Marc Kupietz | d6f9c71 | 2016-03-16 11:50:56 +0100 | [diff] [blame] | 1 | // Copyright 2013 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include <stdio.h> |
| 16 | #include <stdlib.h> |
| 17 | #include <string.h> |
| 18 | #include <math.h> |
| 19 | #include <pthread.h> |
| 20 | |
| 21 | #define MAX_STRING 100 |
| 22 | #define EXP_TABLE_SIZE 1000 |
| 23 | #define MAX_EXP 6 |
| 24 | #define MAX_SENTENCE_LENGTH 1000 |
| 25 | #define MAX_CODE_LENGTH 40 |
| 26 | |
| 27 | const int vocab_hash_size = 30000000; // Maximum 30 * 0.7 = 21M words in the vocabulary |
| 28 | |
| 29 | typedef float real; // Precision of float numbers |
| 30 | |
| 31 | struct vocab_word { |
| 32 | long long cn; |
| 33 | int *point; |
| 34 | char *word, *code, codelen; |
| 35 | }; |
| 36 | |
| 37 | char train_file[MAX_STRING], output_file[MAX_STRING]; |
| 38 | char save_vocab_file[MAX_STRING], read_vocab_file[MAX_STRING]; |
| 39 | struct vocab_word *vocab; |
| 40 | int binary = 0, type = 1, debug_mode = 2, window = 5, min_count = 5, num_threads = 12, min_reduce = 1; |
| 41 | int *vocab_hash; |
| 42 | long long vocab_max_size = 1000, vocab_size = 0, layer1_size = 100; |
| 43 | long long train_words = 0, word_count_actual = 0, iter = 5, file_size = 0, classes = 0; |
| 44 | real alpha = 0.025, starting_alpha, sample = 1e-3; |
| 45 | real *syn0, *syn1, *syn1neg, *syn1nce, *expTable; |
| 46 | clock_t start; |
| 47 | |
| 48 | real *syn1_window, *syn1neg_window, *syn1nce_window; |
| 49 | int w_offset, window_layer_size; |
| 50 | |
| 51 | int window_hidden_size = 500; |
| 52 | real *syn_window_hidden, *syn_hidden_word, *syn_hidden_word_neg, *syn_hidden_word_nce; |
| 53 | |
| 54 | int hs = 0, negative = 5; |
| 55 | const int table_size = 1e8; |
| 56 | int *table; |
| 57 | |
| 58 | //constrastive negative sampling |
| 59 | char negative_classes_file[MAX_STRING]; |
| 60 | int *word_to_group; |
| 61 | int *group_to_table; //group_size*table_size |
| 62 | int class_number; |
| 63 | |
| 64 | //nce |
| 65 | real* noise_distribution; |
| 66 | int nce = 0; |
| 67 | |
| 68 | //param caps |
| 69 | real CAP_VALUE = 50; |
| 70 | int cap = 0; |
| 71 | |
| 72 | void capParam(real* array, int index){ |
| 73 | if(array[index] > CAP_VALUE) |
| 74 | array[index] = CAP_VALUE; |
| 75 | else if(array[index] < -CAP_VALUE) |
| 76 | array[index] = -CAP_VALUE; |
| 77 | } |
| 78 | |
| 79 | real hardTanh(real x){ |
| 80 | if(x>=1){ |
| 81 | return 1; |
| 82 | } |
| 83 | else if(x<=-1){ |
| 84 | return -1; |
| 85 | } |
| 86 | else{ |
| 87 | return x; |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | real dHardTanh(real x, real g){ |
| 92 | if(x > 1 && g > 0){ |
| 93 | return 0; |
| 94 | } |
| 95 | if(x < -1 && g < 0){ |
| 96 | return 0; |
| 97 | } |
| 98 | return 1; |
| 99 | } |
| 100 | |
| 101 | void InitUnigramTable() { |
| 102 | int a, i; |
| 103 | long long train_words_pow = 0; |
| 104 | real d1, power = 0.75; |
| 105 | table = (int *)malloc(table_size * sizeof(int)); |
| 106 | for (a = 0; a < vocab_size; a++) train_words_pow += pow(vocab[a].cn, power); |
| 107 | i = 0; |
| 108 | d1 = pow(vocab[i].cn, power) / (real)train_words_pow; |
| 109 | for (a = 0; a < table_size; a++) { |
| 110 | table[a] = i; |
| 111 | if (a / (real)table_size > d1) { |
| 112 | i++; |
| 113 | d1 += pow(vocab[i].cn, power) / (real)train_words_pow; |
| 114 | } |
| 115 | if (i >= vocab_size) i = vocab_size - 1; |
| 116 | } |
| 117 | |
| 118 | noise_distribution = (real *)calloc(vocab_size, sizeof(real)); |
| 119 | for (a = 0; a < vocab_size; a++) noise_distribution[a] = pow(vocab[a].cn, power)/(real)train_words_pow; |
| 120 | } |
| 121 | |
| 122 | // Reads a single word from a file, assuming space + tab + EOL to be word boundaries |
| 123 | void ReadWord(char *word, FILE *fin) { |
| 124 | int a = 0, ch; |
| 125 | while (!feof(fin)) { |
| 126 | ch = fgetc(fin); |
| 127 | if (ch == 13) continue; |
| 128 | if ((ch == ' ') || (ch == '\t') || (ch == '\n')) { |
| 129 | if (a > 0) { |
| 130 | if (ch == '\n') ungetc(ch, fin); |
| 131 | break; |
| 132 | } |
| 133 | if (ch == '\n') { |
| 134 | strcpy(word, (char *)"</s>"); |
| 135 | return; |
| 136 | } else continue; |
| 137 | } |
| 138 | word[a] = ch; |
| 139 | a++; |
| 140 | if (a >= MAX_STRING - 1) a--; // Truncate too long words |
| 141 | } |
| 142 | word[a] = 0; |
| 143 | } |
| 144 | |
| 145 | // Returns hash value of a word |
| 146 | int GetWordHash(char *word) { |
| 147 | unsigned long long a, hash = 0; |
| 148 | for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a]; |
| 149 | hash = hash % vocab_hash_size; |
| 150 | return hash; |
| 151 | } |
| 152 | |
| 153 | // Returns position of a word in the vocabulary; if the word is not found, returns -1 |
| 154 | int SearchVocab(char *word) { |
| 155 | unsigned int hash = GetWordHash(word); |
| 156 | while (1) { |
| 157 | if (vocab_hash[hash] == -1) return -1; |
| 158 | if (!strcmp(word, vocab[vocab_hash[hash]].word)) return vocab_hash[hash]; |
| 159 | hash = (hash + 1) % vocab_hash_size; |
| 160 | } |
| 161 | return -1; |
| 162 | } |
| 163 | |
| 164 | // Reads a word and returns its index in the vocabulary |
| 165 | int ReadWordIndex(FILE *fin) { |
| 166 | char word[MAX_STRING]; |
| 167 | ReadWord(word, fin); |
| 168 | if (feof(fin)) return -1; |
| 169 | return SearchVocab(word); |
| 170 | } |
| 171 | |
| 172 | // Adds a word to the vocabulary |
| 173 | int AddWordToVocab(char *word) { |
| 174 | unsigned int hash, length = strlen(word) + 1; |
| 175 | if (length > MAX_STRING) length = MAX_STRING; |
| 176 | vocab[vocab_size].word = (char *)calloc(length, sizeof(char)); |
| 177 | strcpy(vocab[vocab_size].word, word); |
| 178 | vocab[vocab_size].cn = 0; |
| 179 | vocab_size++; |
| 180 | // Reallocate memory if needed |
| 181 | if (vocab_size + 2 >= vocab_max_size) { |
| 182 | vocab_max_size += 1000; |
| 183 | vocab = (struct vocab_word *)realloc(vocab, vocab_max_size * sizeof(struct vocab_word)); |
| 184 | } |
| 185 | hash = GetWordHash(word); |
| 186 | while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; |
| 187 | vocab_hash[hash] = vocab_size - 1; |
| 188 | return vocab_size - 1; |
| 189 | } |
| 190 | |
| 191 | // Used later for sorting by word counts |
| 192 | int VocabCompare(const void *a, const void *b) { |
| 193 | return ((struct vocab_word *)b)->cn - ((struct vocab_word *)a)->cn; |
| 194 | } |
| 195 | |
| 196 | // Sorts the vocabulary by frequency using word counts |
| 197 | void SortVocab() { |
| 198 | int a, size; |
| 199 | unsigned int hash; |
| 200 | // Sort the vocabulary and keep </s> at the first position |
| 201 | qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare); |
| 202 | for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; |
| 203 | size = vocab_size; |
| 204 | train_words = 0; |
| 205 | for (a = 0; a < size; a++) { |
| 206 | // Words occuring less than min_count times will be discarded from the vocab |
