -1; |
| char class[MAX_STRING]; |
| char prev_class[MAX_STRING]; |
| prev_class[0] = 0; |
| char word[MAX_STRING]; |
| class_number = -1; |
| while (1) { |
| if (feof(fin)) break; |
| ReadWord(class, fin); |
| ReadWord(word, fin); |
| int word_index = SearchVocab(word); |
| if (word_index != -1){ |
| if(strcmp(class, prev_class) != 0){ |
| class_number++; |
| strcpy(prev_class, class); |
| } |
| word_to_group[word_index] = class_number; |
| } |
| ReadWord(word, fin); |
| } |
| class_number++; |
| fclose(fin); |
| |
| group_to_table = (int *)malloc(table_size * class_number * sizeof(int)); |
| long long train_words_pow = 0; |
| real d1, power = 0.75; |
| |
| for(c = 0; c < class_number; c++){ |
| long long offset = c * table_size; |
| train_words_pow = 0; |
| for (a = 0; a < vocab_size; a++) if(word_to_group[a] == c) train_words_pow += pow(vocab[a].cn, power); |
| int i = 0; |
| while(word_to_group[i]!=c && i < vocab_size) i++; |
| d1 = pow(vocab[i].cn, power) / (real)train_words_pow; |
| for (a = 0; a < table_size; a++) { |
| //printf("index %lld , word %d\n", a, i); |
| group_to_table[offset + a] = i; |
| if (a / (real)table_size > d1) { |
| i++; |
| while(word_to_group[i]!=c && i < vocab_size) i++; |
| d1 += pow(vocab[i].cn, power) / (real)train_words_pow; |
| } |
| if (i >= vocab_size) while(word_to_group[i]!=c && i >= 0) i--; |
| } |
| } |
| } |
| |
| void InitNet() { |
| long long a, b; |
| unsigned long long next_random = 1; |
| window_layer_size = layer1_size*window*2; |
| a = posix_memalign((void **)&syn0, 128, (long long)vocab_size * layer1_size * sizeof(real)); |
| if (syn0 == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| |
| if (hs) { |
| a = posix_memalign((void **)&syn1, 128, (long long)vocab_size * layer1_size * sizeof(real)); |
| if (syn1 == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| a = posix_memalign((void **)&syn1_window, 128, (long long)vocab_size * window_layer_size * sizeof(real)); |
| if (syn1_window == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| a = posix_memalign((void **)&syn_hidden_word, 128, (long long)vocab_size * window_hidden_size * sizeof(real)); |
| if (syn_hidden_word == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| |
| for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++) |
| syn1[a * layer1_size + b] = 0; |
| for (a = 0; a < vocab_size; a++) for (b = 0; b < window_layer_size; b++) |
| syn1_window[a * window_layer_size + b] = 0; |
| for (a = 0; a < vocab_size; a++) for (b = 0; b < window_hidden_size; b++) |
| syn_hidden_word[a * window_hidden_size + b] = 0; |
| } |
| if (negative>0) { |
| a = posix_memalign((void **)&syn1neg, 128, (long long)vocab_size * layer1_size * sizeof(real)); |
| if (syn1neg == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| a = posix_memalign((void **)&syn1neg_window, 128, (long long)vocab_size * window_layer_size * sizeof(real)); |
| if (syn1neg_window == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| a = posix_memalign((void **)&syn_hidden_word_neg, 128, (long long)vocab_size * window_hidden_size * sizeof(real)); |
| if (syn_hidden_word_neg == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| |
| for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++) |
| syn1neg[a * layer1_size + b] = 0; |
| for (a = 0; a < vocab_size; a++) for (b = 0; b < window_layer_size; b++) |
| syn1neg_window[a * window_layer_size + b] = 0; |
| for (a = 0; a < vocab_size; a++) for (b = 0; b < window_hidden_size; b++) |
| syn_hidden_word_neg[a * window_hidden_size + b] = 0; |
| } |
| if (nce>0) { |
| a = posix_memalign((void **)&syn1nce, 128, (long long)vocab_size * layer1_size * sizeof(real)); |
| if (syn1nce == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| a = posix_memalign((void **)&syn1nce_window, 128, (long long)vocab_size * window_layer_size * sizeof(real)); |
| if (syn1nce_window == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| a = posix_memalign((void **)&syn_hidden_word_nce, 128, (long long)vocab_size * window_hidden_size * sizeof(real)); |
| if (syn_hidden_word_nce == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| |
| for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++) |
| syn1nce[a * layer1_size + b] = 0; |
| for (a = 0; a < vocab_size; a++) for (b = 0; b < window_layer_size; b++) |
| syn1nce_window[a * window_layer_size + b] = 0; |
| for (a = 0; a < vocab_size; a++) for (b = 0; b < window_hidden_size; b++) |
| syn_hidden_word_nce[a * window_hidden_size + b] = 0; |
| } |
| for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++) { |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| syn0[a * layer1_size + b] = (((next_random & 0xFFFF) / (real)65536) - 0.5) / layer1_size; |
