blob: e43322c33eb1ab3506938fbf5fdc8efd70caecd8 [file] [log] [blame]
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <math.h>
#include <pthread.h>
#define MAX_STRING 100
#define EXP_TABLE_SIZE 1000
#define MAX_EXP 6
#define MAX_SENTENCE_LENGTH 1000
#define MAX_CC 100
#define MAX_CODE_LENGTH 40
const int vocab_hash_size = 30000000; // Maximum 30 * 0.7 = 21M words in the vocabulary
typedef float real; // Precision of float numbers
struct vocab_word {
long long cn;
int *point;
char *word, *code, codelen;
};
char train_file[MAX_STRING], output_file[MAX_STRING];
char save_vocab_file[MAX_STRING], read_vocab_file[MAX_STRING];
char save_net_file[MAX_STRING], read_net_file[MAX_STRING];
struct vocab_word *vocab;
int binary = 0, type = 1, debug_mode = 2, window = 5, min_count = 5,
num_threads = 12, min_reduce = 1;
int *vocab_hash;
long long *threadPos;
int *threadIters;
long long vocab_max_size = 1000, vocab_size = 0, layer1_size = 100;
long long train_words = 0, word_count_actual = 0, iter = 5, file_size = 0,
classes = 0;
real alpha = 0.025, starting_alpha, sample = 1e-3;
real *syn0, *syn1, *syn1neg, *syn1nce, *expTable;
real avgWordLength=0;
clock_t start;
real *syn1_window, *syn1neg_window, *syn1nce_window;
int w_offset, window_layer_size;
int window_hidden_size = 500;
real *syn_window_hidden, *syn_hidden_word, *syn_hidden_word_neg,
*syn_hidden_word_nce;
int hs = 0, negative = 5;
const int table_size = 1e8;
int *table;
long cc = 0;
//constrastive negative sampling
char negative_classes_file[MAX_STRING];
int *word_to_group;
int *group_to_table; //group_size*table_size
int class_number;
//nce
real* noise_distribution;
int nce = 0;
//param caps
real CAP_VALUE = 50;
int cap = 0;
void capParam(real* array, int index) {
if (array[index] > CAP_VALUE)
array[index] = CAP_VALUE;
else if (array[index] < -CAP_VALUE)
array[index] = -CAP_VALUE;
}
real hardTanh(real x) {
if (x >= 1) {
return 1;
} else if (x <= -1) {
return -1;
} else {
return x;
}
}
real dHardTanh(real x, real g) {
if (x > 1 && g > 0) {
return 0;
}
if (x < -1 && g < 0) {
return 0;
}
return 1;
}
void InitUnigramTable() {
int a, i;
long long train_words_pow = 0;
real d1, power = 0.75;
table = (int *) malloc(table_size * sizeof(int));
for (a = 0; a < vocab_size; a++)
train_words_pow += pow(vocab[a].cn, power);
i = 0;
d1 = pow(vocab[i].cn, power) / (real) train_words_pow;
for (a = 0; a < table_size; a++) {
table[a] = i;
if (a / (real) table_size > d1) {
i++;
d1 += pow(vocab[i].cn, power) / (real) train_words_pow;
}
if (i >= vocab_size)
i = vocab_size - 1;
}
noise_distribution = (real *) calloc(vocab_size, sizeof(real));
for (a = 0; a < vocab_size; a++)
noise_distribution[a] = pow(vocab[a].cn, power)
/ (real) train_words_pow;
}
// Reads a single word from a file, assuming space + tab + EOL to be word boundaries
void ReadWord(char *word, FILE *fin) {
int a = 0, ch;
while (!feof(fin)) {
ch = fgetc(fin);
if (ch == 13)
continue;
if ((ch == ' ') || (ch == '\t') || (ch == '\n')) {
if (a > 0) {
if (ch == '\n')
ungetc(ch, fin);
break;
}
if (ch == '\n') {
strcpy(word, (char *) "</s>");
return;
} else
continue;
}
word[a] = ch;
a++;
if (a >= MAX_STRING - 1)
a--; // Truncate too long words
}
word[a] = 0;
}
// Returns hash value of a word
int GetWordHash(char *word) {
unsigned long long a, hash = 0;
for (a = 0; a < strlen(word); a++)
hash = hash * 257 + word[a];
hash = hash % vocab_hash_size;
return hash;
}
// Returns position of a word in the vocabulary; if the word is not found, returns -1
int SearchVocab(char *word) {
unsigned int hash = GetWordHash(word);
while (1) {
if (vocab_hash[hash] == -1)
return -1;
if (!strcmp(word, vocab[vocab_hash[hash]].word))
return vocab_hash[hash];
hash = (hash + 1) % vocab_hash_size;
}
return -1;
}
// Reads a word and returns its index in the vocabulary
int ReadWordIndex(FILE *fin) {
char word[MAX_STRING];
ReadWord(word, fin);
if (feof(fin))
return -1;
return SearchVocab(word);
}
// Adds a word to the vocabulary
int AddWordToVocab(char *word) {
unsigned int hash, length = strlen(word) + 1;
if (length > MAX_STRING)
length = MAX_STRING;
vocab[vocab_size].word = (char *) calloc(length, sizeof(char));
strcpy(vocab[vocab_size].word, word);
vocab[vocab_size].cn = 0;
vocab_size++;
// Reallocate memory if needed
if (vocab_size + 2 >= vocab_max_size) {
vocab_max_size += 1000;
vocab = (struct vocab_word *) realloc(vocab,
vocab_max_size * sizeof(struct vocab_word));
}
hash = GetWordHash(word);
while (vocab_hash[hash] != -1)
hash = (hash + 1) % vocab_hash_size;
vocab_hash[hash] = vocab_size - 1;
return vocab_size - 1;
}
// Used later for sorting by word counts
int VocabCompare(const void *a, const void *b) {
return ((struct vocab_word *) b)->cn - ((struct vocab_word *) a)->cn;
}
// Sorts the vocabulary by frequency using word counts
void SortVocab() {
int a, size;
unsigned int hash;
// Sort the vocabulary and keep </s> at the first position
qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare);
for (a = 0; a < vocab_hash_size; a++)
vocab_hash[a] = -1;
size = vocab_size;
train_words = 0;
for (a = 0; a < size; a++) {
avgWordLength += vocab[a].cn * (strlen(vocab[a].word) + 1);
// Words occuring less than min_count times will be discarded from the vocab
if ((vocab[a].cn < min_count) && (a != 0)) {
vocab_size--;
free(vocab[a].word);
} else {
// Hash will be re-computed, as after the sorting it is not actual
hash = GetWordHash(vocab[a].word);
while (vocab_hash[hash] != -1)
hash = (hash + 1) % vocab_hash_size;
vocab_hash[hash] = a;
train_words += vocab[a].cn;
}
}
avgWordLength /= train_words;
vocab = (struct vocab_word *) realloc(vocab,
(vocab_size + 1) * sizeof(struct vocab_word));
// Allocate memory for the binary tree construction
for (a = 0; a < vocab_size; a++) {
vocab[a].code = (char *) calloc(MAX_CODE_LENGTH, sizeof(char));
vocab[a].point = (int *) calloc(MAX_CODE_LENGTH, sizeof(int));
}
}
// Reduces the vocabulary by removing infrequent tokens
void ReduceVocab() {
int a, b = 0;
unsigned int hash;
for (a = 0; a < vocab_size; a++)
if (vocab[a].cn > min_reduce) {
vocab[b].cn = vocab[a].cn;
vocab[b].word = vocab[a].word;
b++;
} else
free(vocab[a].word);
vocab_size = b;
for (a = 0; a < vocab_hash_size; a++)
vocab_hash[a] = -1;
for (a = 0; a < vocab_size; a++) {
// Hash will be re-computed, as it is not actual
hash = GetWordHash(vocab[a].word);
while (vocab_hash[hash] != -1)
hash = (hash + 1) % vocab_hash_size;
