| // Copyright 2013 Google Inc. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <math.h> |
| #include <pthread.h> |
| |
| #define MAX_STRING 60 |
| |
| const int vocab_hash_size = 500000000; // Maximum 500M entries in the vocabulary |
| |
| typedef float real; // Precision of float numbers |
| |
| struct vocab_word { |
| long long cn; |
| char *word; |
| }; |
| |
| char train_file[MAX_STRING], output_file[MAX_STRING]; |
| struct vocab_word *vocab; |
| int debug_mode = 2, min_count = 5, *vocab_hash, min_reduce = 1; |
| long long vocab_max_size = 10000, vocab_size = 0; |
| long long train_words = 0; |
| real threshold = 100; |
| |
| unsigned long long next_random = 1; |
| |
| // Reads a single word from a file, assuming space + tab + EOL to be word boundaries |
| void ReadWord(char *word, FILE *fin) { |
| int a = 0, ch; |
| while (!feof(fin)) { |
| ch = fgetc(fin); |
| if (ch == 13) continue; |
| if ((ch == ' ') || (ch == '\t') || (ch == '\n')) { |
| if (a > 0) { |
| if (ch == '\n') ungetc(ch, fin); |
| break; |
| } |
| if (ch == '\n') { |
| strcpy(word, (char *)"</s>"); |
| return; |
| } else continue; |
| } |
| word[a] = ch; |
| a++; |
| if (a >= MAX_STRING - 1) a--; // Truncate too long words |
| } |
| word[a] = 0; |
| } |
| |
| // Returns hash value of a word |
| int GetWordHash(char *word) { |
| unsigned long long a, hash = 1; |
| for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a]; |
| hash = hash % vocab_hash_size; |
| return hash; |
| } |
| |
| // Returns position of a word in the vocabulary; if the word is not found, returns -1 |
| int SearchVocab(char *word) { |
| unsigned int hash = GetWordHash(word); |
| while (1) { |
| if (vocab_hash[hash] == -1) return -1; |
| if (!strcmp(word, vocab[vocab_hash[hash]].word)) return vocab_hash[hash]; |
| hash = (hash + 1) % vocab_hash_size; |
| } |
| return -1; |
| } |
| |
| // Reads a word and returns its index in the vocabulary |
| int ReadWordIndex(FILE *fin) { |
| char word[MAX_STRING]; |
| ReadWord(word, fin); |
| if (feof(fin)) return -1; |
| return SearchVocab(word); |
| } |
| |
| // Adds a word to the vocabulary |
| int AddWordToVocab(char *word) { |
| unsigned int hash, length = strlen(word) + 1; |
| if (length > MAX_STRING) length = MAX_STRING; |
| vocab[vocab_size].word = (char *)calloc(length, sizeof(char)); |
| strcpy(vocab[vocab_size].word, word); |
| vocab[vocab_size].cn = 0; |
| vocab_size++; |
| // Reallocate memory if needed |
| if (vocab_size + 2 >= vocab_max_size) { |
| vocab_max_size += 10000; |
| vocab=(struct vocab_word *)realloc(vocab, vocab_max_size * sizeof(struct vocab_word)); |
| } |
| hash = GetWordHash(word); |
| while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; |
| vocab_hash[hash]=vocab_size - 1; |
| return vocab_size - 1; |
| } |
| |
| // Used later for sorting by word counts |
| int VocabCompare(const void *a, const void *b) { |
| return ((struct vocab_word *)b)->cn - ((struct vocab_word *)a)->cn; |
| } |
| |
| // Sorts the vocabulary by frequency using word counts |
| void SortVocab() { |
| int a; |
| unsigned int hash; |
| // Sort the vocabulary and keep </s> at the first position |
| qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare); |
| for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; |
| for (a = 0; a < vocab_size; a++) { |
| // Words occuring less than min_count times will be discarded from the vocab |
| if (vocab[a].cn < min_count) { |
| vocab_size--; |
| free(vocab[vocab_size].word); |
| } else { |
| // Hash will be re-computed, as after the sorting it is not actual |
| hash = GetWordHash(vocab[a].word); |
| while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; |
| vocab_hash[hash] = a; |
| } |
| } |
| vocab = (struct vocab_word *)realloc(vocab, vocab_size * sizeof(struct vocab_word)); |
| } |
| |
| // Reduces the vocabulary by removing infrequent tokens |
| void ReduceVocab() { |
| int a, b = 0; |
| unsigned int hash; |
| for (a = 0; a < vocab_size; a++) if (vocab[a].cn > min_reduce) { |
| vocab[b].cn = vocab[a].cn; |
| vocab[b].word = vocab[a].word; |
| b++; |
| } else free(vocab[a].word); |
| vocab_size = b; |
| for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; |
| for (a = 0; a < vocab_size; a++) { |
| // Hash will be re-computed, as it is not actual |
| hash = GetWordHash(vocab[a].word); |
| while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; |
| vocab_hash[hash] = a; |
| } |
| fflush(stdout); |
| min_reduce++; |
| } |
| |
| void LearnVocabFromTrainFile() { |
| char word[MAX_STRING], last_word[MAX_STRING], bigram_word[MAX_STRING * 2]; |