| } |
| |
| a = posix_memalign((void **)&syn_window_hidden, 128, window_hidden_size * window_layer_size * sizeof(real)); |
| if (syn_window_hidden == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| for (a = 0; a < window_hidden_size * window_layer_size; a++){ |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| syn_window_hidden[a] = (((next_random & 0xFFFF) / (real)65536) - 0.5) / (window_hidden_size*window_layer_size); |
| } |
| |
| CreateBinaryTree(); |
| } |
| |
| long long findStartOfLine(char* file, long long start){ |
| char word[MAX_STRING]; |
| if(start == 0) return 0; |
| while(start != 0){ |
| FILE*fi = fopen(file, "rb"); |
| fseek(fi, start, SEEK_SET); |
| ReadWord(word, fi); |
| if(isEndOfSentence(word)){ |
| fclose(fi); |
| return start+1; |
| } |
| fclose(fi); |
| start--; |
| } |
| return 0; |
| } |
| |
| void *TrainModelThread(void *id) { |
| char word_str[MAX_STRING]; |
| long long a, b, d, cw, word, last_word, sentence_length = 0, sentence_position = 0; |
| long long word_count = 0, last_word_count = 0, sen[MAX_SENTENCE_LENGTH + 1]; |
| long long l1, l2, c, target, label, local_iter = iter; |
| unsigned long long next_random = (long long)id; |
| real f, g; |
| clock_t now; |
| int input_len_1 = layer1_size; |
| int window_offset = -1; |
| float currentWeight = 0; |
| if(type == 2 || type == 4){ |
| input_len_1=window_layer_size; |
| } |
| real *neu1 = (real *)calloc(input_len_1, sizeof(real)); |
| real *neu1e = (real *)calloc(input_len_1, sizeof(real)); |
| |
| int input_len_2 = 0; |
| if(type == 4){ |
| input_len_2 = window_hidden_size; |
| } |
| real *neu2 = (real *)calloc(input_len_2, sizeof(real)); |
| real *neu2e = (real *)calloc(input_len_2, sizeof(real)); |
| |
| long long start_pos = findStartOfLine(train_file, file_size / (long long)num_threads * (long long)id); |
| FILE *fi = fopen(train_file, "rb"); |
| fseek(fi, start_pos, SEEK_SET); |
| int startOfSentence = 1; |
| int startEndOfLineIndex = SearchVocab("</s>"); |
| while (1) { |
| if (word_count - last_word_count > 10000) { |
| word_count_actual += word_count - last_word_count; |
| last_word_count = word_count; |
| if ((debug_mode > 1)) { |
| now=clock(); |
| printf("%cAlpha: %f Weight: %f Progress: %.2f%% Words/thread/sec: %.2fk ", 13, alpha, currentWeight, |
| word_count_actual / (real)(iter * train_words + 1) * 100, |
| word_count_actual / ((real)(now - start + 1) / (real)CLOCKS_PER_SEC * 1000)); |
| fflush(stdout); |
| } |
| alpha = starting_alpha * (1 - word_count_actual / (real)(iter * train_words + 1)); |
| if (alpha < starting_alpha * 0.0001) alpha = starting_alpha * 0.0001; |
| } |
| if (sentence_length == 0) { |
| while (1) { |
| if(startOfSentence){ |
| ReadWord(word_str, fi); |
| currentWeight = atof(word_str); |
| startOfSentence = 0; |
| continue; |
| } |
| word = ReadWordIndex(fi); |
| if (word == startEndOfLineIndex){ |
| startOfSentence = 1; |
| } |
| if (feof(fi)) break; |
| if (word == -1) continue; |
| word_count++; |
| if (word == 0) break; |
| // The subsampling randomly discards frequent words while keeping the ranking same |
| if (sample > 0) { |
| real ran = (sqrt(vocab[word].cn / (sample * train_words)) + 1) * (sample * train_words) / vocab[word].cn; |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| if (ran < (next_random & 0xFFFF) / (real)65536) continue; |
| } |
| sen[sentence_length] = word; |
| sentence_length++; |
| if (sentence_length >= MAX_SENTENCE_LENGTH) break; |
| } |
| sentence_position = 0; |
| } |
| if (feof(fi) || (word_count > train_words / num_threads)) { |
| word_count_actual += word_count - last_word_count; |
| local_iter--; |
| if (local_iter == 0) break; |
| word_count = 0; |
| last_word_count = 0; |
| sentence_length = 0; |
| fseek(fi, start_pos, SEEK_SET); |
| continue; |
| } |
| word = sen[sentence_position]; |
| if (word == -1) continue; |
| for (c = 0; c < input_len_1; c++) neu1[c] = 0; |
| for (c = 0; c < input_len_1; c++) neu1e[c] = 0; |
| for (c = 0; c < input_len_2; c++) neu2[c] = 0; |
| for (c = 0; c < input_len_2; c++) neu2e[c] = 0; |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| b = next_random % window; |
| if (type == 0) { //train the cbow architecture |
| // in -> hidden |
| cw = 0; |
| for (a = b; a < window * 2 + 1 - b; a++) if (a != window) { |
| c = sentence_position - window + a; |
| if (c < 0) continue; |
| if (c >= sentence_length) continue; |
| last_word = sen[c]; |
| if (last_word == -1) continue; |
| for (c = 0; c < layer1_size; c++) neu1[c] += syn0[c + last_word * layer1_size]; |