| 207 | if ((vocab[a].cn < min_count) && (a != 0)) { |
| 208 | vocab_size--; |
| 209 | free(vocab[a].word); |
| 210 | } else { |
| 211 | // Hash will be re-computed, as after the sorting it is not actual |
| 212 | hash=GetWordHash(vocab[a].word); |
| 213 | while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; |
| 214 | vocab_hash[hash] = a; |
| 215 | train_words += vocab[a].cn; |
| 216 | } |
| 217 | } |
| 218 | vocab = (struct vocab_word *)realloc(vocab, (vocab_size + 1) * sizeof(struct vocab_word)); |
| 219 | // Allocate memory for the binary tree construction |
| 220 | for (a = 0; a < vocab_size; a++) { |
| 221 | vocab[a].code = (char *)calloc(MAX_CODE_LENGTH, sizeof(char)); |
| 222 | vocab[a].point = (int *)calloc(MAX_CODE_LENGTH, sizeof(int)); |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | // Reduces the vocabulary by removing infrequent tokens |
| 227 | void ReduceVocab() { |
| 228 | int a, b = 0; |
| 229 | unsigned int hash; |
| 230 | for (a = 0; a < vocab_size; a++) if (vocab[a].cn > min_reduce) { |
| 231 | vocab[b].cn = vocab[a].cn; |
| 232 | vocab[b].word = vocab[a].word; |
| 233 | b++; |
| 234 | } else free(vocab[a].word); |
| 235 | vocab_size = b; |
| 236 | for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; |
| 237 | for (a = 0; a < vocab_size; a++) { |
| 238 | // Hash will be re-computed, as it is not actual |
| 239 | hash = GetWordHash(vocab[a].word); |
| 240 | while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; |
| 241 | vocab_hash[hash] = a; |
| 242 | } |
| 243 | fflush(stdout); |
| 244 | min_reduce++; |
| 245 | } |
| 246 | |
| 247 | // Create binary Huffman tree using the word counts |
| 248 | // Frequent words will have short uniqe binary codes |
| 249 | void CreateBinaryTree() { |
| 250 | long long a, b, i, min1i, min2i, pos1, pos2, point[MAX_CODE_LENGTH]; |
| 251 | char code[MAX_CODE_LENGTH]; |
| 252 | long long *count = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long)); |
| 253 | long long *binary = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long)); |
| 254 | long long *parent_node = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long)); |
| 255 | for (a = 0; a < vocab_size; a++) count[a] = vocab[a].cn; |
| 256 | for (a = vocab_size; a < vocab_size * 2; a++) count[a] = 1e15; |
| 257 | pos1 = vocab_size - 1; |
| 258 | pos2 = vocab_size; |
| 259 | // Following algorithm constructs the Huffman tree by adding one node at a time |
| 260 | for (a = 0; a < vocab_size - 1; a++) { |
| 261 | // First, find two smallest nodes 'min1, min2' |
| 262 | if (pos1 >= 0) { |
| 263 | if (count[pos1] < count[pos2]) { |
| 264 | min1i = pos1; |
| 265 | pos1--; |
| 266 | } else { |
| 267 | min1i = pos2; |
| 268 | pos2++; |
| 269 | } |
| 270 | } else { |
| 271 | min1i = pos2; |
| 272 | pos2++; |
| 273 | } |
| 274 | if (pos1 >= 0) { |
| 275 | if (count[pos1] < count[pos2]) { |
| 276 | min2i = pos1; |
| 277 | pos1--; |
| 278 | } else { |
| 279 | min2i = pos2; |
| 280 | pos2++; |
| 281 | } |
| 282 | } else { |
| 283 | min2i = pos2; |
| 284 | pos2++; |
| 285 | } |
| 286 | count[vocab_size + a] = count[min1i] + count[min2i]; |
| 287 | parent_node[min1i] = vocab_size + a; |
| 288 | parent_node[min2i] = vocab_size + a; |
| 289 | binary[min2i] = 1; |
| 290 | } |
| 291 | // Now assign binary code to each vocabulary word |
| 292 | for (a = 0; a < vocab_size; a++) { |
| 293 | b = a; |
| 294 | i = 0; |
| 295 | while (1) { |
| 296 | code[i] = binary[b]; |
| 297 | point[i] = b; |
| 298 | i++; |
| 299 | b = parent_node[b]; |
| 300 | if (b == vocab_size * 2 - 2) break; |
| 301 | } |
| 302 | vocab[a].codelen = i; |
| 303 | vocab[a].point[0] = vocab_size - 2; |
| 304 | for (b = 0; b < i; b++) { |
| 305 | vocab[a].code[i - b - 1] = code[b]; |
| 306 | vocab[a].point[i - b] = point[b] - vocab_size; |
| 307 | } |
| 308 | } |
| 309 | free(count); |
| 310 | free(binary); |
| 311 | free(parent_node); |
| 312 | } |
| 313 | |
| 314 | void LearnVocabFromTrainFile() { |
| 315 | char word[MAX_STRING]; |
| 316 | FILE *fin; |
| 317 | long long a, i; |
| 318 | for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; |
| 319 | fin = fopen(train_file, "rb"); |
| 320 | if (fin == NULL) { |
| 321 | printf("ERROR: training data file not found!\n"); |
| 322 | exit(1); |
| 323 | } |
| 324 | vocab_size = 0; |
| 325 | AddWordToVocab((char *)"</s>"); |
| 326 | while (1) { |
| 327 | ReadWord(word, fin); |
| 328 | if (feof(fin)) break; |
| 329 | train_words++; |
| 330 | if ((debug_mode > 1) && (train_words % 100000 == 0)) { |
| 331 | printf("%lldK%c", train_words / 1000, 13); |
| 332 | fflush(stdout); |
| 333 | } |
| 334 | i = SearchVocab(word); |
| 335 | if (i == -1) { |
| 336 | a = AddWordToVocab(word); |
| 337 | vocab[a].cn = 1; |
| 338 | } else vocab[i].cn++; |
| 339 | if (vocab_size > vocab_hash_size * 0.7) ReduceVocab(); |
| 340 | } |
| 341 | SortVocab(); |
| 342 | if (debug_mode > 0) { |
| 343 | printf("Vocab size: %lld\n", vocab_size); |
| 344 | printf("Words in train file: %lld\n", train_words); |
| 345 | } |
| 346 | file_size = ftell(fin); |
| 347 | fclose(fin); |
| 348 | } |
| 349 | |
| 350 | void SaveVocab() { |
| 351 | long long i; |
| 352 | FILE *fo = fopen(save_vocab_file, "wb"); |
| 353 | for (i = 0; i < vocab_size; i++) fprintf(fo, "%s %lld\n", vocab[i].word, vocab[i].cn); |
| 354 | fclose(fo); |
| 355 | } |
| 356 | |
| 357 | void ReadVocab() { |
| 358 | long long a, i = 0; |
| 359 | char c; |
| 360 | char word[MAX_STRING]; |
| 361 | FILE *fin = fopen(read_vocab_file, "rb"); |
| 362 | if (fin == NULL) { |
| 363 | printf("Vocabulary file not found\n"); |
| 364 | exit(1); |
| 365 | } |
| 366 | for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; |
| 367 | vocab_size = 0; |
| 368 | while (1) { |
| 369 | ReadWord(word, fin); |
| 370 | if (feof(fin)) break; |
| 371 | a = AddWordToVocab(word); |
| 372 | fscanf(fin, "%lld%c", &vocab[a].cn, &c); |
| 373 | i++; |
| 374 | } |
| 375 | SortVocab(); |
| 376 | if (debug_mode > 0) { |
| 377 | printf("Vocab size: %lld\n", vocab_size); |
| 378 | printf("Words in train file: %lld\n", train_words); |
| 379 | } |
| 380 | fin = fopen(train_file, "rb"); |
| 381 | if (fin == NULL) { |
| 382 | printf("ERROR: training data file not found!\n"); |
| 383 | exit(1); |
| 384 | } |
| 385 | fseek(fin, 0, SEEK_END); |
| 386 | file_size = ftell(fin); |
| 387 | fclose(fin); |
| 388 | } |
| 389 | |
| 390 | void InitClassUnigramTable() { |
| 391 | long long a,c; |
| 392 | printf("loading class unigrams \n"); |
| 393 | FILE *fin = fopen(negative_classes_file, "rb"); |
| 394 | if (fin == NULL) { |
| 395 | printf("ERROR: class file not found!\n"); |
| 396 | exit(1); |
| 397 | } |
| 398 | word_to_group = (int *)malloc(vocab_size * sizeof(int)); |
| 399 | for(a = 0; a < vocab_size; a++) word_to_group[a] = -1; |
| 400 | char class[MAX_STRING]; |
| 401 | char prev_class[MAX_STRING]; |
| 402 | prev_class[0] = 0; |
| 403 | char word[MAX_STRING]; |