vocab_hash[hash] = a;
}
fflush(stdout);
min_reduce++;
}
// Create binary Huffman tree using the word counts
// Frequent words will have short uniqe binary codes
void CreateBinaryTree() {
long long a, b, i, min1i, min2i, pos1, pos2, point[MAX_CODE_LENGTH];
char code[MAX_CODE_LENGTH];
long long *count = (long long *) calloc(vocab_size * 2 + 1,
sizeof(long long));
long long *binary = (long long *) calloc(vocab_size * 2 + 1,
sizeof(long long));
long long *parent_node = (long long *) calloc(vocab_size * 2 + 1,
sizeof(long long));
for (a = 0; a < vocab_size; a++)
count[a] = vocab[a].cn;
for (a = vocab_size; a < vocab_size * 2; a++)
count[a] = 1e15;
pos1 = vocab_size - 1;
pos2 = vocab_size;
// Following algorithm constructs the Huffman tree by adding one node at a time
for (a = 0; a < vocab_size - 1; a++) {
// First, find two smallest nodes 'min1, min2'
if (pos1 >= 0) {
if (count[pos1] < count[pos2]) {
min1i = pos1;
pos1--;
} else {
min1i = pos2;
pos2++;
}
} else {
min1i = pos2;
pos2++;
}
if (pos1 >= 0) {
if (count[pos1] < count[pos2]) {
min2i = pos1;
pos1--;
} else {
min2i = pos2;
pos2++;
}
} else {
min2i = pos2;
pos2++;
}
count[vocab_size + a] = count[min1i] + count[min2i];
parent_node[min1i] = vocab_size + a;
parent_node[min2i] = vocab_size + a;
binary[min2i] = 1;
}
// Now assign binary code to each vocabulary word
for (a = 0; a < vocab_size; a++) {
b = a;
i = 0;
while (1) {
code[i] = binary[b];
point[i] = b;
i++;
b = parent_node[b];
if (b == vocab_size * 2 - 2)
break;
}
vocab[a].codelen = i;
vocab[a].point[0] = vocab_size - 2;
for (b = 0; b < i; b++) {
vocab[a].code[i - b - 1] = code[b];
vocab[a].point[i - b] = point[b] - vocab_size;
}
}
free(count);
free(binary);
free(parent_node);
}
void LearnVocabFromTrainFile() {
char word[MAX_STRING];
FILE *fin;
long long a, i;
for (a = 0; a < vocab_hash_size; a++)
vocab_hash[a] = -1;
fin = fopen(train_file, "rb");
if (fin == NULL) {
printf("ERROR: training data file not found!\n");
exit(1);
}
vocab_size = 0;
AddWordToVocab((char *) "</s>");
while (1) {
ReadWord(word, fin);
if (feof(fin))
break;
train_words++;
if ((debug_mode > 1) && (train_words % 100000 == 0)) {
printf("%lldK%c", train_words / 1000, 13);
fflush(stdout);
}
i = SearchVocab(word);
if (i == -1) {
a = AddWordToVocab(word);
vocab[a].cn = 1;
} else
vocab[i].cn++;
if (vocab_size > vocab_hash_size * 0.7)
ReduceVocab();
}
SortVocab();
if (debug_mode > 0) {
printf("Vocab size: %'lld\n", vocab_size);
printf("Words in train file: %'lld\n", train_words);
}
file_size = ftell(fin);
fclose(fin);
}
void SaveVocab() {
long long i;
FILE *fo = fopen(save_vocab_file, "wb");
for (i = 0; i < vocab_size; i++)
fprintf(fo, "%s %lld\n", vocab[i].word, vocab[i].cn);
fclose(fo);
}
void ReadVocab() {
long long a, i = 0;
char c;
char word[MAX_STRING];
FILE *fin = fopen(read_vocab_file, "rb");
if (fin == NULL) {
printf("Vocabulary file not found\n");
exit(1);
}
for (a = 0; a < vocab_hash_size; a++)
vocab_hash[a] = -1;
vocab_size = 0;
while (1) {
ReadWord(word, fin);
if (feof(fin))
break;
a = AddWordToVocab(word);
fscanf(fin, "%lld%c", &vocab[a].cn, &c);
i++;
}
fclose(fin);
fin = fopen(train_file, "rb");
if (fin == NULL) {
printf("ERROR: training data file not found!\n");
exit(1);
}
fseek(fin, 0, SEEK_END);
file_size = ftell(fin);
fclose(fin);
SortVocab();
if (debug_mode > 0) {
printf("Vocab size: %'lld\n", vocab_size);
printf("Words in vocab's train file: %'lld\n", train_words);
printf("Avg. word length in vocab's train file: %.2f\n", avgWordLength);
}
train_words = file_size / avgWordLength;
if(debug_mode > 0)
printf("Estimated words in train file: %'lld\n", train_words);
}
void InitClassUnigramTable() {
long long a, c;
printf("loading class unigrams \n");
FILE *fin = fopen(negative_classes_file, "rb");
if (fin == NULL) {
printf("ERROR: class file not found!\n");
exit(1);
}
word_to_group = (int *) malloc(vocab_size * sizeof(int));
for (a = 0; a < vocab_size; a++)
word_to_group[a] = -1;
char class[MAX_STRING];
char prev_class[MAX_STRING];
prev_class[0] = 0;
char word[MAX_STRING];
class_number = -1;
while (1) {
if (feof(fin))
break;
ReadWord(class, fin);
ReadWord(word, fin);
int word_index = SearchVocab(word);
if (word_index != -1) {
if (strcmp(class, prev_class) != 0) {
class_number++;
strcpy(prev_class, class);
}
word_to_group[word_index] = class_number;
}
ReadWord(word, fin);
}
class_number++;
fclose(fin);
group_to_table = (int *) malloc(table_size * class_number * sizeof(int));
long long train_words_pow = 0;
real d1, power = 0.75;
for (c = 0; c < class_number; c++) {
long long offset = c * table_size;
train_words_pow = 0;
for (a = 0; a < vocab_size; a++)
if (word_to_group[a] == c)
train_words_pow += pow(vocab[a].cn, power);
int i = 0;
while (word_to_group[i] != c && i < vocab_size)
i++;
d1 = pow(vocab[i].cn, power) / (real) train_words_pow;
for (a = 0; a < table_size; a++) {
//printf("index %lld , word %d\n", a, i);
group_to_table[offset + a] = i;
if (a / (real) table_size > d1) {
i++;
while (word_to_group[i] != c && i < vocab_size)
i++;
d1 += pow(vocab[i].cn, power) / (real) train_words_pow;
}
if (i >= vocab_size)
while (word_to_group[i] != c && i >= 0)
i--;
}
}
}
void SaveArgs(int argc, char **argv) {
unsigned int i;
size_t len = 0;
char *_all_args, *all_args;
char *args_file = strdup(output_file);
strcat(args_file, ".args");
FILE *fargs = fopen(args_file, "w");
if (fargs == NULL) {
printf("Cannot save args to %s.\n", args_file);
return;
}
for(i=1; i<argc; i++) {
len += strlen(argv[i]);
}
_all_args = all_args = (char *)malloc(len+argc-1);
for(i=1; i<argc; i++) {
memcpy(_all_args, argv[i], strlen(argv[i]));
_all_args += strlen(argv[i])+1;
*(_all_args-1) = ' ';
}
*(_all_args-1) = 0;
fprintf(fargs, "%s\n", all_args);
fclose(fargs);
free(all_args);
return;
}
void SaveNet() {
if(type != 3 || negative <= 0) {
fprintf(stderr, "save-net only supported for type 3 with negative sampling\n");
return;
}
FILE *fnet = fopen(save_net_file, "wb");
if (fnet == NULL) {
printf("Net parameter file not found\n");
exit(1);
}
fwrite(syn0, sizeof(real), vocab_size * layer1_size, fnet);
fwrite(syn1neg_window, sizeof(real), vocab_size * window_layer_size, fnet);
fclose(fnet);
}
void InitNet() {
long long a, b;
unsigned long long next_random = 1;
long long read;
window_layer_size = layer1_size * window * 2;
a = posix_memalign((void **) &syn0, 128,
(long long) vocab_size * layer1_size * sizeof(real));