| cw++; |
| } |
| if (cw) { |
| for (c = 0; c < layer1_size; c++) neu1[c] /= cw; |
| if (hs) for (d = 0; d < vocab[word].codelen; d++) { |
| f = 0; |
| l2 = vocab[word].point[d] * layer1_size; |
| // Propagate hidden -> output |
| for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1[c + l2]; |
| if (f <= -MAX_EXP) continue; |
| else if (f >= MAX_EXP) continue; |
| else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| // 'g' is the gradient multiplied by the learning rate |
| g = (1 - vocab[word].code[d] - f) * alpha * currentWeight; |
| // Propagate errors output -> hidden |
| for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2]; |
| // Learn weights hidden -> output |
| for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * neu1[c]; |
| if(cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1, c + l2); |
| } |
| // NEGATIVE SAMPLING |
| if (negative > 0) for (d = 0; d < negative + 1; d++) { |
| if (d == 0) { |
| target = word; |
| label = 1; |
| } else { |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| if(word_to_group != NULL && word_to_group[word] != -1){ |
| target = word; |
| while(target == word) { |
| target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| } |
| //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| } |
| else{ |
| target = table[(next_random >> 16) % table_size]; |
| } |
| if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| if (target == word) continue; |
| label = 0; |
| } |
| l2 = target * layer1_size; |
| f = 0; |
| for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1neg[c + l2]; |
| if (f > MAX_EXP) g = (label - 1) * alpha * currentWeight; |
| else if (f < -MAX_EXP) g = (label - 0) * alpha * currentWeight; |
| else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha * currentWeight; |
| for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2]; |
| for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * neu1[c]; |
| if (cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1neg, c + l2); |
| } |
| // Noise Contrastive Estimation |
| if (nce > 0) for (d = 0; d < nce + 1; d++) { |
| if (d == 0) { |
| target = word; |
| label = 1; |
| } else { |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| if(word_to_group != NULL && word_to_group[word] != -1){ |
| target = word; |
| while(target == word) { |
| target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| } |
| } |
| else{ |
| target = table[(next_random >> 16) % table_size]; |
| } |
| if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| if (target == word) continue; |
| label = 0; |
| } |
| l2 = target * layer1_size; |
| f = 0; |
| |
| for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1nce[c + l2]; |
| if (f > MAX_EXP) g = (label - 1) * alpha * currentWeight; |
| else if (f < -MAX_EXP) g = (label - 0) * alpha * currentWeight; |
| else { |
| f = exp(f); |
| g = (label - f/(noise_distribution[target]*nce + f)) * alpha * currentWeight; |
| } |
| for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1nce[c + l2]; |
| for (c = 0; c < layer1_size; c++) syn1nce[c + l2] += g * neu1[c]; |
| if(cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1nce,c + l2); |
| } |
| // hidden -> in |
| for (a = b; a < window * 2 + 1 - b; a++) if (a != window) { |
| c = sentence_position - window + a; |
| if (c < 0) continue; |
| if (c >= sentence_length) continue; |
| last_word = sen[c]; |
| if (last_word == -1) continue; |
| for (c = 0; c < layer1_size; c++) syn0[c + last_word * layer1_size] += neu1e[c]; |
| } |
| } |
| } else if(type==1) { //train skip-gram |
| for (a = b; a < window * 2 + 1 - b; a++) if (a != window) { |
| c = sentence_position - window + a; |
| if (c < 0) continue; |
| if (c >= sentence_length) continue; |
| last_word = sen[c]; |
| if (last_word == -1) continue; |
| l1 = last_word * layer1_size; |
| for (c = 0; c < layer1_size; c++) neu1e[c] = 0; |
| // HIERARCHICAL SOFTMAX |
| if (hs) for (d = 0; d < vocab[word].codelen; d++) { |
| f = 0; |
| l2 = vocab[word].point[d] * layer1_size; |
| // Propagate hidden -> output |
| for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1[c + l2]; |
| if (f <= -MAX_EXP) continue; |
| else if (f >= MAX_EXP) continue; |
| else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| // 'g' is the gradient multiplied by the learning rate |
| g = (1 - vocab[word].code[d] - f) * alpha * currentWeight; |
| // Propagate errors output -> hidden |
| for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2]; |
| // Learn weights hidden -> output |
| for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * syn0[c + l1]; |