| FILE *fin; |
| long long a, i, start = 1; |
| for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; |
| fin = fopen(train_file, "rb"); |
| if (fin == NULL) { |
| printf("ERROR: training data file not found!\n"); |
| exit(1); |
| } |
| vocab_size = 0; |
| AddWordToVocab((char *)"</s>"); |
| while (1) { |
| ReadWord(word, fin); |
| if (feof(fin)) break; |
| if (!strcmp(word, "</s>")) { |
| start = 1; |
| continue; |
| } else start = 0; |
| train_words++; |
| if ((debug_mode > 1) && (train_words % 100000 == 0)) { |
| printf("Words processed: %lldK Vocab size: %lldK %c", train_words / 1000, vocab_size / 1000, 13); |
| fflush(stdout); |
| } |
| i = SearchVocab(word); |
| if (i == -1) { |
| a = AddWordToVocab(word); |
| vocab[a].cn = 1; |
| } else vocab[i].cn++; |
| if (start) continue; |
| sprintf(bigram_word, "%s_%s", last_word, word); |
| bigram_word[MAX_STRING - 1] = 0; |
| strcpy(last_word, word); |
| i = SearchVocab(bigram_word); |
| if (i == -1) { |
| a = AddWordToVocab(bigram_word); |
| vocab[a].cn = 1; |
| } else vocab[i].cn++; |
| if (vocab_size > vocab_hash_size * 0.7) ReduceVocab(); |
| } |
| SortVocab(); |
| if (debug_mode > 0) { |
| printf("\nVocab size (unigrams + bigrams): %lld\n", vocab_size); |
| printf("Words in train file: %lld\n", train_words); |
| } |
| fclose(fin); |
| } |
| |
| void TrainModel() { |
| long long pa = 0, pb = 0, pab = 0, oov, i, li = -1, cn = 0; |
| char word[MAX_STRING], last_word[MAX_STRING], bigram_word[MAX_STRING * 2]; |
| real score; |
| FILE *fo, *fin; |
| printf("Starting training using file %s\n", train_file); |
| LearnVocabFromTrainFile(); |
| fin = fopen(train_file, "rb"); |
| fo = fopen(output_file, "wb"); |
| word[0] = 0; |
| while (1) { |
| strcpy(last_word, word); |
| ReadWord(word, fin); |
| if (feof(fin)) break; |
| if (!strcmp(word, "</s>")) { |
| fprintf(fo, "\n"); |
| continue; |
| } |
| cn++; |
| if ((debug_mode > 1) && (cn % 100000 == 0)) { |
| printf("Words written: %lldK%c", cn / 1000, 13); |
| fflush(stdout); |
| } |
| oov = 0; |
| i = SearchVocab(word); |
| if (i == -1) oov = 1; else pb = vocab[i].cn; |
| if (li == -1) oov = 1; |
| li = i; |
| sprintf(bigram_word, "%s_%s", last_word, word); |
| bigram_word[MAX_STRING - 1] = 0; |
| i = SearchVocab(bigram_word); |
| if (i == -1) oov = 1; else pab = vocab[i].cn; |
| if (pa < min_count) oov = 1; |
| if (pb < min_count) oov = 1; |
| if (oov) score = 0; else score = (pab - min_count) / (real)pa / (real)pb * (real)train_words; |
| if (score > threshold) { |
| fprintf(fo, "_%s", word); |
| pb = 0; |
| } else fprintf(fo, " %s", word); |
| pa = pb; |
| } |
| fclose(fo); |
| fclose(fin); |
| } |
| |
| int ArgPos(char *str, int argc, char **argv) { |
| int a; |
| for (a = 1; a < argc; a++) if (!strcmp(str, argv[a])) { |
| if (a == argc - 1) { |
| printf("Argument missing for %s\n", str); |
| exit(1); |
| } |
| return a; |
| } |
| return -1; |
| } |
| |
| int main(int argc, char **argv) { |
| int i; |
| if (argc == 1) { |
| printf("WORD2PHRASE tool v0.1a\n\n"); |
| printf("Options:\n"); |
| printf("Parameters for training:\n"); |
| printf("\t-train <file>\n"); |
| printf("\t\tUse text data from <file> to train the model\n"); |
| printf("\t-output <file>\n"); |
| printf("\t\tUse <file> to save the resulting word vectors / word clusters / phrases\n"); |
| printf("\t-min-count <int>\n"); |
| printf("\t\tThis will discard words that appear less than <int> times; default is 5\n"); |
| printf("\t-threshold <float>\n"); |
| printf("\t\t The <float> value represents threshold for forming the phrases (higher means less phrases); default 100\n"); |
| printf("\t-debug <int>\n"); |
| printf("\t\tSet the debug mode (default = 2 = more info during training)\n"); |
| printf("\nExamples:\n"); |
| printf("./word2phrase -train text.txt -output phrases.txt -threshold 100 -debug 2\n\n"); |
| return 0; |
| } |
| if ((i = ArgPos((char *)"-train", argc, argv)) > 0) strcpy(train_file, argv[i + 1]); |
| if ((i = ArgPos((char *)"-debug", argc, argv)) > 0) debug_mode = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-output", argc, argv)) > 0) strcpy(output_file, argv[i + 1]); |
| if ((i = ArgPos((char *)"-min-count", argc, argv)) > 0) min_count = atoi(argv[i + 1]); |
| if ((i = ArgPos((char *)"-threshold", argc, argv)) > 0) threshold = atof(argv[i + 1]); |
| vocab = (struct vocab_word *)calloc(vocab_max_size, sizeof(struct vocab_word)); |
| vocab_hash = (int *)calloc(vocab_hash_size, sizeof(int)); |
| TrainModel(); |
| return 0; |
| } |