if (syn0 == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
if (hs) {
a = posix_memalign((void **) &syn1, 128,
(long long) vocab_size * layer1_size * sizeof(real));
if (syn1 == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
a = posix_memalign((void **) &syn1_window, 128,
(long long) vocab_size * window_layer_size * sizeof(real));
if (syn1_window == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
a = posix_memalign((void **) &syn_hidden_word, 128,
(long long) vocab_size * window_hidden_size * sizeof(real));
if (syn_hidden_word == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
for (a = 0; a < vocab_size; a++)
for (b = 0; b < layer1_size; b++)
syn1[a * layer1_size + b] = 0;
for (a = 0; a < vocab_size; a++)
for (b = 0; b < window_layer_size; b++)
syn1_window[a * window_layer_size + b] = 0;
for (a = 0; a < vocab_size; a++)
for (b = 0; b < window_hidden_size; b++)
syn_hidden_word[a * window_hidden_size + b] = 0;
}
if (negative > 0) {
if(type == 0) {
a = posix_memalign((void **) &syn1neg, 128,
(long long) vocab_size * layer1_size * sizeof(real));
if (syn1neg == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
for (a = 0; a < vocab_size; a++)
for (b = 0; b < layer1_size; b++)
syn1neg[a * layer1_size + b] = 0;
} else if (type == 3) {
a = posix_memalign((void **) &syn1neg_window, 128,
(long long) vocab_size * window_layer_size * sizeof(real));
if (syn1neg_window == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
for (a = 0; a < vocab_size; a++)
for (b = 0; b < window_layer_size; b++)
syn1neg_window[a * window_layer_size + b] = 0;
} else if (type == 4) {
a = posix_memalign((void **) &syn_hidden_word_neg, 128,
(long long) vocab_size * window_hidden_size * sizeof(real));
if (syn_hidden_word_neg == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
for (a = 0; a < vocab_size; a++)
for (b = 0; b < window_hidden_size; b++)
syn_hidden_word_neg[a * window_hidden_size + b] = 0;
}
}
if (nce > 0) {
a = posix_memalign((void **) &syn1nce, 128,
(long long) vocab_size * layer1_size * sizeof(real));
if (syn1nce == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
a = posix_memalign((void **) &syn1nce_window, 128,
(long long) vocab_size * window_layer_size * sizeof(real));
if (syn1nce_window == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
a = posix_memalign((void **) &syn_hidden_word_nce, 128,
(long long) vocab_size * window_hidden_size * sizeof(real));
if (syn_hidden_word_nce == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
for (a = 0; a < vocab_size; a++)
for (b = 0; b < layer1_size; b++)
syn1nce[a * layer1_size + b] = 0;
for (a = 0; a < vocab_size; a++)
for (b = 0; b < window_layer_size; b++)
syn1nce_window[a * window_layer_size + b] = 0;
for (a = 0; a < vocab_size; a++)
for (b = 0; b < window_hidden_size; b++)
syn_hidden_word_nce[a * window_hidden_size + b] = 0;
}
if(type == 4) {
a = posix_memalign((void **) &syn_window_hidden, 128,
window_hidden_size * window_layer_size * sizeof(real));
if (syn_window_hidden == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
for (a = 0; a < window_hidden_size * window_layer_size; a++) {
next_random = next_random * (unsigned long long) 25214903917 + 11;
syn_window_hidden[a] = (((next_random & 0xFFFF) / (real) 65536)
- 0.5) / (window_hidden_size * window_layer_size);
}
}
if (read_net_file[0] == 0) {
for (a = 0; a < vocab_size; a++)
for (b = 0; b < layer1_size; b++) {
next_random = next_random * (unsigned long long) 25214903917
+ 11;
syn0[a * layer1_size + b] = (((next_random & 0xFFFF)
/ (real) 65536) - 0.5) / layer1_size;
}
} else if(type == 3 && negative > 0) {
FILE *fnet = fopen(read_net_file, "rb");
if (fnet == NULL) {
printf("Net parameter file not found\n");
exit(1);
}
printf("vocab-size: %lld, layer1_size: %lld, window_layer_size %d\n", vocab_size, layer1_size, window_layer_size);
read = fread(syn0, sizeof(real), vocab_size * layer1_size, fnet);
if(read != vocab_size * layer1_size) {
fprintf(stderr, "read-net failed %lld\n", read);
exit(-1);
}
read = fread(syn1neg_window, sizeof(real), vocab_size * window_layer_size, fnet);
if(read != (long long) vocab_size * window_layer_size) {
fprintf(stderr, "read-net failed, read %lld, expected: %lld\n", read ,
(long long) sizeof(real) * vocab_size * window_layer_size);
exit(-1);
}
fgetc(fnet);
if(!feof(fnet)) {
fprintf(stderr, "Remaining bytes in net-file after read-net. File position: %ld\n", ftell(fnet));
exit(-1);
}
fclose(fnet);
} else {
fprintf(stderr, "read-net only supported for type 3 with negative sampling\n");
exit(-1);
}
CreateBinaryTree();
}
char *currentDateTime(char *buf, real offset) {
time_t t;
time(&t);
t += (long) offset;
struct tm tstruct;
tstruct = *localtime(&t);
strftime(buf, 80, "%c", &tstruct);
return buf;
}
void *MonitorThread(void *id) {
char *timebuf = malloc(80);;
int i, n=num_threads;
long long sum;
sleep(1);
while(n > 0) {
sleep(1);
sum = n = 0;
for(i=0; i < num_threads; i++) {
if(threadPos[i] >= 0) {
sum += (iter - threadIters[i]) * file_size / num_threads + threadPos[i] - (file_size / num_threads) * i;
n++;
} else {
sum += iter * file_size / num_threads;
}
}
if(n == 0)
break;
real finished_portion = (real) sum / (float) (file_size * iter);
long long now = clock();
long long elapsed = (now - start) / CLOCKS_PER_SEC / num_threads;
long long ttg = ((1.0 / finished_portion) * (real) elapsed - elapsed) * ((real) num_threads / n) ;
printf("\rAlpha: %.3f Done: %.2f%% with %.2fKB/t/s TE: %llds TTG: %llds ETA: %s\033[K",
alpha,
finished_portion * 100,
(float) sum / elapsed / num_threads / 1000,
elapsed,
ttg,
currentDateTime(timebuf, ttg)
);
fflush(stdout);
}
pthread_exit(NULL);
}
void *TrainModelThread(void *id) {
long long a, b, d, cw, word, last_word, sentence_length = 0,
sentence_position = 0;
long long word_count = 0, last_word_count = 0, sen[MAX_SENTENCE_LENGTH + 1];
long long l1, l2, c, target, label, local_iter = iter;
unsigned long long next_random = (long long) id;
real f, g;
int input_len_1 = layer1_size;
int window_offset = -1;
if (type == 2 || type == 4) {
input_len_1 = window_layer_size;
}
real *neu1 = (real *) calloc(input_len_1, sizeof(real));
real *neu1e = (real *) calloc(input_len_1, sizeof(real));
threadIters[(long) id] = iter;
int input_len_2 = 0;
if (type == 4) {
input_len_2 = window_hidden_size;
}
real *neu2 = (real *) calloc(input_len_2, sizeof(real));
real *neu2e = (real *) calloc(input_len_2, sizeof(real));