| 404 | class_number = -1; |
| 405 | while (1) { |
| 406 | if (feof(fin)) break; |
| 407 | ReadWord(class, fin); |
| 408 | ReadWord(word, fin); |
| 409 | int word_index = SearchVocab(word); |
| 410 | if (word_index != -1){ |
| 411 | if(strcmp(class, prev_class) != 0){ |
| 412 | class_number++; |
| 413 | strcpy(prev_class, class); |
| 414 | } |
| 415 | word_to_group[word_index] = class_number; |
| 416 | } |
| 417 | ReadWord(word, fin); |
| 418 | } |
| 419 | class_number++; |
| 420 | fclose(fin); |
| 421 | |
| 422 | group_to_table = (int *)malloc(table_size * class_number * sizeof(int)); |
| 423 | long long train_words_pow = 0; |
| 424 | real d1, power = 0.75; |
| 425 | |
| 426 | for(c = 0; c < class_number; c++){ |
| 427 | long long offset = c * table_size; |
| 428 | train_words_pow = 0; |
| 429 | for (a = 0; a < vocab_size; a++) if(word_to_group[a] == c) train_words_pow += pow(vocab[a].cn, power); |
| 430 | int i = 0; |
| 431 | while(word_to_group[i]!=c && i < vocab_size) i++; |
| 432 | d1 = pow(vocab[i].cn, power) / (real)train_words_pow; |
| 433 | for (a = 0; a < table_size; a++) { |
| 434 | //printf("index %lld , word %d\n", a, i); |
| 435 | group_to_table[offset + a] = i; |
| 436 | if (a / (real)table_size > d1) { |
| 437 | i++; |
| 438 | while(word_to_group[i]!=c && i < vocab_size) i++; |
| 439 | d1 += pow(vocab[i].cn, power) / (real)train_words_pow; |
| 440 | } |
| 441 | if (i >= vocab_size) while(word_to_group[i]!=c && i >= 0) i--; |
| 442 | } |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | void InitNet() { |
| 447 | long long a, b; |
| 448 | unsigned long long next_random = 1; |
| 449 | window_layer_size = layer1_size*window*2; |
| 450 | a = posix_memalign((void **)&syn0, 128, (long long)vocab_size * layer1_size * sizeof(real)); |
| 451 | if (syn0 == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| 452 | |
| 453 | if (hs) { |
| 454 | a = posix_memalign((void **)&syn1, 128, (long long)vocab_size * layer1_size * sizeof(real)); |
| 455 | if (syn1 == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| 456 | a = posix_memalign((void **)&syn1_window, 128, (long long)vocab_size * window_layer_size * sizeof(real)); |
| 457 | if (syn1_window == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| 458 | a = posix_memalign((void **)&syn_hidden_word, 128, (long long)vocab_size * window_hidden_size * sizeof(real)); |
| 459 | if (syn_hidden_word == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| 460 | |
| 461 | for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++) |
| 462 | syn1[a * layer1_size + b] = 0; |
| 463 | for (a = 0; a < vocab_size; a++) for (b = 0; b < window_layer_size; b++) |
| 464 | syn1_window[a * window_layer_size + b] = 0; |
| 465 | for (a = 0; a < vocab_size; a++) for (b = 0; b < window_hidden_size; b++) |
| 466 | syn_hidden_word[a * window_hidden_size + b] = 0; |
| 467 | } |
| 468 | if (negative>0) { |
| 469 | a = posix_memalign((void **)&syn1neg, 128, (long long)vocab_size * layer1_size * sizeof(real)); |
| 470 | if (syn1neg == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| 471 | a = posix_memalign((void **)&syn1neg_window, 128, (long long)vocab_size * window_layer_size * sizeof(real)); |
| 472 | if (syn1neg_window == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| 473 | a = posix_memalign((void **)&syn_hidden_word_neg, 128, (long long)vocab_size * window_hidden_size * sizeof(real)); |
| 474 | if (syn_hidden_word_neg == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| 475 | |
| 476 | for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++) |
| 477 | syn1neg[a * layer1_size + b] = 0; |
| 478 | for (a = 0; a < vocab_size; a++) for (b = 0; b < window_layer_size; b++) |
| 479 | syn1neg_window[a * window_layer_size + b] = 0; |
| 480 | for (a = 0; a < vocab_size; a++) for (b = 0; b < window_hidden_size; b++) |
| 481 | syn_hidden_word_neg[a * window_hidden_size + b] = 0; |
| 482 | } |
| 483 | if (nce>0) { |
| 484 | a = posix_memalign((void **)&syn1nce, 128, (long long)vocab_size * layer1_size * sizeof(real)); |
| 485 | if (syn1nce == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| 486 | a = posix_memalign((void **)&syn1nce_window, 128, (long long)vocab_size * window_layer_size * sizeof(real)); |
| 487 | if (syn1nce_window == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| 488 | a = posix_memalign((void **)&syn_hidden_word_nce, 128, (long long)vocab_size * window_hidden_size * sizeof(real)); |
| 489 | if (syn_hidden_word_nce == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| 490 | |
| 491 | for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++) |
| 492 | syn1nce[a * layer1_size + b] = 0; |
| 493 | for (a = 0; a < vocab_size; a++) for (b = 0; b < window_layer_size; b++) |
| 494 | syn1nce_window[a * window_layer_size + b] = 0; |
| 495 | for (a = 0; a < vocab_size; a++) for (b = 0; b < window_hidden_size; b++) |
| 496 | syn_hidden_word_nce[a * window_hidden_size + b] = 0; |
| 497 | } |
| 498 | for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++) { |
| 499 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 500 | syn0[a * layer1_size + b] = (((next_random & 0xFFFF) / (real)65536) - 0.5) / layer1_size; |
| 501 | } |
| 502 | |
| 503 | a = posix_memalign((void **)&syn_window_hidden, 128, window_hidden_size * window_layer_size * sizeof(real)); |
| 504 | if (syn_window_hidden == NULL) {printf("Memory allocation failed\n"); exit(1);} |
| 505 | for (a = 0; a < window_hidden_size * window_layer_size; a++){ |
| 506 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 507 | syn_window_hidden[a] = (((next_random & 0xFFFF) / (real)65536) - 0.5) / (window_hidden_size*window_layer_size); |
| 508 | } |
| 509 | |
| 510 | CreateBinaryTree(); |
| 511 | } |
| 512 | |
| 513 | void *TrainModelThread(void *id) { |
| 514 | long long a, b, d, cw, word, last_word, sentence_length = 0, sentence_position = 0; |
| 515 | long long word_count = 0, last_word_count = 0, sen[MAX_SENTENCE_LENGTH + 1]; |
| 516 | long long l1, l2, c, target, label, local_iter = iter; |
| 517 | unsigned long long next_random = (long long)id; |
| 518 | real f, g; |
| 519 | clock_t now; |
| 520 | int input_len_1 = layer1_size; |
| 521 | int window_offset = -1; |
| 522 | if(type == 2 || type == 4){ |
| 523 | input_len_1=window_layer_size; |
| 524 | } |
| 525 | real *neu1 = (real *)calloc(input_len_1, sizeof(real)); |
| 526 | real *neu1e = (real *)calloc(input_len_1, sizeof(real)); |
| 527 | |
| 528 | int input_len_2 = 0; |
| 529 | if(type == 4){ |
| 530 | input_len_2 = window_hidden_size; |
| 531 | } |
| 532 | real *neu2 = (real *)calloc(input_len_2, sizeof(real)); |
| 533 | real *neu2e = (real *)calloc(input_len_2, sizeof(real)); |
| 534 | |
| 535 | FILE *fi = fopen(train_file, "rb"); |
| 536 | fseek(fi, file_size / (long long)num_threads * (long long)id, SEEK_SET); |
| 537 | while (1) { |
| 538 | if (word_count - last_word_count > 10000) { |