| if (cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1, c + l2); |
| } |
| // NEGATIVE SAMPLING |
| if (negative > 0) for (d = 0; d < negative + 1; d++) { |
| if (d == 0) { |
| target = word; |
| label = 1; |
| } else { |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| if(word_to_group != NULL && word_to_group[word] != -1){ |
| target = word; |
| while(target == word) { |
| target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| } |
| //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| } |
| else{ |
| target = table[(next_random >> 16) % table_size]; |
| } |
| if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| if (target == word) continue; |
| label = 0; |
| } |
| l2 = target * layer1_size; |
| f = 0; |
| for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1neg[c + l2]; |
| if (f > MAX_EXP) g = (label - 1) * alpha * currentWeight; |
| else if (f < -MAX_EXP) g = (label - 0) * alpha * currentWeight; |
| else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha * currentWeight; |
| for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2]; |
| for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * syn0[c + l1]; |
| if (cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1neg, c + l2); |
| } |
| //Noise Contrastive Estimation |
| if (nce > 0) for (d = 0; d < nce + 1; d++) { |
| if (d == 0) { |
| target = word; |
| label = 1; |
| } else { |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| if(word_to_group != NULL && word_to_group[word] != -1){ |
| target = word; |
| while(target == word) { |
| target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| } |
| //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| } |
| else{ |
| target = table[(next_random >> 16) % table_size]; |
| } |
| if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| if (target == word) continue; |
| label = 0; |
| } |
| l2 = target * layer1_size; |
| f = 0; |
| for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1nce[c + l2]; |
| if (f > MAX_EXP) g = (label - 1) * alpha * currentWeight; |
| else if (f < -MAX_EXP) g = (label - 0) * alpha * currentWeight; |
| else { |
| f = exp(f); |
| g = (label - f/(noise_distribution[target]*nce + f)) * alpha * currentWeight; |
| } |
| for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1nce[c + l2]; |
| for (c = 0; c < layer1_size; c++) syn1nce[c + l2] += g * syn0[c + l1]; |
| if (cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1nce, c + l2); |
| } |
| // Learn weights input -> hidden |
| for (c = 0; c < layer1_size; c++) syn0[c + l1] += neu1e[c]; |
| } |
| } |
| else if(type == 2){ //train the cwindow architecture |
| // in -> hidden |
| cw = 0; |
| for (a = 0; a < window * 2 + 1; a++) if (a != window) { |
| c = sentence_position - window + a; |
| if (c < 0) continue; |
| if (c >= sentence_length) continue; |
| last_word = sen[c]; |
| if (last_word == -1) continue; |
| window_offset = a*layer1_size; |
| if (a > window) window_offset-=layer1_size; |
| for (c = 0; c < layer1_size; c++) neu1[c+window_offset] += syn0[c + last_word * layer1_size]; |
| cw++; |
| } |
| if (cw) { |
| if (hs) for (d = 0; d < vocab[word].codelen; d++) { |
| f = 0; |
| l2 = vocab[word].point[d] * window_layer_size; |
| // Propagate hidden -> output |
| for (c = 0; c < window_layer_size; c++) f += neu1[c] * syn1_window[c + l2]; |
| if (f <= -MAX_EXP) continue; |
| else if (f >= MAX_EXP) continue; |
| else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| // 'g' is the gradient multiplied by the learning rate |
| g = (1 - vocab[word].code[d] - f) * alpha * currentWeight; |
| // Propagate errors output -> hidden |
| for (c = 0; c < window_layer_size; c++) neu1e[c] += g * syn1_window[c + l2]; |
| // Learn weights hidden -> output |
| for (c = 0; c < window_layer_size; c++) syn1_window[c + l2] += g * neu1[c]; |
| if (cap == 1) for (c = 0; c < window_layer_size; c++) capParam(syn1_window, c + l2); |
| } |
| // NEGATIVE SAMPLING |
| if (negative > 0) for (d = 0; d < negative + 1; d++) { |
| if (d == 0) { |
| target = word; |
| label = 1; |
| } else { |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| if(word_to_group != NULL && word_to_group[word] != -1){ |
| target = word; |
| while(target == word) { |
| target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| } |
| //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| } |
| else{ |
| target = table[(next_random >> 16) % table_size]; |
| } |
| if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| if (target == word) continue; |
| label = 0; |
| } |
| l2 = target * window_layer_size; |
| f = 0; |