FILE *fi = fopen(train_file, "rb");
long long start_pos = file_size / (long long) num_threads * (long long) id;
long long end_pos = file_size / (long long) num_threads * (long long) (id + 1) -1;
long long current_pos = start_pos;
long long last_pos = start_pos;;
fseek(fi, start_pos, SEEK_SET);
while (1) {
if ((current_pos - last_pos > 100000)) {
word_count_actual += word_count - last_word_count;
last_pos = current_pos;
last_word_count = word_count;
alpha = starting_alpha
* (1 - word_count_actual / (real) (iter * train_words + 1));
if (alpha < starting_alpha * 0.0001)
alpha = starting_alpha * 0.0001;
}
if (sentence_length == 0) {
while (1) {
word = ReadWordIndex(fi);
if (feof(fi))
break;
if (word == -1)
continue;
word_count++;
if (word == 0)
break;
// The subsampling randomly discards frequent words while keeping the ranking same
if (sample > 0) {
real ran = (sqrt(vocab[word].cn / (sample * train_words))
+ 1) * (sample * train_words) / vocab[word].cn;
next_random = next_random * (unsigned long long) 25214903917
+ 11;
if (ran < (next_random & 0xFFFF) / (real) 65536) {
if(type == 3) // in structured skipgrams
word = -2; // keep the window position correct
else
continue;
}
}
sen[sentence_length] = word;
sentence_length++;
if (sentence_length >= MAX_SENTENCE_LENGTH)
break;
}
sentence_position = 0;
}
current_pos = threadPos[(long) id] = ftell(fi);
if (feof(fi) || current_pos >= end_pos ) {
word_count_actual += word_count - last_word_count;
threadIters[(long) id]--;
local_iter--;
if (local_iter == 0)
break;
word_count = 0;
current_pos = last_pos = start_pos;
last_word_count = 0;
sentence_length = 0;
fseek(fi, start_pos, SEEK_SET);
continue;
}
word = sen[sentence_position];
while (word == -2 && sentence_position<sentence_length)
word = sen[++sentence_position];
if (sentence_position>=sentence_length) {
sentence_length=0;
continue;
}
if (word < 0)
continue;
for (c = 0; c < input_len_1; c++)
neu1[c] = 0;
for (c = 0; c < input_len_1; c++)
neu1e[c] = 0;
for (c = 0; c < input_len_2; c++)
neu2[c] = 0;
for (c = 0; c < input_len_2; c++)
neu2e[c] = 0;
next_random = next_random * (unsigned long long) 25214903917 + 11;
b = next_random % window;
if (type == 0) { //train the cbow architecture
// in -> hidden
cw = 0;
for (a = b; a < window * 2 + 1 - b; a++)
if (a != window) {
c = sentence_position - window + a;
if (c < 0)
continue;
if (c >= sentence_length)
continue;
last_word = sen[c];
if (last_word == -1)
continue;
for (c = 0; c < layer1_size; c++)
neu1[c] += syn0[c + last_word * layer1_size];
cw++;
}
if (cw) {
for (c = 0; c < layer1_size; c++)
neu1[c] /= cw;
if (hs)
for (d = 0; d < vocab[word].codelen; d++) {
f = 0;
l2 = vocab[word].point[d] * layer1_size;
// Propagate hidden -> output
for (c = 0; c < layer1_size; c++)
f += neu1[c] * syn1[c + l2];
if (f <= -MAX_EXP)
continue;
else if (f >= MAX_EXP)
continue;
else
f = expTable[(int) ((f + MAX_EXP)
* (EXP_TABLE_SIZE / MAX_EXP / 2))];
// 'g' is the gradient multiplied by the learning rate
g = (1 - vocab[word].code[d] - f) * alpha;
// Propagate errors output -> hidden
for (c = 0; c < layer1_size; c++)
neu1e[c] += g * syn1[c + l2];
// Learn weights hidden -> output
for (c = 0; c < layer1_size; c++)
syn1[c + l2] += g * neu1[c];
if (cap == 1)
for (c = 0; c < layer1_size; c++)
capParam(syn1, c + l2);
}
// NEGATIVE SAMPLING
if (negative > 0)
for (d = 0; d < negative + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random
* (unsigned long long) 25214903917 + 11;
if (word_to_group != NULL
&& word_to_group[word] != -1) {
target = word;
while (target == word) {
target = group_to_table[word_to_group[word]
* table_size
+ (next_random >> 16) % table_size];
next_random = next_random
* (unsigned long long) 25214903917
+ 11;
}
//printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
} else {
target =
table[(next_random >> 16) % table_size];
}
if (target == 0)
target = next_random % (vocab_size - 1) + 1;
if (target == word)
continue;
label = 0;
}
l2 = target * layer1_size;
f = 0;
for (c = 0; c < layer1_size; c++)
f += neu1[c] * syn1neg[c + l2];
if (f > MAX_EXP)
g = (label - 1) * alpha;
else if (f < -MAX_EXP)
g = (label - 0) * alpha;
else
g = (label
- expTable[(int) ((f + MAX_EXP)
* (EXP_TABLE_SIZE / MAX_EXP / 2))])
* alpha;
for (c = 0; c < layer1_size; c++)
neu1e[c] += g * syn1neg[c + l2];
for (c = 0; c < layer1_size; c++)
syn1neg[c + l2] += g * neu1[c];
if (cap == 1)
for (c = 0; c < layer1_size; c++)
capParam(syn1neg, c + l2);
}
// Noise Contrastive Estimation
if (nce > 0)
for (d = 0; d < nce + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random
* (unsigned long long) 25214903917 + 11;
if (word_to_group != NULL
&& word_to_group[word] != -1) {
target = word;
while (target == word) {
target = group_to_table[word_to_group[word]
* table_size
+ (next_random >> 16) % table_size];
next_random = next_random
* (unsigned long long) 25214903917
+ 11;
}
} else {
target =
table[(next_random >> 16) % table_size];
}
if (target == 0)
target = next_random % (vocab_size - 1) + 1;
if (target == word)
continue;
label = 0;
}
l2 = target * layer1_size;
f = 0;
for (c = 0; c < layer1_size; c++)
f += neu1[c] * syn1nce[c + l2];
if (f > MAX_EXP)
g = (label - 1) * alpha;
else if (f < -MAX_EXP)
g = (label - 0) * alpha;
else {
f = exp(f);
g =
(label
- f
/ (noise_distribution[target]
* nce + f)) * alpha;
}
for (c = 0; c < layer1_size; c++)
neu1e[c] += g * syn1nce[c + l2];
for (c = 0; c < layer1_size; c++)
syn1nce[c + l2] += g * neu1[c];
if (cap == 1)
for (c = 0; c < layer1_size; c++)
capParam(syn1nce, c + l2);
}
// hidden -> in
for (a = b; a < window * 2 + 1 - b; a++)
if (a != window) {
c = sentence_position - window + a;
if (c < 0)
continue;
if (c >= sentence_length)
continue;
last_word = sen[c];
if (last_word == -1)
continue;
for (c = 0; c < layer1_size; c++)
syn0[c + last_word * layer1_size] += neu1e[c];
}
}
} else if (type == 1) { //train skip-gram
for (a = b; a < window * 2 + 1 - b; a++)
if (a != window) {
c = sentence_position - window + a;
if (c < 0)
continue;
if (c >= sentence_length)
continue;
last_word = sen[c];
if (last_word == -1)
continue;
l1 = last_word * layer1_size;
for (c = 0; c < layer1_size; c++)
neu1e[c] = 0;
// HIERARCHICAL SOFTMAX
if (hs)
for (d = 0; d < vocab[word].codelen; d++) {
f = 0;
l2 = vocab[word].point[d] * layer1_size;
// Propagate hidden -> output
for (c = 0; c < layer1_size; c++)
f += syn0[c + l1] * syn1[c + l2];
if (f <= -MAX_EXP)