| 539 | word_count_actual += word_count - last_word_count; |
| 540 | last_word_count = word_count; |
| 541 | if ((debug_mode > 1)) { |
| 542 | now=clock(); |
| 543 | printf("%cAlpha: %f Progress: %.2f%% Words/thread/sec: %.2fk ", 13, alpha, |
| 544 | word_count_actual / (real)(iter * train_words + 1) * 100, |
| 545 | word_count_actual / ((real)(now - start + 1) / (real)CLOCKS_PER_SEC * 1000)); |
| 546 | fflush(stdout); |
| 547 | } |
| 548 | alpha = starting_alpha * (1 - word_count_actual / (real)(iter * train_words + 1)); |
| 549 | if (alpha < starting_alpha * 0.0001) alpha = starting_alpha * 0.0001; |
| 550 | } |
| 551 | if (sentence_length == 0) { |
| 552 | while (1) { |
| 553 | word = ReadWordIndex(fi); |
| 554 | if (feof(fi)) break; |
| 555 | if (word == -1) continue; |
| 556 | word_count++; |
| 557 | if (word == 0) break; |
| 558 | // The subsampling randomly discards frequent words while keeping the ranking same |
| 559 | if (sample > 0) { |
| 560 | real ran = (sqrt(vocab[word].cn / (sample * train_words)) + 1) * (sample * train_words) / vocab[word].cn; |
| 561 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 562 | if (ran < (next_random & 0xFFFF) / (real)65536) continue; |
| 563 | } |
| 564 | sen[sentence_length] = word; |
| 565 | sentence_length++; |
| 566 | if (sentence_length >= MAX_SENTENCE_LENGTH) break; |
| 567 | } |
| 568 | sentence_position = 0; |
| 569 | } |
| 570 | if (feof(fi) || (word_count > train_words / num_threads)) { |
| 571 | word_count_actual += word_count - last_word_count; |
| 572 | local_iter--; |
| 573 | if (local_iter == 0) break; |
| 574 | word_count = 0; |
| 575 | last_word_count = 0; |
| 576 | sentence_length = 0; |
| 577 | fseek(fi, file_size / (long long)num_threads * (long long)id, SEEK_SET); |
| 578 | continue; |
| 579 | } |
| 580 | word = sen[sentence_position]; |
| 581 | if (word == -1) continue; |
| 582 | for (c = 0; c < input_len_1; c++) neu1[c] = 0; |
| 583 | for (c = 0; c < input_len_1; c++) neu1e[c] = 0; |
| 584 | for (c = 0; c < input_len_2; c++) neu2[c] = 0; |
| 585 | for (c = 0; c < input_len_2; c++) neu2e[c] = 0; |
| 586 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 587 | b = next_random % window; |
| 588 | if (type == 0) { //train the cbow architecture |
| 589 | // in -> hidden |
| 590 | cw = 0; |
| 591 | for (a = b; a < window * 2 + 1 - b; a++) if (a != window) { |
| 592 | c = sentence_position - window + a; |
| 593 | if (c < 0) continue; |
| 594 | if (c >= sentence_length) continue; |
| 595 | last_word = sen[c]; |
| 596 | if (last_word == -1) continue; |
| 597 | for (c = 0; c < layer1_size; c++) neu1[c] += syn0[c + last_word * layer1_size]; |
| 598 | cw++; |
| 599 | } |
| 600 | if (cw) { |
| 601 | for (c = 0; c < layer1_size; c++) neu1[c] /= cw; |
| 602 | if (hs) for (d = 0; d < vocab[word].codelen; d++) { |
| 603 | f = 0; |
| 604 | l2 = vocab[word].point[d] * layer1_size; |
| 605 | // Propagate hidden -> output |
| 606 | for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1[c + l2]; |
| 607 | if (f <= -MAX_EXP) continue; |
| 608 | else if (f >= MAX_EXP) continue; |
| 609 | else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 610 | // 'g' is the gradient multiplied by the learning rate |
| 611 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 612 | // Propagate errors output -> hidden |
| 613 | for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2]; |
| 614 | // Learn weights hidden -> output |
| 615 | for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * neu1[c]; |
| 616 | if(cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1, c + l2); |
| 617 | } |
| 618 | // NEGATIVE SAMPLING |
| 619 | if (negative > 0) for (d = 0; d < negative + 1; d++) { |
| 620 | if (d == 0) { |
| 621 | target = word; |
| 622 | label = 1; |
| 623 | } else { |
| 624 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 625 | if(word_to_group != NULL && word_to_group[word] != -1){ |
| 626 | target = word; |
| 627 | while(target == word) { |
| 628 | target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| 629 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 630 | } |
| 631 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 632 | } |
| 633 | else{ |
| 634 | target = table[(next_random >> 16) % table_size]; |
| 635 | } |
| 636 | if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| 637 | if (target == word) continue; |
| 638 | label = 0; |
| 639 | } |
| 640 | l2 = target * layer1_size; |
| 641 | f = 0; |
| 642 | for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1neg[c + l2]; |
| 643 | if (f > MAX_EXP) g = (label - 1) * alpha; |
| 644 | else if (f < -MAX_EXP) g = (label - 0) * alpha; |
| 645 | else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha; |
| 646 | for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2]; |
| 647 | for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * neu1[c]; |
| 648 | if (cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1neg, c + l2); |
| 649 | } |
| 650 | // Noise Contrastive Estimation |
| 651 | if (nce > 0) for (d = 0; d < nce + 1; d++) { |
| 652 | if (d == 0) { |
| 653 | target = word; |
| 654 | label = 1; |
| 655 | } else { |
| 656 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 657 | if(word_to_group != NULL && word_to_group[word] != -1){ |
| 658 | target = word; |
| 659 | while(target == word) { |
| 660 | target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| 661 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 662 | } |
| 663 | } |
| 664 | else{ |
| 665 | target = table[(next_random >> 16) % table_size]; |
| 666 | } |
| 667 | if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| 668 | if (target == word) continue; |
| 669 | label = 0; |
| 670 | } |
| 671 | l2 = target * layer1_size; |
| 672 | f = 0; |
| 673 | |
| 674 | for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1nce[c + l2]; |
| 675 | if (f > MAX_EXP) g = (label - 1) * alpha; |
| 676 | else if (f < -MAX_EXP) g = (label - 0) * alpha; |
| 677 | else { |
| 678 | f = exp(f); |
| 679 | g = (label - f/(noise_distribution[target]*nce + f)) * alpha; |
| 680 | } |
| 681 | for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1nce[c + l2]; |
| 682 | for (c = 0; c < layer1_size; c++) syn1nce[c + l2] += g * neu1[c]; |
| 683 | if(cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1nce,c + l2); |
| 684 | } |
| 685 | // hidden -> in |
| 686 | for (a = b; a < window * 2 + 1 - b; a++) if (a != window) { |
| 687 | c = sentence_position - window + a; |
| 688 | if (c < 0) continue; |
| 689 | if (c >= sentence_length) continue; |
| 690 | last_word = sen[c]; |
| 691 | if (last_word == -1) continue; |
| 692 | for (c = 0; c < layer1_size; c++) syn0[c + last_word * layer1_size] += neu1e[c]; |
| 693 | } |
| 694 | } |
| 695 | } else if(type==1) { //train skip-gram |
| 696 | for (a = b; a < window * 2 + 1 - b; a++) if (a != window) { |
| 697 | c = sentence_position - window + a; |