| for (c = 0; c < window_layer_size; c++) f += neu1[c] * syn1neg_window[c + l2]; |
| if (f > MAX_EXP) g = (label - 1) * alpha * currentWeight; |
| else if (f < -MAX_EXP) g = (label - 0) * alpha * currentWeight; |
| else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha * currentWeight; |
| for (c = 0; c < window_layer_size; c++) neu1e[c] += g * syn1neg_window[c + l2]; |
| for (c = 0; c < window_layer_size; c++) syn1neg_window[c + l2] += g * neu1[c]; |
| if(cap == 1) for (c = 0; c < window_layer_size; c++) capParam(syn1neg_window, c + l2); |
| } |
| // Noise Contrastive Estimation |
| if (nce > 0) for (d = 0; d < nce + 1; d++) { |
| if (d == 0) { |
| target = word; |
| label = 1; |
| } else { |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| if(word_to_group != NULL && word_to_group[word] != -1){ |
| target = word; |
| while(target == word) { |
| target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| } |
| //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| } |
| else{ |
| target = table[(next_random >> 16) % table_size]; |
| } |
| if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| if (target == word) continue; |
| label = 0; |
| } |
| l2 = target * window_layer_size; |
| f = 0; |
| for (c = 0; c < window_layer_size; c++) f += neu1[c] * syn1nce_window[c + l2]; |
| if (f > MAX_EXP) g = (label - 1) * alpha * currentWeight; |
| else if (f < -MAX_EXP) g = (label - 0) * alpha * currentWeight; |
| else { |
| f = exp(f); |
| g = (label - f/(noise_distribution[target]*nce + f)) * alpha * currentWeight; |
| } |
| for (c = 0; c < window_layer_size; c++) neu1e[c] += g * syn1nce_window[c + l2]; |
| for (c = 0; c < window_layer_size; c++) syn1nce_window[c + l2] += g * neu1[c]; |
| if(cap == 1) for (c = 0; c < window_layer_size; c++) capParam(syn1nce_window, c + l2); |
| } |
| // hidden -> in |
| for (a = 0; a < window * 2 + 1; a++) if (a != window) { |
| c = sentence_position - window + a; |
| if (c < 0) continue; |
| if (c >= sentence_length) continue; |
| last_word = sen[c]; |
| if (last_word == -1) continue; |
| window_offset = a * layer1_size; |
| if(a > window) window_offset -= layer1_size; |
| for (c = 0; c < layer1_size; c++) syn0[c + last_word * layer1_size] += neu1e[c + window_offset]; |
| } |
| } |
| } |
| else if (type == 3){ //train structured skip-gram |
| for (a = 0; a < window * 2 + 1; a++) if (a != window) { |
| c = sentence_position - window + a; |
| if (c < 0) continue; |
| if (c >= sentence_length) continue; |
| last_word = sen[c]; |
| if (last_word == -1) continue; |
| l1 = last_word * layer1_size; |
| window_offset = a * layer1_size; |
| if(a > window) window_offset -= layer1_size; |
| for (c = 0; c < layer1_size; c++) neu1e[c] = 0; |
| // HIERARCHICAL SOFTMAX |
| if (hs) for (d = 0; d < vocab[word].codelen; d++) { |
| f = 0; |
| l2 = vocab[word].point[d] * window_layer_size; |
| // Propagate hidden -> output |
| for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1_window[c + l2 + window_offset]; |
| if (f <= -MAX_EXP) continue; |
| else if (f >= MAX_EXP) continue; |
| else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| // 'g' is the gradient multiplied by the learning rate |
| g = (1 - vocab[word].code[d] - f) * alpha * currentWeight; |
| // Propagate errors output -> hidden |
| for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1_window[c + l2 + window_offset]; |
| // Learn weights hidden -> output |
| for (c = 0; c < layer1_size; c++) syn1[c + l2 + window_offset] += g * syn0[c + l1]; |
| if(cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1, c + l2 + window_offset); |
| } |
| // NEGATIVE SAMPLING |
| if (negative > 0) for (d = 0; d < negative + 1; d++) { |
| if (d == 0) { |
| target = word; |
| label = 1; |
| } else { |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| if(word_to_group != NULL && word_to_group[word] != -1){ |
| target = word; |
| while(target == word) { |
| target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| } |
| //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| } |
| else{ |
| target = table[(next_random >> 16) % table_size]; |
| } |
| if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| if (target == word) continue; |
| label = 0; |
| } |
| l2 = target * window_layer_size; |
| f = 0; |
| for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1neg_window[c + l2 + window_offset]; |
| if (f > MAX_EXP) g = (label - 1) * alpha * currentWeight; |
| else if (f < -MAX_EXP) g = (label - 0) * alpha * currentWeight; |
| else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha * currentWeight; |