continue;
else if (f >= MAX_EXP)
continue;
else
f = expTable[(int) ((f + MAX_EXP)
* (EXP_TABLE_SIZE / MAX_EXP / 2))];
// 'g' is the gradient multiplied by the learning rate
g = (1 - vocab[word].code[d] - f) * alpha;
// Propagate errors output -> hidden
for (c = 0; c < layer1_size; c++)
neu1e[c] += g * syn1[c + l2];
// Learn weights hidden -> output
for (c = 0; c < layer1_size; c++)
syn1[c + l2] += g * syn0[c + l1];
if (cap == 1)
for (c = 0; c < layer1_size; c++)
capParam(syn1, c + l2);
}
// NEGATIVE SAMPLING
if (negative > 0)
for (d = 0; d < negative + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random
* (unsigned long long) 25214903917 + 11;
if (word_to_group != NULL
&& word_to_group[word] != -1) {
target = word;
while (target == word) {
target =
group_to_table[word_to_group[word]
* table_size
+ (next_random >> 16)
% table_size];
next_random =
next_random
* (unsigned long long) 25214903917
+ 11;
}
//printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
} else {
target = table[(next_random >> 16)
% table_size];
}
if (target == 0)
target = next_random % (vocab_size - 1) + 1;
if (target == word)
continue;
label = 0;
}
l2 = target * layer1_size;
f = 0;
for (c = 0; c < layer1_size; c++)
f += syn0[c + l1] * syn1neg[c + l2];
if (f > MAX_EXP)
g = (label - 1) * alpha;
else if (f < -MAX_EXP)
g = (label - 0) * alpha;
else
g =
(label
- expTable[(int) ((f + MAX_EXP)
* (EXP_TABLE_SIZE
/ MAX_EXP / 2))])
* alpha;
for (c = 0; c < layer1_size; c++)
neu1e[c] += g * syn1neg[c + l2];
for (c = 0; c < layer1_size; c++)
syn1neg[c + l2] += g * syn0[c + l1];
if (cap == 1)
for (c = 0; c < layer1_size; c++)
capParam(syn1neg, c + l2);
}
//Noise Contrastive Estimation
if (nce > 0)
for (d = 0; d < nce + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random
* (unsigned long long) 25214903917 + 11;
if (word_to_group != NULL
&& word_to_group[word] != -1) {
target = word;
while (target == word) {
target =
group_to_table[word_to_group[word]
* table_size
+ (next_random >> 16)
% table_size];
next_random =
next_random
* (unsigned long long) 25214903917
+ 11;
}
//printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
} else {
target = table[(next_random >> 16)
% table_size];
}
if (target == 0)
target = next_random % (vocab_size - 1) + 1;
if (target == word)
continue;
label = 0;
}
l2 = target * layer1_size;
f = 0;
for (c = 0; c < layer1_size; c++)
f += syn0[c + l1] * syn1nce[c + l2];
if (f > MAX_EXP)
g = (label - 1) * alpha;
else if (f < -MAX_EXP)
g = (label - 0) * alpha;
else {
f = exp(f);
g = (label
- f
/ (noise_distribution[target]
* nce + f)) * alpha;
}
for (c = 0; c < layer1_size; c++)
neu1e[c] += g * syn1nce[c + l2];
for (c = 0; c < layer1_size; c++)
syn1nce[c + l2] += g * syn0[c + l1];
if (cap == 1)
for (c = 0; c < layer1_size; c++)
capParam(syn1nce, c + l2);
}
// Learn weights input -> hidden
for (c = 0; c < layer1_size; c++)
syn0[c + l1] += neu1e[c];
}
} else if (type == 2) { //train the cwindow architecture
// in -> hidden
cw = 0;
for (a = 0; a < window * 2 + 1; a++)
if (a != window) {
c = sentence_position - window + a;
if (c < 0)
continue;
if (c >= sentence_length)
continue;
last_word = sen[c];
if (last_word == -1)
continue;
window_offset = a * layer1_size;
if (a > window)
window_offset -= layer1_size;
for (c = 0; c < layer1_size; c++)
neu1[c + window_offset] += syn0[c
+ last_word * layer1_size];
cw++;
}
if (cw) {
if (hs)
for (d = 0; d < vocab[word].codelen; d++) {
f = 0;
l2 = vocab[word].point[d] * window_layer_size;
// Propagate hidden -> output
for (c = 0; c < window_layer_size; c++)
f += neu1[c] * syn1_window[c + l2];
if (f <= -MAX_EXP)
continue;
else if (f >= MAX_EXP)
continue;
else
f = expTable[(int) ((f + MAX_EXP)
* (EXP_TABLE_SIZE / MAX_EXP / 2))];
// 'g' is the gradient multiplied by the learning rate
g = (1 - vocab[word].code[d] - f) * alpha;
// Propagate errors output -> hidden
for (c = 0; c < window_layer_size; c++)
neu1e[c] += g * syn1_window[c + l2];
// Learn weights hidden -> output
for (c = 0; c < window_layer_size; c++)
syn1_window[c + l2] += g * neu1[c];
if (cap == 1)
for (c = 0; c < window_layer_size; c++)
capParam(syn1_window, c + l2);
}
// NEGATIVE SAMPLING
if (negative > 0)
for (d = 0; d < negative + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random
* (unsigned long long) 25214903917 + 11;
if (word_to_group != NULL
&& word_to_group[word] != -1) {
target = word;
while (target == word) {
target = group_to_table[word_to_group[word]
* table_size
+ (next_random >> 16) % table_size];
next_random = next_random
* (unsigned long long) 25214903917
+ 11;
}
//printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
} else {
target =
table[(next_random >> 16) % table_size];
}
if (target == 0)
target = next_random % (vocab_size - 1) + 1;
if (target == word)
continue;
label = 0;
}
l2 = target * window_layer_size;
f = 0;
for (c = 0; c < window_layer_size; c++)
f += neu1[c] * syn1neg_window[c + l2];
if (f > MAX_EXP)
g = (label - 1) * alpha;
else if (f < -MAX_EXP)
g = (label - 0) * alpha;
else
g = (label
- expTable[(int) ((f + MAX_EXP)
* (EXP_TABLE_SIZE / MAX_EXP / 2))])
* alpha;
for (c = 0; c < window_layer_size; c++)
neu1e[c] += g * syn1neg_window[c + l2];
for (c = 0; c < window_layer_size; c++)
syn1neg_window[c + l2] += g * neu1[c];
if (cap == 1)
for (c = 0; c < window_layer_size; c++)
capParam(syn1neg_window, c + l2);
}
// Noise Contrastive Estimation
if (nce > 0)
for (d = 0; d < nce + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random
* (unsigned long long) 25214903917 + 11;
if (word_to_group != NULL
&& word_to_group[word] != -1) {
target = word;
while (target == word) {
target = group_to_table[word_to_group[word]
* table_size
+ (next_random >> 16) % table_size];
next_random = next_random
* (unsigned long long) 25214903917
+ 11;
}
//printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
} else {
target =
table[(next_random >> 16) % table_size];
}
if (target == 0)
target = next_random % (vocab_size - 1) + 1;
if (target == word)
continue;
label = 0;
}
l2 = target * window_layer_size;
f = 0;
for (c = 0; c < window_layer_size; c++)
f += neu1[c] * syn1nce_window[c + l2];
if (f > MAX_EXP)
g = (label - 1) * alpha;
else if (f < -MAX_EXP)
g = (label - 0) * alpha;
else {
f = exp(f);
g =
(label
- f
/ (noise_distribution[target]
* nce + f)) * alpha;
}
for (c = 0; c < window_layer_size; c++)
neu1e[c] += g * syn1nce_window[c + l2];