| 698 | if (c < 0) continue; |
| 699 | if (c >= sentence_length) continue; |
| 700 | last_word = sen[c]; |
| 701 | if (last_word == -1) continue; |
| 702 | l1 = last_word * layer1_size; |
| 703 | for (c = 0; c < layer1_size; c++) neu1e[c] = 0; |
| 704 | // HIERARCHICAL SOFTMAX |
| 705 | if (hs) for (d = 0; d < vocab[word].codelen; d++) { |
| 706 | f = 0; |
| 707 | l2 = vocab[word].point[d] * layer1_size; |
| 708 | // Propagate hidden -> output |
| 709 | for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1[c + l2]; |
| 710 | if (f <= -MAX_EXP) continue; |
| 711 | else if (f >= MAX_EXP) continue; |
| 712 | else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 713 | // 'g' is the gradient multiplied by the learning rate |
| 714 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 715 | // Propagate errors output -> hidden |
| 716 | for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2]; |
| 717 | // Learn weights hidden -> output |
| 718 | for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * syn0[c + l1]; |
| 719 | if (cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1, c + l2); |
| 720 | } |
| 721 | // NEGATIVE SAMPLING |
| 722 | if (negative > 0) for (d = 0; d < negative + 1; d++) { |
| 723 | if (d == 0) { |
| 724 | target = word; |
| 725 | label = 1; |
| 726 | } else { |
| 727 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 728 | if(word_to_group != NULL && word_to_group[word] != -1){ |
| 729 | target = word; |
| 730 | while(target == word) { |
| 731 | target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| 732 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 733 | } |
| 734 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 735 | } |
| 736 | else{ |
| 737 | target = table[(next_random >> 16) % table_size]; |
| 738 | } |
| 739 | if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| 740 | if (target == word) continue; |
| 741 | label = 0; |
| 742 | } |
| 743 | l2 = target * layer1_size; |
| 744 | f = 0; |
| 745 | for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1neg[c + l2]; |
| 746 | if (f > MAX_EXP) g = (label - 1) * alpha; |
| 747 | else if (f < -MAX_EXP) g = (label - 0) * alpha; |
| 748 | else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha; |
| 749 | for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2]; |
| 750 | for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * syn0[c + l1]; |
| 751 | if (cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1neg, c + l2); |
| 752 | } |
| 753 | //Noise Contrastive Estimation |
| 754 | if (nce > 0) for (d = 0; d < nce + 1; d++) { |
| 755 | if (d == 0) { |
| 756 | target = word; |
| 757 | label = 1; |
| 758 | } else { |
| 759 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 760 | if(word_to_group != NULL && word_to_group[word] != -1){ |
| 761 | target = word; |
| 762 | while(target == word) { |
| 763 | target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| 764 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 765 | } |
| 766 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 767 | } |
| 768 | else{ |
| 769 | target = table[(next_random >> 16) % table_size]; |
| 770 | } |
| 771 | if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| 772 | if (target == word) continue; |
| 773 | label = 0; |
| 774 | } |
| 775 | l2 = target * layer1_size; |
| 776 | f = 0; |
| 777 | for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1nce[c + l2]; |
| 778 | if (f > MAX_EXP) g = (label - 1) * alpha; |
| 779 | else if (f < -MAX_EXP) g = (label - 0) * alpha; |
| 780 | else { |
| 781 | f = exp(f); |
| 782 | g = (label - f/(noise_distribution[target]*nce + f)) * alpha; |
| 783 | } |
| 784 | for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1nce[c + l2]; |
| 785 | for (c = 0; c < layer1_size; c++) syn1nce[c + l2] += g * syn0[c + l1]; |
| 786 | if (cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1nce, c + l2); |
| 787 | } |
| 788 | // Learn weights input -> hidden |
| 789 | for (c = 0; c < layer1_size; c++) syn0[c + l1] += neu1e[c]; |
| 790 | } |
| 791 | } |
| 792 | else if(type == 2){ //train the cwindow architecture |
| 793 | // in -> hidden |
| 794 | cw = 0; |
| 795 | for (a = 0; a < window * 2 + 1; a++) if (a != window) { |
| 796 | c = sentence_position - window + a; |
| 797 | if (c < 0) continue; |
| 798 | if (c >= sentence_length) continue; |
| 799 | last_word = sen[c]; |
| 800 | if (last_word == -1) continue; |
| 801 | window_offset = a*layer1_size; |
| 802 | if (a > window) window_offset-=layer1_size; |
| 803 | for (c = 0; c < layer1_size; c++) neu1[c+window_offset] += syn0[c + last_word * layer1_size]; |
| 804 | cw++; |
| 805 | } |
| 806 | if (cw) { |
| 807 | if (hs) for (d = 0; d < vocab[word].codelen; d++) { |
| 808 | f = 0; |
| 809 | l2 = vocab[word].point[d] * window_layer_size; |
| 810 | // Propagate hidden -> output |
| 811 | for (c = 0; c < window_layer_size; c++) f += neu1[c] * syn1_window[c + l2]; |
| 812 | if (f <= -MAX_EXP) continue; |
| 813 | else if (f >= MAX_EXP) continue; |
| 814 | else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 815 | // 'g' is the gradient multiplied by the learning rate |
| 816 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 817 | // Propagate errors output -> hidden |
| 818 | for (c = 0; c < window_layer_size; c++) neu1e[c] += g * syn1_window[c + l2]; |
| 819 | // Learn weights hidden -> output |
| 820 | for (c = 0; c < window_layer_size; c++) syn1_window[c + l2] += g * neu1[c]; |
| 821 | if (cap == 1) for (c = 0; c < window_layer_size; c++) capParam(syn1_window, c + l2); |
| 822 | } |
| 823 | // NEGATIVE SAMPLING |
| 824 | if (negative > 0) for (d = 0; d < negative + 1; d++) { |
| 825 | if (d == 0) { |
| 826 | target = word; |
| 827 | label = 1; |
| 828 | } else { |
| 829 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 830 | if(word_to_group != NULL && word_to_group[word] != -1){ |
| 831 | target = word; |
| 832 | while(target == word) { |
| 833 | target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| 834 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 835 | } |
| 836 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 837 | } |
| 838 | else{ |
| 839 | target = table[(next_random >> 16) % table_size]; |
| 840 | } |
| 841 | if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| 842 | if (target == word) continue; |
| 843 | label = 0; |
| 844 | } |
| 845 | l2 = target * window_layer_size; |
| 846 | f = 0; |
| 847 | for (c = 0; c < window_layer_size; c++) f += neu1[c] * syn1neg_window[c + l2]; |
| 848 | if (f > MAX_EXP) g = (label - 1) * alpha; |
| 849 | else if (f < -MAX_EXP) g = (label - 0) * alpha; |
| 850 | else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha; |
| 851 | for (c = 0; c < window_layer_size; c++) neu1e[c] += g * syn1neg_window[c + l2]; |
| 852 | for (c = 0; c < window_layer_size; c++) syn1neg_window[c + l2] += g * neu1[c]; |