| for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg_window[c + l2 + window_offset]; |
| for (c = 0; c < layer1_size; c++) syn1neg_window[c + l2 + window_offset] += g * syn0[c + l1]; |
| if(cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1neg_window, c + l2 + window_offset); |
| } |
| // Noise Constrastive Estimation |
| if (nce > 0) for (d = 0; d < nce + 1; d++) { |
| if (d == 0) { |
| target = word; |
| label = 1; |
| } else { |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| if(word_to_group != NULL && word_to_group[word] != -1){ |
| target = word; |
| while(target == word) { |
| target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| } |
| //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| } |
| else{ |
| target = table[(next_random >> 16) % table_size]; |
| } |
| if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| if (target == word) continue; |
| label = 0; |
| } |
| l2 = target * window_layer_size; |
| f = 0; |
| for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1nce_window[c + l2 + window_offset]; |
| if (f > MAX_EXP) g = (label - 1) * alpha * currentWeight; |
| else if (f < -MAX_EXP) g = (label - 0) * alpha * currentWeight; |
| else { |
| f = exp(f); |
| g = (label - f/(noise_distribution[target]*nce + f)) * alpha * currentWeight; |
| } |
| for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1nce_window[c + l2 + window_offset]; |
| for (c = 0; c < layer1_size; c++) syn1nce_window[c + l2 + window_offset] += g * syn0[c + l1]; |
| if (cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1nce_window, c + l2 + window_offset); |
| } |
| // Learn weights input -> hidden |
| for (c = 0; c < layer1_size; c++) {syn0[c + l1] += neu1e[c]; if(syn0[c + l1] > 50) syn0[c + l1] = 50; if(syn0[c + l1] < -50) syn0[c + l1] = -50;} |
| } |
| } |
| else if(type == 4){ //training senna |
| // in -> hidden |
| cw = 0; |
| for (a = 0; a < window * 2 + 1; a++) if (a != window) { |
| c = sentence_position - window + a; |
| if (c < 0) continue; |
| if (c >= sentence_length) continue; |
| last_word = sen[c]; |
| if (last_word == -1) continue; |
| window_offset = a*layer1_size; |
| if (a > window) window_offset-=layer1_size; |
| for (c = 0; c < layer1_size; c++) neu1[c+window_offset] += syn0[c + last_word * layer1_size]; |
| cw++; |
| } |
| if (cw) { |
| for (a = 0; a < window_hidden_size; a++){ |
| c = a*window_layer_size; |
| for(b = 0; b < window_layer_size; b++){ |
| neu2[a] += syn_window_hidden[c + b] * neu1[b]; |
| } |
| } |
| if (hs) for (d = 0; d < vocab[word].codelen; d++) { |
| f = 0; |
| l2 = vocab[word].point[d] * window_hidden_size; |
| // Propagate hidden -> output |
| for (c = 0; c < window_hidden_size; c++) f += hardTanh(neu2[c]) * syn_hidden_word[c + l2]; |
| if (f <= -MAX_EXP) continue; |
| else if (f >= MAX_EXP) continue; |
| else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| // 'g' is the gradient multiplied by the learning rate |
| g = (1 - vocab[word].code[d] - f) * alpha * currentWeight; |
| // Propagate errors output -> hidden |
| for (c = 0; c < window_hidden_size; c++) neu2e[c] += dHardTanh(neu2[c],g) * g * syn_hidden_word[c + l2]; |
| // Learn weights hidden -> output |
| for (c = 0; c < window_hidden_size; c++) syn_hidden_word[c + l2] += dHardTanh(neu2[c],g) * g * neu2[c]; |
| } |
| // NEGATIVE SAMPLING |
| if (negative > 0) for (d = 0; d < negative + 1; d++) { |
| if (d == 0) { |
| target = word; |
| label = 1; |
| } else { |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| if(word_to_group != NULL && word_to_group[word] != -1){ |
| target = word; |
| while(target == word) { |
| target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| next_random = next_random * (unsigned long long)25214903917 + 11; |
| } |
| //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| } |
| else{ |
| target = table[(next_random >> 16) % table_size]; |
| } |
| if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| if (target == word) continue; |
| label = 0; |
| } |
| l2 = target * window_hidden_size; |
| f = 0; |
| for (c = 0; c < window_hidden_size; c++) f += hardTanh(neu2[c]) * syn_hidden_word_neg[c + l2]; |
| if (f > MAX_EXP) g = (label - 1) * alpha * currentWeight / negative; |
| else if (f < -MAX_EXP) g = (label - 0) * alpha * currentWeight / negative; |
| else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha * currentWeight / negative; |
| for (c = 0; c < window_hidden_size; c++) neu2e[c] += dHardTanh(neu2[c],g) * g * syn_hidden_word_neg[c + l2]; |
| for (c = 0; c < window_hidden_size; c++) syn_hidden_word_neg[c + l2] += dHardTanh(neu2[c],g) * g * neu2[c]; |
| } |
| for (a = 0; a < window_hidden_size; a++) |