for (c = 0; c < window_layer_size; c++)
syn1nce_window[c + l2] += g * neu1[c];
if (cap == 1)
for (c = 0; c < window_layer_size; c++)
capParam(syn1nce_window, c + l2);
}
// hidden -> in
for (a = 0; a < window * 2 + 1; a++)
if (a != window) {
c = sentence_position - window + a;
if (c < 0)
continue;
if (c >= sentence_length)
continue;
last_word = sen[c];
if (last_word == -1)
continue;
window_offset = a * layer1_size;
if (a > window)
window_offset -= layer1_size;
for (c = 0; c < layer1_size; c++)
syn0[c + last_word * layer1_size] += neu1e[c
+ window_offset];
}
}
} else if (type == 3) { //train structured skip-gram
for (a = 0; a < window * 2 + 1; a++)
if (a != window) {
c = sentence_position - window + a;
if (c < 0)
continue;
if (c >= sentence_length)
continue;
last_word = sen[c];
if (last_word < 0)
continue;
l1 = last_word * layer1_size;
window_offset = a * layer1_size;
if (a > window)
window_offset -= layer1_size;
for (c = 0; c < layer1_size; c++)
neu1e[c] = 0;
// HIERARCHICAL SOFTMAX
if (hs)
for (d = 0; d < vocab[word].codelen; d++) {
f = 0;
l2 = vocab[word].point[d] * window_layer_size;
// Propagate hidden -> output
for (c = 0; c < layer1_size; c++)
f += syn0[c + l1]
* syn1_window[c + l2 + window_offset];
if (f <= -MAX_EXP)
continue;
else if (f >= MAX_EXP)
continue;
else
f = expTable[(int) ((f + MAX_EXP)
* (EXP_TABLE_SIZE / MAX_EXP / 2))];
// 'g' is the gradient multiplied by the learning rate
g = (1 - vocab[word].code[d] - f) * alpha;
// Propagate errors output -> hidden
for (c = 0; c < layer1_size; c++)
neu1e[c] += g
* syn1_window[c + l2 + window_offset];
// Learn weights hidden -> output
for (c = 0; c < layer1_size; c++)
syn1[c + l2 + window_offset] += g
* syn0[c + l1];
if (cap == 1)
for (c = 0; c < layer1_size; c++)
capParam(syn1, c + l2 + window_offset);
}
// NEGATIVE SAMPLING
if (negative > 0)
for (d = 0; d < negative + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random
* (unsigned long long) 25214903917 + 11;
if (word_to_group != NULL
&& word_to_group[word] != -1) {
target = word;
while (target == word) {
target =
group_to_table[word_to_group[word]
* table_size
+ (next_random >> 16)
% table_size];
next_random =
next_random
* (unsigned long long) 25214903917
+ 11;
}
//printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
} else {
target = table[(next_random >> 16)
% table_size];
}
if (target == 0)
target = next_random % (vocab_size - 1) + 1;
if (target == word)
continue;
label = 0;
}
l2 = target * window_layer_size;
f = 0;
for (c = 0; c < layer1_size; c++)
f +=
syn0[c + l1]
* syn1neg_window[c + l2
+ window_offset];
if (f > MAX_EXP)
g = (label - 1) * alpha;
else if (f < -MAX_EXP)
g = (label - 0) * alpha;
else
g =
(label
- expTable[(int) ((f + MAX_EXP)
* (EXP_TABLE_SIZE
/ MAX_EXP / 2))])
* alpha;
if(debug_mode > 2 && ((long long) id) == 0) {
printf("negative sampling %lld for input (word) %s (#%lld), target (last word) %s returned %s (#%lld), ", d, vocab[word].word, word, vocab[last_word].word, vocab[target].word, target);
printf("label %lld, a %lld, gain %.4f\n", label, a-window, g);
}
for (c = 0; c < layer1_size; c++)
neu1e[c] +=
g
* syn1neg_window[c + l2
+ window_offset];
for (c = 0; c < layer1_size; c++)
syn1neg_window[c + l2 + window_offset] += g
* syn0[c + l1];
if (cap == 1)
for (c = 0; c < layer1_size; c++)
capParam(syn1neg_window,
c + l2 + window_offset);
}
// Noise Constrastive Estimation
if (nce > 0)
for (d = 0; d < nce + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random
* (unsigned long long) 25214903917 + 11;
if (word_to_group != NULL
&& word_to_group[word] != -1) {
target = word;
while (target == word) {
target =
group_to_table[word_to_group[word]
* table_size
+ (next_random >> 16)
% table_size];
next_random =
next_random
* (unsigned long long) 25214903917
+ 11;
}
//printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
} else {
target = table[(next_random >> 16)
% table_size];
}
if (target == 0)
target = next_random % (vocab_size - 1) + 1;
if (target == word)
continue;
label = 0;
}
l2 = target * window_layer_size;
f = 0;
for (c = 0; c < layer1_size; c++)
f +=
syn0[c + l1]
* syn1nce_window[c + l2
+ window_offset];
if (f > MAX_EXP)
g = (label - 1) * alpha;
else if (f < -MAX_EXP)
g = (label - 0) * alpha;
else {
f = exp(f);
g = (label
- f
/ (noise_distribution[target]
* nce + f)) * alpha;
}
for (c = 0; c < layer1_size; c++)
neu1e[c] +=
g
* syn1nce_window[c + l2
+ window_offset];
for (c = 0; c < layer1_size; c++)
syn1nce_window[c + l2 + window_offset] += g
* syn0[c + l1];
if (cap == 1)
for (c = 0; c < layer1_size; c++)
capParam(syn1nce_window,
c + l2 + window_offset);
}
// Learn weights input -> hidden
for (c = 0; c < layer1_size; c++) {
syn0[c + l1] += neu1e[c];
if (syn0[c + l1] > 50)
syn0[c + l1] = 50;
if (syn0[c + l1] < -50)
syn0[c + l1] = -50;
}
}
} else if (type == 4) { //training senna
// in -> hidden
cw = 0;
for (a = 0; a < window * 2 + 1; a++)
if (a != window) {
c = sentence_position - window + a;
if (c < 0)
continue;
if (c >= sentence_length)
continue;
last_word = sen[c];
if (last_word == -1)
continue;
window_offset = a * layer1_size;
if (a > window)
window_offset -= layer1_size;
for (c = 0; c < layer1_size; c++)
neu1[c + window_offset] += syn0[c
+ last_word * layer1_size];
cw++;
}
if (cw) {
for (a = 0; a < window_hidden_size; a++) {
c = a * window_layer_size;
for (b = 0; b < window_layer_size; b++) {
neu2[a] += syn_window_hidden[c + b] * neu1[b];
}
}
if (hs)
for (d = 0; d < vocab[word].codelen; d++) {
f = 0;
l2 = vocab[word].point[d] * window_hidden_size;
// Propagate hidden -> output
for (c = 0; c < window_hidden_size; c++)
f += hardTanh(neu2[c]) * syn_hidden_word[c + l2];
if (f <= -MAX_EXP)
continue;
else if (f >= MAX_EXP)
continue;
else
f = expTable[(int) ((f + MAX_EXP)
* (EXP_TABLE_SIZE / MAX_EXP / 2))];
// 'g' is the gradient multiplied by the learning rate
g = (1 - vocab[word].code[d] - f) * alpha;
// Propagate errors output -> hidden
for (c = 0; c < window_hidden_size; c++)
neu2e[c] += dHardTanh(neu2[c], g) * g
* syn_hidden_word[c + l2];
// Learn weights hidden -> output
for (c = 0; c < window_hidden_size; c++)
syn_hidden_word[c + l2] += dHardTanh(neu2[c], g) * g
* neu2[c];
}
// NEGATIVE SAMPLING
if (negative > 0)
for (d = 0; d < negative + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random
* (unsigned long long) 25214903917 + 11;
if (word_to_group != NULL
&& word_to_group[word] != -1) {
target = word;