| 853 | if(cap == 1) for (c = 0; c < window_layer_size; c++) capParam(syn1neg_window, c + l2); |
| 854 | } |
| 855 | // Noise Contrastive Estimation |
| 856 | if (nce > 0) for (d = 0; d < nce + 1; d++) { |
| 857 | if (d == 0) { |
| 858 | target = word; |
| 859 | label = 1; |
| 860 | } else { |
| 861 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 862 | if(word_to_group != NULL && word_to_group[word] != -1){ |
| 863 | target = word; |
| 864 | while(target == word) { |
| 865 | target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| 866 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 867 | } |
| 868 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 869 | } |
| 870 | else{ |
| 871 | target = table[(next_random >> 16) % table_size]; |
| 872 | } |
| 873 | if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| 874 | if (target == word) continue; |
| 875 | label = 0; |
| 876 | } |
| 877 | l2 = target * window_layer_size; |
| 878 | f = 0; |
| 879 | for (c = 0; c < window_layer_size; c++) f += neu1[c] * syn1nce_window[c + l2]; |
| 880 | if (f > MAX_EXP) g = (label - 1) * alpha; |
| 881 | else if (f < -MAX_EXP) g = (label - 0) * alpha; |
| 882 | else { |
| 883 | f = exp(f); |
| 884 | g = (label - f/(noise_distribution[target]*nce + f)) * alpha; |
| 885 | } |
| 886 | for (c = 0; c < window_layer_size; c++) neu1e[c] += g * syn1nce_window[c + l2]; |
| 887 | for (c = 0; c < window_layer_size; c++) syn1nce_window[c + l2] += g * neu1[c]; |
| 888 | if(cap == 1) for (c = 0; c < window_layer_size; c++) capParam(syn1nce_window, c + l2); |
| 889 | } |
| 890 | // hidden -> in |
| 891 | for (a = 0; a < window * 2 + 1; a++) if (a != window) { |
| 892 | c = sentence_position - window + a; |
| 893 | if (c < 0) continue; |
| 894 | if (c >= sentence_length) continue; |
| 895 | last_word = sen[c]; |
| 896 | if (last_word == -1) continue; |
| 897 | window_offset = a * layer1_size; |
| 898 | if(a > window) window_offset -= layer1_size; |
| 899 | for (c = 0; c < layer1_size; c++) syn0[c + last_word * layer1_size] += neu1e[c + window_offset]; |
| 900 | } |
| 901 | } |
| 902 | } |
| 903 | else if (type == 3){ //train structured skip-gram |
| 904 | for (a = 0; a < window * 2 + 1; a++) if (a != window) { |
| 905 | c = sentence_position - window + a; |
| 906 | if (c < 0) continue; |
| 907 | if (c >= sentence_length) continue; |
| 908 | last_word = sen[c]; |
| 909 | if (last_word == -1) continue; |
| 910 | l1 = last_word * layer1_size; |
| 911 | window_offset = a * layer1_size; |
| 912 | if(a > window) window_offset -= layer1_size; |
| 913 | for (c = 0; c < layer1_size; c++) neu1e[c] = 0; |
| 914 | // HIERARCHICAL SOFTMAX |
| 915 | if (hs) for (d = 0; d < vocab[word].codelen; d++) { |
| 916 | f = 0; |
| 917 | l2 = vocab[word].point[d] * window_layer_size; |
| 918 | // Propagate hidden -> output |
| 919 | for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1_window[c + l2 + window_offset]; |
| 920 | if (f <= -MAX_EXP) continue; |
| 921 | else if (f >= MAX_EXP) continue; |
| 922 | else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 923 | // 'g' is the gradient multiplied by the learning rate |
| 924 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 925 | // Propagate errors output -> hidden |
| 926 | for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1_window[c + l2 + window_offset]; |
| 927 | // Learn weights hidden -> output |
| 928 | for (c = 0; c < layer1_size; c++) syn1[c + l2 + window_offset] += g * syn0[c + l1]; |
| 929 | if(cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1, c + l2 + window_offset); |
| 930 | } |
| 931 | // NEGATIVE SAMPLING |
| 932 | if (negative > 0) for (d = 0; d < negative + 1; d++) { |
| 933 | if (d == 0) { |
| 934 | target = word; |
| 935 | label = 1; |
| 936 | } else { |
| 937 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 938 | if(word_to_group != NULL && word_to_group[word] != -1){ |
| 939 | target = word; |
| 940 | while(target == word) { |
| 941 | target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| 942 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 943 | } |
| 944 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 945 | } |
| 946 | else{ |
| 947 | target = table[(next_random >> 16) % table_size]; |
| 948 | } |
| 949 | if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| 950 | if (target == word) continue; |
| 951 | label = 0; |
| 952 | } |
| 953 | l2 = target * window_layer_size; |
| 954 | f = 0; |
| 955 | for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1neg_window[c + l2 + window_offset]; |
| 956 | if (f > MAX_EXP) g = (label - 1) * alpha; |
| 957 | else if (f < -MAX_EXP) g = (label - 0) * alpha; |
| 958 | else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha; |
| 959 | for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg_window[c + l2 + window_offset]; |
| 960 | for (c = 0; c < layer1_size; c++) syn1neg_window[c + l2 + window_offset] += g * syn0[c + l1]; |
| 961 | if(cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1neg_window, c + l2 + window_offset); |
| 962 | } |
| 963 | // Noise Constrastive Estimation |
| 964 | if (nce > 0) for (d = 0; d < nce + 1; d++) { |
| 965 | if (d == 0) { |
| 966 | target = word; |
| 967 | label = 1; |
| 968 | } else { |
| 969 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 970 | if(word_to_group != NULL && word_to_group[word] != -1){ |
| 971 | target = word; |
| 972 | while(target == word) { |
| 973 | target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| 974 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 975 | } |
| 976 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 977 | } |
| 978 | else{ |
| 979 | target = table[(next_random >> 16) % table_size]; |
| 980 | } |
| 981 | if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| 982 | if (target == word) continue; |
| 983 | label = 0; |
| 984 | } |
| 985 | l2 = target * window_layer_size; |
| 986 | f = 0; |
| 987 | for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1nce_window[c + l2 + window_offset]; |
| 988 | if (f > MAX_EXP) g = (label - 1) * alpha; |
| 989 | else if (f < -MAX_EXP) g = (label - 0) * alpha; |
| 990 | else { |
| 991 | f = exp(f); |
| 992 | g = (label - f/(noise_distribution[target]*nce + f)) * alpha; |
| 993 | } |
| 994 | for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1nce_window[c + l2 + window_offset]; |
| 995 | for (c = 0; c < layer1_size; c++) syn1nce_window[c + l2 + window_offset] += g * syn0[c + l1]; |
| 996 | if (cap == 1) for (c = 0; c < layer1_size; c++) capParam(syn1nce_window, c + l2 + window_offset); |
| 997 | } |
| 998 | // Learn weights input -> hidden |
| 999 | for (c = 0; c < layer1_size; c++) {syn0[c + l1] += neu1e[c]; if(syn0[c + l1] > 50) syn0[c + l1] = 50; if(syn0[c + l1] < -50) syn0[c + l1] = -50;} |
| 1000 | } |
| 1001 | } |
| 1002 | else if(type == 4){ //training senna |
| 1003 | // in -> hidden |
| 1004 | cw = 0; |