| for(b = 0; b < window_layer_size; b++) |
| neu1e[b] += neu2e[a] * syn_window_hidden[a*window_layer_size + b]; |
| for (a = 0; a < window_hidden_size; a++) |
| for(b = 0; b < window_layer_size; b++) |
| syn_window_hidden[a*window_layer_size + b] += neu2e[a] * neu1[b]; |
| // hidden -> in |
| for (a = 0; a < window * 2 + 1; a++) if (a != window) { |
| c = sentence_position - window + a; |
| if (c < 0) continue; |
| if (c >= sentence_length) continue; |
| last_word = sen[c]; |
| if (last_word == -1) continue; |
| window_offset = a * layer1_size; |
| if(a > window) window_offset -= layer1_size; |
| for (c = 0; c < layer1_size; c++) syn0[c + last_word * layer1_size] += neu1e[c + window_offset]; |
| } |
| } |
| } |
| else{ |
| printf("unknown type %i", type); |
| exit(0); |
| } |
| sentence_position++; |
| if (sentence_position >= sentence_length) { |
| sentence_length = 0; |
| continue; |
| } |
| } |
| fclose(fi); |
| free(neu1); |
| free(neu1e); |
| pthread_exit(NULL); |
| } |
| |
| void TrainModel() { |
| long a, b, c, d; |
| FILE *fo; |
| pthread_t *pt = (pthread_t *)malloc(num_threads * sizeof(pthread_t)); |
| printf("Starting training using file %s\n", train_file); |
| starting_alpha = alpha; |
| if (read_vocab_file[0] != 0) ReadVocab(); else LearnVocabFromTrainFile(); |
| if (save_vocab_file[0] != 0) SaveVocab(); |
| if (output_file[0] == 0) return; |
| InitNet(); |
| if (negative > 0 || nce > 0) InitUnigramTable(); |
| if (negative_classes_file[0] != 0) InitClassUnigramTable(); |
| start = clock(); |
| for (a = 0; a < num_threads; a++) pthread_create(&pt[a], NULL, TrainModelThread, (void *)a); |
| for (a = 0; a < num_threads; a++) pthread_join(pt[a], NULL); |
| fo = fopen(output_file, "wb"); |
| if (classes == 0) { |
| // Save the word vectors |
| fprintf(fo, "%lld %lld\n", vocab_size, layer1_size); |
| for (a = 0; a < vocab_size; a++) { |
| fprintf(fo, "%s ", vocab[a].word); |
| if (binary) for (b = 0; b < layer1_size; b++) fwrite(&syn0[a * layer1_size + b], sizeof(real), 1, fo); |
| else for (b = 0; b < layer1_size; b++) fprintf(fo, "%lf ", syn0[a * layer1_size + b]); |
| fprintf(fo, "\n"); |
| } |
| } else { |
| // Run K-means on the word vectors |
| int clcn = classes, iter = 10, closeid; |
| int *centcn = (int *)malloc(classes * sizeof(int)); |
| int *cl = (int *)calloc(vocab_size, sizeof(int)); |
| real closev, x; |
| real *cent = (real *)calloc(classes * layer1_size, sizeof(real)); |
| for (a = 0; a < vocab_size; a++) cl[a] = a % clcn; |
| for (a = 0; a < iter; a++) { |
| for (b = 0; b < clcn * layer1_size; b++) cent[b] = 0; |
| for (b = 0; b < clcn; b++) centcn[b] = 1; |
| for (c = 0; c < vocab_size; c++) { |
| for (d = 0; d < layer1_size; d++) cent[layer1_size * cl[c] + d] += syn0[c * layer1_size + d]; |
| centcn[cl[c]]++; |
| } |
| for (b = 0; b < clcn; b++) { |
| closev = 0; |
| for (c = 0; c < layer1_size; c++) { |
| cent[layer1_size * b + c] /= centcn[b]; |
| closev += cent[layer1_size * b + c] * cent[layer1_size * b + c]; |
| } |
| closev = sqrt(closev); |
| for (c = 0; c < layer1_size; c++) cent[layer1_size * b + c] /= closev; |
| } |
| for (c = 0; c < vocab_size; c++) { |
| closev = -10; |
| closeid = 0; |
| for (d = 0; d < clcn; d++) { |
| x = 0; |
| for (b = 0; b < layer1_size; b++) x += cent[layer1_size * d + b] * syn0[c * layer1_size + b]; |
| if (x > closev) { |
| closev = x; |
| closeid = d; |
| } |
| } |
| cl[c] = closeid; |
| } |
| } |
| // Save the K-means classes |
| for (a = 0; a < vocab_size; a++) fprintf(fo, "%s %d\n", vocab[a].word, cl[a]); |
| free(centcn); |
| free(cent); |
| free(cl); |
| } |
| fclose(fo); |
| } |
| |
| int ArgPos(char *str, int argc, char **argv) { |
| int a; |
| for (a = 1; a < argc; a++) if (!strcmp(str, argv[a])) { |
| if (a == argc - 1) { |
| printf("Argument missing for %s\n", str); |
| exit(1); |
| } |
| return a; |
| } |
| return -1; |
| } |
| |
| int main(int argc, char **argv) { |
| int i; |
| if (argc == 1) { |
| printf("WORD VECTOR estimation toolkit v 0.1c\n\n"); |
| printf("Options:\n"); |
| printf("Parameters for training:\n"); |
| printf("\t-train <file>\n"); |
| printf("\t\tUse text data from <file> to train the model\n"); |
| printf("\t-output <file>\n"); |
| printf("\t\tUse <file> to save the resulting word vectors / word clusters\n"); |
| printf("\t-size <int>\n"); |
| printf("\t\tSet size of word vectors; default is 100\n"); |
| printf("\t-window <int>\n"); |
| printf("\t\tSet max skip length between words; default is 5\n"); |
| printf("\t-sample <float>\n"); |
| printf("\t\tSet threshold for occurrence of words. Those that appear with higher frequency in the training data\n"); |