while (target == word) {
target = group_to_table[word_to_group[word]
* table_size
+ (next_random >> 16) % table_size];
next_random = next_random
* (unsigned long long) 25214903917
+ 11;
}
//printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
} else {
target =
table[(next_random >> 16) % table_size];
}
if (target == 0)
target = next_random % (vocab_size - 1) + 1;
if (target == word)
continue;
label = 0;
}
l2 = target * window_hidden_size;
f = 0;
for (c = 0; c < window_hidden_size; c++)
f += hardTanh(neu2[c])
* syn_hidden_word_neg[c + l2];
if (f > MAX_EXP)
g = (label - 1) * alpha / negative;
else if (f < -MAX_EXP)
g = (label - 0) * alpha / negative;
else
g = (label
- expTable[(int) ((f + MAX_EXP)
* (EXP_TABLE_SIZE / MAX_EXP / 2))])
* alpha / negative;
for (c = 0; c < window_hidden_size; c++)
neu2e[c] += dHardTanh(neu2[c], g) * g
* syn_hidden_word_neg[c + l2];
for (c = 0; c < window_hidden_size; c++)
syn_hidden_word_neg[c + l2] += dHardTanh(neu2[c], g)
* g * neu2[c];
}
for (a = 0; a < window_hidden_size; a++)
for (b = 0; b < window_layer_size; b++)
neu1e[b] += neu2e[a]
* syn_window_hidden[a * window_layer_size + b];
for (a = 0; a < window_hidden_size; a++)
for (b = 0; b < window_layer_size; b++)
syn_window_hidden[a * window_layer_size + b] += neu2e[a]
* neu1[b];
// hidden -> in
for (a = 0; a < window * 2 + 1; a++)
if (a != window) {
c = sentence_position - window + a;
if (c < 0)
continue;
if (c >= sentence_length)
continue;
last_word = sen[c];
if (last_word == -1)
continue;
window_offset = a * layer1_size;
if (a > window)
window_offset -= layer1_size;
for (c = 0; c < layer1_size; c++)
syn0[c + last_word * layer1_size] += neu1e[c
+ window_offset];
}
}
} else {
printf("unknown type %i", type);
exit(0);
}
sentence_position++;
if (sentence_position >= sentence_length) {
sentence_length = 0;
continue;
}
}
fclose(fi);
free(neu1);
free(neu1e);
threadPos[(long) id] = -1;
pthread_exit(NULL);
}
void ShowCollocations() {
long a, b, c, d, e, window_offset, target, max_target=0, maxmax_target;
real f, max_f, maxmax_f;
real *target_sums, bestf[MAX_CC], worstbest;
long besti[MAX_CC];
int N = 10, bestp[MAX_CC];
a = posix_memalign((void **) &target_sums, 128, vocab_size * sizeof(real));
for (d = cc; d < vocab_size; d++) {
for (b = 0; b < vocab_size; b++)
target_sums[b]=0;
for (b = 0; b < N; b++)
bestf[b]=-1;
worstbest = -1;
maxmax_f = -1;
maxmax_target = 0;
for (a = window * 2 + 1; a >=0; a--) {
if (a != window) {
max_f = -1;
window_offset = a * layer1_size;
if (a > window)
window_offset -= layer1_size;
for(target = 0; target < vocab_size; target ++) {
if(target == d)
continue;
f = 0;
for (c = 0; c < layer1_size; c++)
f += syn0[d* layer1_size + c] * syn1neg_window[target * window_layer_size + window_offset + c];
if (f < -MAX_EXP)
continue;
else if (f > MAX_EXP)
continue;
else
f = expTable[(int) ((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
if(f > max_f) {
max_f = f;
max_target = target;
}
target_sums[target] += (1-target_sums[target]) * f;
if(f > worstbest) {
for (b = 0; b < N; b++) {
if (f > bestf[b]) {
for (e = N - 1; e > b; e--) {
bestf[e] = bestf[e - 1];
besti[e] = besti[e - 1];
bestp[e] = bestp[e - 1];
}
bestf[b] = f;
besti[b] = target;
bestp[b] = window-a;
break;
}
}
worstbest = bestf[N-1];
}
}
printf("%s (%.2f) ", vocab[max_target].word, max_f);
if(max_f > maxmax_f) {
maxmax_f = max_f;
maxmax_target = max_target;
}
} else {
printf("\x1b[1m%s\x1b[0m ", vocab[d].word);
}
}
max_f = -1;
for (b = 0; b < vocab_size; b++) {
if(target_sums[b] > max_f) {
max_f = target_sums[b];
max_target = b;
}
}
printf(" – max sum: %s (%.2f), max resp.: \x1b[1m%s\x1b[0m (%.2f)\n",
vocab[max_target].word, max_f,
vocab[maxmax_target].word, maxmax_f);
for(b=0; b<N && bestf[b]>-1; b++)
printf("%-32s %.2f %d\n", vocab[besti[b]].word, bestf[b], bestp[b]);
printf("\n");
}
}
void TrainModel() {
long a, b, c, d;
FILE *fo;
pthread_t *pt = (pthread_t *) malloc(num_threads * sizeof(pthread_t));
threadPos = malloc(num_threads * sizeof(long long));
threadIters = malloc(num_threads * sizeof(int));
char *timebuf = malloc(80);
printf("Starting training using file %s\n", train_file);
starting_alpha = alpha;
if (read_vocab_file[0] != 0)
ReadVocab();
else
LearnVocabFromTrainFile();
if (save_vocab_file[0] != 0)
SaveVocab();
if (output_file[0] == 0)
return;
InitNet();
if(cc > 0)
ShowCollocations();
if (negative > 0 || nce > 0)
InitUnigramTable();
if (negative_classes_file[0] != 0)
InitClassUnigramTable();
start = clock();
for (a = 0; a < num_threads; a++)
pthread_create(&pt[a], NULL, TrainModelThread, (void *) a);
if(debug_mode > 1)
pthread_create(&pt[num_threads], NULL, MonitorThread, (void *) a);
for (a = 0; a < num_threads; a++)
pthread_join(pt[a], NULL);
if(debug_mode > 1) {
pthread_join(pt[num_threads], NULL);
clock_t now = clock();
printf("\nFinished: %s - user: %lds - real: %lds\n", currentDateTime(timebuf, 0), (now-start) / CLOCKS_PER_SEC / num_threads, (now-start) / CLOCKS_PER_SEC);
printf("Saving vectors to %s ...", output_file);
fflush(stdout);
}
fo = fopen(output_file, "wb");
if (classes == 0) {
// Save the word vectors
fprintf(fo, "%lld %lld\n", vocab_size, layer1_size);
for (a = 0; a < vocab_size; a++) {
fprintf(fo, "%s ", vocab[a].word);
if (binary)
for (b = 0; b < layer1_size; b++)
fwrite(&syn0[a * layer1_size + b], sizeof(real), 1, fo);
else
for (b = 0; b < layer1_size; b++)
fprintf(fo, "%lf ", syn0[a * layer1_size + b]);
fprintf(fo, "\n");
}
if(debug_mode > 1)
fprintf(stderr, "\n");
} else {
// Run K-means on the word vectors
int clcn = classes, iter = 10, closeid;
int *centcn = (int *) malloc(classes * sizeof(int));
int *cl = (int *) calloc(vocab_size, sizeof(int));
real closev, x;
real *cent = (real *) calloc(classes * layer1_size, sizeof(real));
for (a = 0; a < vocab_size; a++)
cl[a] = a % clcn;
for (a = 0; a < iter; a++) {
for (b = 0; b < clcn * layer1_size; b++)
cent[b] = 0;
for (b = 0; b < clcn; b++)
centcn[b] = 1;
for (c = 0; c < vocab_size; c++) {
for (d = 0; d < layer1_size; d++)
cent[layer1_size * cl[c] + d] += syn0[c * layer1_size + d];
centcn[cl[c]]++;
}
for (b = 0; b < clcn; b++) {
closev = 0;
for (c = 0; c < layer1_size; c++) {
cent[layer1_size * b + c] /= centcn[b];
closev += cent[layer1_size * b + c]
* cent[layer1_size * b + c];
}
closev = sqrt(closev);
for (c = 0; c < layer1_size; c++)
cent[layer1_size * b + c] /= closev;
}
for (c = 0; c < vocab_size; c++) {
closev = -10;