| 1005 | for (a = 0; a < window * 2 + 1; a++) if (a != window) { |
| 1006 | c = sentence_position - window + a; |
| 1007 | if (c < 0) continue; |
| 1008 | if (c >= sentence_length) continue; |
| 1009 | last_word = sen[c]; |
| 1010 | if (last_word == -1) continue; |
| 1011 | window_offset = a*layer1_size; |
| 1012 | if (a > window) window_offset-=layer1_size; |
| 1013 | for (c = 0; c < layer1_size; c++) neu1[c+window_offset] += syn0[c + last_word * layer1_size]; |
| 1014 | cw++; |
| 1015 | } |
| 1016 | if (cw) { |
| 1017 | for (a = 0; a < window_hidden_size; a++){ |
| 1018 | c = a*window_layer_size; |
| 1019 | for(b = 0; b < window_layer_size; b++){ |
| 1020 | neu2[a] += syn_window_hidden[c + b] * neu1[b]; |
| 1021 | } |
| 1022 | } |
| 1023 | if (hs) for (d = 0; d < vocab[word].codelen; d++) { |
| 1024 | f = 0; |
| 1025 | l2 = vocab[word].point[d] * window_hidden_size; |
| 1026 | // Propagate hidden -> output |
| 1027 | for (c = 0; c < window_hidden_size; c++) f += hardTanh(neu2[c]) * syn_hidden_word[c + l2]; |
| 1028 | if (f <= -MAX_EXP) continue; |
| 1029 | else if (f >= MAX_EXP) continue; |
| 1030 | else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; |
| 1031 | // 'g' is the gradient multiplied by the learning rate |
| 1032 | g = (1 - vocab[word].code[d] - f) * alpha; |
| 1033 | // Propagate errors output -> hidden |
| 1034 | for (c = 0; c < window_hidden_size; c++) neu2e[c] += dHardTanh(neu2[c],g) * g * syn_hidden_word[c + l2]; |
| 1035 | // Learn weights hidden -> output |
| 1036 | for (c = 0; c < window_hidden_size; c++) syn_hidden_word[c + l2] += dHardTanh(neu2[c],g) * g * neu2[c]; |
| 1037 | } |
| 1038 | // NEGATIVE SAMPLING |
| 1039 | if (negative > 0) for (d = 0; d < negative + 1; d++) { |
| 1040 | if (d == 0) { |
| 1041 | target = word; |
| 1042 | label = 1; |
| 1043 | } else { |
| 1044 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 1045 | if(word_to_group != NULL && word_to_group[word] != -1){ |
| 1046 | target = word; |
| 1047 | while(target == word) { |
| 1048 | target = group_to_table[word_to_group[word]*table_size + (next_random >> 16) % table_size]; |
| 1049 | next_random = next_random * (unsigned long long)25214903917 + 11; |
| 1050 | } |
| 1051 | //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word); |
| 1052 | } |
| 1053 | else{ |
| 1054 | target = table[(next_random >> 16) % table_size]; |
| 1055 | } |
| 1056 | if (target == 0) target = next_random % (vocab_size - 1) + 1; |
| 1057 | if (target == word) continue; |
| 1058 | label = 0; |
| 1059 | } |
| 1060 | l2 = target * window_hidden_size; |
| 1061 | f = 0; |
| 1062 | for (c = 0; c < window_hidden_size; c++) f += hardTanh(neu2[c]) * syn_hidden_word_neg[c + l2]; |
| 1063 | if (f > MAX_EXP) g = (label - 1) * alpha / negative; |
| 1064 | else if (f < -MAX_EXP) g = (label - 0) * alpha / negative; |
| 1065 | else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha / negative; |
| 1066 | for (c = 0; c < window_hidden_size; c++) neu2e[c] += dHardTanh(neu2[c],g) * g * syn_hidden_word_neg[c + l2]; |
| 1067 | for (c = 0; c < window_hidden_size; c++) syn_hidden_word_neg[c + l2] += dHardTanh(neu2[c],g) * g * neu2[c]; |
| 1068 | } |
| 1069 | for (a = 0; a < window_hidden_size; a++) |
| 1070 | for(b = 0; b < window_layer_size; b++) |
| 1071 | neu1e[b] += neu2e[a] * syn_window_hidden[a*window_layer_size + b]; |
| 1072 | for (a = 0; a < window_hidden_size; a++) |
| 1073 | for(b = 0; b < window_layer_size; b++) |
| 1074 | syn_window_hidden[a*window_layer_size + b] += neu2e[a] * neu1[b]; |
| 1075 | // hidden -> in |
| 1076 | for (a = 0; a < window * 2 + 1; a++) if (a != window) { |
| 1077 | c = sentence_position - window + a; |
| 1078 | if (c < 0) continue; |
| 1079 | if (c >= sentence_length) continue; |
| 1080 | last_word = sen[c]; |
| 1081 | if (last_word == -1) continue; |
| 1082 | window_offset = a * layer1_size; |
| 1083 | if(a > window) window_offset -= layer1_size; |
| 1084 | for (c = 0; c < layer1_size; c++) syn0[c + last_word * layer1_size] += neu1e[c + window_offset]; |
| 1085 | } |
| 1086 | } |
| 1087 | } |
| 1088 | else{ |
| 1089 | printf("unknown type %i", type); |
| 1090 | exit(0); |
| 1091 | } |
| 1092 | sentence_position++; |
| 1093 | if (sentence_position >= sentence_length) { |
| 1094 | sentence_length = 0; |
| 1095 | continue; |
| 1096 | } |
| 1097 | } |
| 1098 | fclose(fi); |
| 1099 | free(neu1); |
| 1100 | free(neu1e); |
| 1101 | pthread_exit(NULL); |
| 1102 | } |
| 1103 | |
| 1104 | void TrainModel() { |
| 1105 | long a, b, c, d; |
| 1106 | FILE *fo; |
| 1107 | pthread_t *pt = (pthread_t *)malloc(num_threads * sizeof(pthread_t)); |
| 1108 | printf("Starting training using file %s\n", train_file); |
| 1109 | starting_alpha = alpha; |
| 1110 | if (read_vocab_file[0] != 0) ReadVocab(); else LearnVocabFromTrainFile(); |
| 1111 | if (save_vocab_file[0] != 0) SaveVocab(); |
| 1112 | if (output_file[0] == 0) return; |
| 1113 | InitNet(); |
| 1114 | if (negative > 0 || nce > 0) InitUnigramTable(); |
| 1115 | if (negative_classes_file[0] != 0) InitClassUnigramTable(); |
| 1116 | start = clock(); |
| 1117 | for (a = 0; a < num_threads; a++) pthread_create(&pt[a], NULL, TrainModelThread, (void *)a); |
| 1118 | for (a = 0; a < num_threads; a++) pthread_join(pt[a], NULL); |
| 1119 | fo = fopen(output_file, "wb"); |
| 1120 | if (classes == 0) { |
| 1121 | // Save the word vectors |
| 1122 | fprintf(fo, "%lld %lld\n", vocab_size, layer1_size); |
| 1123 | for (a = 0; a < vocab_size; a++) { |
| 1124 | fprintf(fo, "%s ", vocab[a].word); |
| 1125 | if (binary) for (b = 0; b < layer1_size; b++) fwrite(&syn0[a * layer1_size + b], sizeof(real), 1, fo); |
| 1126 | else for (b = 0; b < layer1_size; b++) fprintf(fo, "%lf ", syn0[a * layer1_size + b]); |
| 1127 | fprintf(fo, "\n"); |
| 1128 | } |
| 1129 | } else { |
| 1130 | // Run K-means on the word vectors |
| 1131 | int clcn = classes, iter = 10, closeid; |
| 1132 | int *centcn = (int *)malloc(classes * sizeof(int)); |
| 1133 | int *cl = (int *)calloc(vocab_size, sizeof(int)); |
| 1134 | real closev, x; |
| 1135 | real *cent = (real *)calloc(classes * layer1_size, sizeof(real)); |
| 1136 | for (a = 0; a < vocab_size; a++) cl[a] = a % clcn; |
| 1137 | for (a = 0; a < iter; a++) { |
| 1138 | for (b = 0; b < clcn * layer1_size; b++) cent[b] = 0; |
| 1139 | for (b = 0; b < clcn; b++) centcn[b] = 1; |
| 1140 | for (c = 0; c < vocab_size; c++) { |
| 1141 | for (d = 0; d < layer1_size; d++) cent[layer1_size * cl[c] + d] += syn0[c * layer1_size + d]; |
| 1142 | centcn[cl[c]]++; |
| 1143 | } |
| 1144 | for (b = 0; b < clcn; b++) { |
| 1145 | closev = 0; |
| 1146 | for (c = 0; c < layer1_size; c++) { |
| 1147 | cent[layer1_size * b + c] /= centcn[b]; |
| 1148 | closev += cent[layer1_size * b + c] * cent[layer1_size * b + c]; |
| 1149 | } |
| 1150 | closev = sqrt(closev); |
| 1151 | for (c = 0; c < layer1_size; c++) cent[layer1_size * b + c] /= closev; |