| printf("\t\twill be randomly down-sampled; default is 1e-3, useful range is (0, 1e-5)\n"); |
| printf("\t-hs <int>\n"); |
| printf("\t\tUse Hierarchical Softmax; default is 0 (not used)\n"); |
| printf("\t-negative <int>\n"); |
| printf("\t\tNumber of negative examples; default is 5, common values are 3 - 10 (0 = not used)\n"); |
| printf("\t-negative-classes <file>\n"); |
| printf("\t\tNegative classes to sample from\n"); |
| printf("\t-nce <int>\n"); |
| printf("\t\tNumber of negative examples for nce; default is 0, common values are 3 - 10 (0 = not used)\n"); |
| printf("\t-threads <int>\n"); |
| printf("\t\tUse <int> threads (default 12)\n"); |
| printf("\t-iter <int>\n"); |
| printf("\t\tRun more training iterations (default 5)\n"); |
| printf("\t-min-count <int>\n"); |
| printf("\t\tThis will discard words that appear less than <int> times; default is 5\n"); |
| printf("\t-alpha <float>\n"); |
| printf("\t\tSet the starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW\n"); |
| printf("\t-classes <int>\n"); |
| printf("\t\tOutput word classes rather than word vectors; default number of classes is 0 (vectors are written)\n"); |
| printf("\t-debug <int>\n"); |
| printf("\t\tSet the debug mode (default = 2 = more info during training)\n"); |
| printf("\t-binary <int>\n"); |
| printf("\t\tSave the resulting vectors in binary moded; default is 0 (off)\n"); |
| printf("\t-save-vocab <file>\n"); |
| printf("\t\tThe vocabulary will be saved to <file>\n"); |
| printf("\t-read-vocab <file>\n"); |
| printf("\t\tThe vocabulary will be read from <file>, not constructed from the training data\n"); |
| printf("\t-type <int>\n"); |
| printf("\t\tType of embeddings (0 for cbow, 1 for skipngram, 2 for cwindow, 3 for structured skipngram, 4 for senna type)\n"); |
| printf("\t-cap <int>\n"); |
| printf("\t\tlimit the parameter values to the range [-50, 50]; default is 0 (off)\n"); |
| printf("\nExamples:\n"); |
| printf("./word2vec -train data.txt -output vec.txt -size 200 -window 5 -sample 1e-4 -negative 5 -hs 0 -binary 0 -type 1 -iter 3\n\n"); |
| return 0; |
| } |
| output_file[0] = 0; |
| save_vocab_file[0] = 0; |
| read_vocab_file[0] = 0; |
| negative_classes_file[0] = 0; |
| if ((i = ArgPos((char *)"-size", argc, argv)) > 0) layer1_size = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-train", argc, argv)) > 0) strcpy(train_file, argv[i + 1]); |
| if ((i = ArgPos((char *)"-save-vocab", argc, argv)) > 0) strcpy(save_vocab_file, argv[i + 1]); |
| if ((i = ArgPos((char *)"-read-vocab", argc, argv)) > 0) strcpy(read_vocab_file, argv[i + 1]); |
| if ((i = ArgPos((char *)"-debug", argc, argv)) > 0) debug_mode = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-binary", argc, argv)) > 0) binary = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-type", argc, argv)) > 0) type = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-output", argc, argv)) > 0) strcpy(output_file, argv[i + 1]); |
| if ((i = ArgPos((char *)"-window", argc, argv)) > 0) window = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-sample", argc, argv)) > 0) sample = atof(argv[i + 1]); |
| if ((i = ArgPos((char *)"-hs", argc, argv)) > 0) hs = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-negative", argc, argv)) > 0) negative = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-negative-classes", argc, argv)) > 0) strcpy(negative_classes_file, argv[i + 1]); |
| if ((i = ArgPos((char *)"-nce", argc, argv)) > 0) nce = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-threads", argc, argv)) > 0) num_threads = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-iter", argc, argv)) > 0) iter = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-min-count", argc, argv)) > 0) min_count = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-classes", argc, argv)) > 0) classes = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-cap", argc, argv)) > 0) cap = atoi(argv[i + 1]); |
| if (type==0 || type==2 || type==4) alpha = 0.05; |
| if ((i = ArgPos((char *)"-alpha", argc, argv)) > 0) alpha = atof(argv[i + 1]); |
| vocab = (struct vocab_word *)calloc(vocab_max_size, sizeof(struct vocab_word)); |
| vocab_hash = (int *)calloc(vocab_hash_size, sizeof(int)); |
| expTable = (real *)malloc((EXP_TABLE_SIZE + 1) * sizeof(real)); |
| for (i = 0; i < EXP_TABLE_SIZE; i++) { |
| expTable[i] = exp((i / (real)EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table |
| expTable[i] = expTable[i] / (expTable[i] + 1); // Precompute f(x) = x / (x + 1) |
| } |
| TrainModel(); |
| return 0; |
| } |
| |