closeid = 0;
for (d = 0; d < clcn; d++) {
x = 0;
for (b = 0; b < layer1_size; b++)
x += cent[layer1_size * d + b]
* syn0[c * layer1_size + b];
if (x > closev) {
closev = x;
closeid = d;
}
}
cl[c] = closeid;
}
}
// Save the K-means classes
for (a = 0; a < vocab_size; a++)
fprintf(fo, "%s %d\n", vocab[a].word, cl[a]);
free(centcn);
free(cent);
free(cl);
}
fclose(fo);
if (save_net_file[0] != 0)
SaveNet();
}
int ArgPos(char *str, int argc, char **argv) {
int a;
for (a = 1; a < argc; a++)
if (!strcmp(str, argv[a])) {
if (a == argc - 1) {
printf("Argument missing for %s\n", str);
exit(1);
}
return a;
}
return -1;
}
int main(int argc, char **argv) {
int i;
setlocale(LC_ALL, "");
if (argc == 1) {
printf("WORD VECTOR estimation toolkit v 0.1c\n\n");
printf("Options:\n");
printf("Parameters for training:\n");
printf("\t-train <file>\n");
printf("\t\tUse text data from <file> to train the model\n");
printf("\t-output <file>\n");
printf(
"\t\tUse <file> to save the resulting word vectors / word clusters\n");
printf("\t-size <int>\n");
printf("\t\tSet size of word vectors; default is 100\n");
printf("\t-window <int>\n");
printf("\t\tSet max skip length between words; default is 5\n");
printf("\t-sample <float>\n");
printf(
"\t\tSet threshold for occurrence of words. Those that appear with higher frequency in the training data\n");
printf(
"\t\twill be randomly down-sampled; default is 1e-3, useful range is (0, 1e-5)\n");
printf("\t-hs <int>\n");
printf("\t\tUse Hierarchical Softmax; default is 0 (not used)\n");
printf("\t-negative <int>\n");
printf(
"\t\tNumber of negative examples; default is 5, common values are 3 - 10 (0 = not used)\n");
printf("\t-negative-classes <file>\n");
printf("\t\tNegative classes to sample from\n");
printf("\t-nce <int>\n");
printf(
"\t\tNumber of negative examples for nce; default is 0, common values are 3 - 10 (0 = not used)\n");
printf("\t-threads <int>\n");
printf("\t\tUse <int> threads (default 12)\n");
printf("\t-iter <int>\n");
printf("\t\tRun more training iterations (default 5)\n");
printf("\t-min-count <int>\n");
printf(
"\t\tThis will discard words that appear less than <int> times; default is 5\n");
printf("\t-alpha <float>\n");
printf(
"\t\tSet the starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW\n");
printf("\t-classes <int>\n");
printf(
"\t\tOutput word classes rather than word vectors; default number of classes is 0 (vectors are written)\n");
printf("\t-debug <int>\n");
printf(
"\t\tSet the debug mode (default = 2 = more info during training)\n");
printf("\t-binary <int>\n");
printf(
"\t\tSave the resulting vectors in binary moded; default is 0 (off)\n");
printf("\t-save-vocab <file>\n");
printf("\t\tThe vocabulary will be saved to <file>\n");
printf("\t-read-vocab <file>\n");
printf(
"\t\tThe vocabulary will be read from <file>, not constructed from the training data\n");
printf("\t-read-net <file>\n");
printf(
"\t\tThe net parameters will be read from <file>, not initialized randomly\n");
printf("\t-save-net <file>\n");
printf("\t\tThe net parameters will be saved to <file>\n");
printf("\t-show-cc <int>\n");
printf("\t\tShow words with their collocators starting from word rank <int>. Depends on -read-vocab and -read-net.\n");
printf("\t-type <int>\n");
printf(
"\t\tType of embeddings (0 for cbow, 1 for skipngram, 2 for cwindow, 3 for structured skipngram, 4 for senna type)\n");
printf("\t-cap <int>\n");
printf(
"\t\tlimit the parameter values to the range [-50, 50]; default is 0 (off)\n");
printf("\nExamples:\n");
printf(
"./word2vec -train data.txt -output vec.txt -size 200 -window 5 -sample 1e-4 -negative 5 -hs 0 -binary 0 -type 1 -iter 3\n\n");
return 0;
}
output_file[0] = 0;
save_vocab_file[0] = 0;
read_vocab_file[0] = 0;
save_net_file[0] = 0;
read_net_file[0] = 0;
negative_classes_file[0] = 0;
if ((i = ArgPos((char *) "-size", argc, argv)) > 0)
layer1_size = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-train", argc, argv)) > 0)
strcpy(train_file, argv[i + 1]);
if ((i = ArgPos((char *) "-save-vocab", argc, argv)) > 0)
strcpy(save_vocab_file, argv[i + 1]);
if ((i = ArgPos((char *) "-read-vocab", argc, argv)) > 0)
strcpy(read_vocab_file, argv[i + 1]);
if ((i = ArgPos((char *) "-save-net", argc, argv)) > 0)
strcpy(save_net_file, argv[i + 1]);
if ((i = ArgPos((char *) "-read-net", argc, argv)) > 0)
strcpy(read_net_file, argv[i + 1]);
if ((i = ArgPos((char *) "-debug", argc, argv)) > 0)
debug_mode = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-binary", argc, argv)) > 0)
binary = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-show-cc", argc, argv)) > 0)
cc = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-type", argc, argv)) > 0)
type = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-output", argc, argv)) > 0)
strcpy(output_file, argv[i + 1]);
if ((i = ArgPos((char *) "-window", argc, argv)) > 0)
window = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-sample", argc, argv)) > 0)
sample = atof(argv[i + 1]);
if ((i = ArgPos((char *) "-hs", argc, argv)) > 0)
hs = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-negative", argc, argv)) > 0)
negative = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-negative-classes", argc, argv)) > 0)
strcpy(negative_classes_file, argv[i + 1]);
if ((i = ArgPos((char *) "-nce", argc, argv)) > 0)
nce = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-threads", argc, argv)) > 0)
num_threads = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-iter", argc, argv)) > 0)
iter = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-min-count", argc, argv)) > 0)
min_count = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-classes", argc, argv)) > 0)
classes = atoi(argv[i + 1]);
if ((i = ArgPos((char *) "-cap", argc, argv)) > 0)
cap = atoi(argv[i + 1]);
if (type == 0 || type == 2 || type == 4)
alpha = 0.05;
if ((i = ArgPos((char *) "-alpha", argc, argv)) > 0)
alpha = atof(argv[i + 1]);
vocab = (struct vocab_word *) calloc(vocab_max_size,
sizeof(struct vocab_word));
vocab_hash = (int *) calloc(vocab_hash_size, sizeof(int));
expTable = (real *) malloc((EXP_TABLE_SIZE + 1) * sizeof(real));
for (i = 0; i < EXP_TABLE_SIZE; i++) {
expTable[i] = exp((i / (real) EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table
expTable[i] = expTable[i] / (expTable[i] + 1); // Precompute f(x) = x / (x + 1)
}
SaveArgs(argc, argv);
TrainModel();
return 0;
}