| 1152 | } |
| 1153 | for (c = 0; c < vocab_size; c++) { |
| 1154 | closev = -10; |
| 1155 | closeid = 0; |
| 1156 | for (d = 0; d < clcn; d++) { |
| 1157 | x = 0; |
| 1158 | for (b = 0; b < layer1_size; b++) x += cent[layer1_size * d + b] * syn0[c * layer1_size + b]; |
| 1159 | if (x > closev) { |
| 1160 | closev = x; |
| 1161 | closeid = d; |
| 1162 | } |
| 1163 | } |
| 1164 | cl[c] = closeid; |
| 1165 | } |
| 1166 | } |
| 1167 | // Save the K-means classes |
| 1168 | for (a = 0; a < vocab_size; a++) fprintf(fo, "%s %d\n", vocab[a].word, cl[a]); |
| 1169 | free(centcn); |
| 1170 | free(cent); |
| 1171 | free(cl); |
| 1172 | } |
| 1173 | fclose(fo); |
| 1174 | } |
| 1175 | |
| 1176 | int ArgPos(char *str, int argc, char **argv) { |
| 1177 | int a; |
| 1178 | for (a = 1; a < argc; a++) if (!strcmp(str, argv[a])) { |
| 1179 | if (a == argc - 1) { |
| 1180 | printf("Argument missing for %s\n", str); |
| 1181 | exit(1); |
| 1182 | } |
| 1183 | return a; |
| 1184 | } |
| 1185 | return -1; |
| 1186 | } |
| 1187 | |
| 1188 | int main(int argc, char **argv) { |
| 1189 | int i; |
| 1190 | if (argc == 1) { |
| 1191 | printf("WORD VECTOR estimation toolkit v 0.1c\n\n"); |
| 1192 | printf("Options:\n"); |
| 1193 | printf("Parameters for training:\n"); |
| 1194 | printf("\t-train <file>\n"); |
| 1195 | printf("\t\tUse text data from <file> to train the model\n"); |
| 1196 | printf("\t-output <file>\n"); |
| 1197 | printf("\t\tUse <file> to save the resulting word vectors / word clusters\n"); |
| 1198 | printf("\t-size <int>\n"); |
| 1199 | printf("\t\tSet size of word vectors; default is 100\n"); |
| 1200 | printf("\t-window <int>\n"); |
| 1201 | printf("\t\tSet max skip length between words; default is 5\n"); |
| 1202 | printf("\t-sample <float>\n"); |
| 1203 | printf("\t\tSet threshold for occurrence of words. Those that appear with higher frequency in the training data\n"); |
| 1204 | printf("\t\twill be randomly down-sampled; default is 1e-3, useful range is (0, 1e-5)\n"); |
| 1205 | printf("\t-hs <int>\n"); |
| 1206 | printf("\t\tUse Hierarchical Softmax; default is 0 (not used)\n"); |
| 1207 | printf("\t-negative <int>\n"); |
| 1208 | printf("\t\tNumber of negative examples; default is 5, common values are 3 - 10 (0 = not used)\n"); |
| 1209 | printf("\t-negative-classes <file>\n"); |
| 1210 | printf("\t\tNegative classes to sample from\n"); |
| 1211 | printf("\t-nce <int>\n"); |
| 1212 | printf("\t\tNumber of negative examples for nce; default is 0, common values are 3 - 10 (0 = not used)\n"); |
| 1213 | printf("\t-threads <int>\n"); |
| 1214 | printf("\t\tUse <int> threads (default 12)\n"); |
| 1215 | printf("\t-iter <int>\n"); |
| 1216 | printf("\t\tRun more training iterations (default 5)\n"); |
| 1217 | printf("\t-min-count <int>\n"); |
| 1218 | printf("\t\tThis will discard words that appear less than <int> times; default is 5\n"); |
| 1219 | printf("\t-alpha <float>\n"); |
| 1220 | printf("\t\tSet the starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW\n"); |
| 1221 | printf("\t-classes <int>\n"); |
| 1222 | printf("\t\tOutput word classes rather than word vectors; default number of classes is 0 (vectors are written)\n"); |
| 1223 | printf("\t-debug <int>\n"); |
| 1224 | printf("\t\tSet the debug mode (default = 2 = more info during training)\n"); |
| 1225 | printf("\t-binary <int>\n"); |
| 1226 | printf("\t\tSave the resulting vectors in binary moded; default is 0 (off)\n"); |
| 1227 | printf("\t-save-vocab <file>\n"); |
| 1228 | printf("\t\tThe vocabulary will be saved to <file>\n"); |
| 1229 | printf("\t-read-vocab <file>\n"); |
| 1230 | printf("\t\tThe vocabulary will be read from <file>, not constructed from the training data\n"); |
| 1231 | printf("\t-type <int>\n"); |
| 1232 | printf("\t\tType of embeddings (0 for cbow, 1 for skipngram, 2 for cwindow, 3 for structured skipngram, 4 for senna type)\n"); |
| 1233 | printf("\t-cap <int>\n"); |
| 1234 | printf("\t\tlimit the parameter values to the range [-50, 50]; default is 0 (off)\n"); |
| 1235 | printf("\nExamples:\n"); |
| 1236 | printf("./word2vec -train data.txt -output vec.txt -size 200 -window 5 -sample 1e-4 -negative 5 -hs 0 -binary 0 -type 1 -iter 3\n\n"); |
| 1237 | return 0; |
| 1238 | } |
| 1239 | output_file[0] = 0; |
| 1240 | save_vocab_file[0] = 0; |
| 1241 | read_vocab_file[0] = 0; |
| 1242 | negative_classes_file[0] = 0; |
| 1243 | if ((i = ArgPos((char *)"-size", argc, argv)) > 0) layer1_size = atoi(argv[i + 1]); |
| 1244 | if ((i = ArgPos((char *)"-train", argc, argv)) > 0) strcpy(train_file, argv[i + 1]); |
| 1245 | if ((i = ArgPos((char *)"-save-vocab", argc, argv)) > 0) strcpy(save_vocab_file, argv[i + 1]); |
| 1246 | if ((i = ArgPos((char *)"-read-vocab", argc, argv)) > 0) strcpy(read_vocab_file, argv[i + 1]); |
| 1247 | if ((i = ArgPos((char *)"-debug", argc, argv)) > 0) debug_mode = atoi(argv[i + 1]); |
| 1248 | if ((i = ArgPos((char *)"-binary", argc, argv)) > 0) binary = atoi(argv[i + 1]); |
| 1249 | if ((i = ArgPos((char *)"-type", argc, argv)) > 0) type = atoi(argv[i + 1]); |
| 1250 | if ((i = ArgPos((char *)"-output", argc, argv)) > 0) strcpy(output_file, argv[i + 1]); |
| 1251 | if ((i = ArgPos((char *)"-window", argc, argv)) > 0) window = atoi(argv[i + 1]); |
| 1252 | if ((i = ArgPos((char *)"-sample", argc, argv)) > 0) sample = atof(argv[i + 1]); |
| 1253 | if ((i = ArgPos((char *)"-hs", argc, argv)) > 0) hs = atoi(argv[i + 1]); |
| 1254 | if ((i = ArgPos((char *)"-negative", argc, argv)) > 0) negative = atoi(argv[i + 1]); |
| 1255 | if ((i = ArgPos((char *)"-negative-classes", argc, argv)) > 0) strcpy(negative_classes_file, argv[i + 1]); |
| 1256 | if ((i = ArgPos((char *)"-nce", argc, argv)) > 0) nce = atoi(argv[i + 1]); |
| 1257 | if ((i = ArgPos((char *)"-threads", argc, argv)) > 0) num_threads = atoi(argv[i + 1]); |
| 1258 | if ((i = ArgPos((char *)"-iter", argc, argv)) > 0) iter = atoi(argv[i + 1]); |
| 1259 | if ((i = ArgPos((char *)"-min-count", argc, argv)) > 0) min_count = atoi(argv[i + 1]); |
| 1260 | if ((i = ArgPos((char *)"-classes", argc, argv)) > 0) classes = atoi(argv[i + 1]); |
| 1261 | if ((i = ArgPos((char *)"-cap", argc, argv)) > 0) cap = atoi(argv[i + 1]); |
| 1262 | if (type==0 || type==2 || type==4) alpha = 0.05; |
| 1263 | if ((i = ArgPos((char *)"-alpha", argc, argv)) > 0) alpha = atof(argv[i + 1]); |
| 1264 | vocab = (struct vocab_word *)calloc(vocab_max_size, sizeof(struct vocab_word)); |
| 1265 | vocab_hash = (int *)calloc(vocab_hash_size, sizeof(int)); |
| 1266 | expTable = (real *)malloc((EXP_TABLE_SIZE + 1) * sizeof(real)); |
| 1267 | for (i = 0; i < EXP_TABLE_SIZE; i++) { |
| 1268 | expTable[i] = exp((i / (real)EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table |
| 1269 | expTable[i] = expTable[i] / (expTable[i] + 1); // Precompute f(x) = x / (x + 1) |
| 1270 | } |
| 1271 | TrainModel(); |
| 1272 | return 0; |
| 1273 | } |
| 1274 | |