blob: 77a2dda6f45bb9c78090bd5edab0d923ae5bc6f8 [file] [log] [blame]
Marc Kupietzd6f9c712016-03-16 11:50:56 +01001// Copyright 2013 Google Inc. All Rights Reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#include <stdio.h>
16#include <stdlib.h>
17#include <string.h>
18#include <math.h>
19#include <pthread.h>
20
21#define MAX_STRING 100
22#define EXP_TABLE_SIZE 1000
23#define MAX_EXP 6
24#define MAX_SENTENCE_LENGTH 1000
Marc Kupietz71996e72016-03-18 13:40:24 +010025#define MAX_CC 100
Marc Kupietzd6f9c712016-03-16 11:50:56 +010026#define MAX_CODE_LENGTH 40
27
28const int vocab_hash_size = 30000000; // Maximum 30 * 0.7 = 21M words in the vocabulary
29
30typedef float real; // Precision of float numbers
31
32struct vocab_word {
33 long long cn;
34 int *point;
35 char *word, *code, codelen;
36};
37
38char train_file[MAX_STRING], output_file[MAX_STRING];
39char save_vocab_file[MAX_STRING], read_vocab_file[MAX_STRING];
40char save_net_file[MAX_STRING], read_net_file[MAX_STRING];
41struct vocab_word *vocab;
42int binary = 0, type = 1, debug_mode = 2, window = 5, min_count = 5,
43 num_threads = 12, min_reduce = 1;
44int *vocab_hash;
45long long vocab_max_size = 1000, vocab_size = 0, layer1_size = 100;
46long long train_words = 0, word_count_actual = 0, iter = 5, file_size = 0,
47 classes = 0;
48real alpha = 0.025, starting_alpha, sample = 1e-3;
49real *syn0, *syn1, *syn1neg, *syn1nce, *expTable;
50clock_t start;
51
52real *syn1_window, *syn1neg_window, *syn1nce_window;
53int w_offset, window_layer_size;
54
55int window_hidden_size = 500;
56real *syn_window_hidden, *syn_hidden_word, *syn_hidden_word_neg,
57 *syn_hidden_word_nce;
58
59int hs = 0, negative = 5;
60const int table_size = 1e8;
61int *table;
62
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +010063long cc = 0;
64
Marc Kupietzd6f9c712016-03-16 11:50:56 +010065//constrastive negative sampling
66char negative_classes_file[MAX_STRING];
67int *word_to_group;
68int *group_to_table; //group_size*table_size
69int class_number;
70
71//nce
72real* noise_distribution;
73int nce = 0;
74
75//param caps
76real CAP_VALUE = 50;
77int cap = 0;
78
79void capParam(real* array, int index) {
80 if (array[index] > CAP_VALUE)
81 array[index] = CAP_VALUE;
82 else if (array[index] < -CAP_VALUE)
83 array[index] = -CAP_VALUE;
84}
85
86real hardTanh(real x) {
87 if (x >= 1) {
88 return 1;
89 } else if (x <= -1) {
90 return -1;
91 } else {
92 return x;
93 }
94}
95
96real dHardTanh(real x, real g) {
97 if (x > 1 && g > 0) {
98 return 0;
99 }
100 if (x < -1 && g < 0) {
101 return 0;
102 }
103 return 1;
104}
105
106void InitUnigramTable() {
107 int a, i;
108 long long train_words_pow = 0;
109 real d1, power = 0.75;
110 table = (int *) malloc(table_size * sizeof(int));
111 for (a = 0; a < vocab_size; a++)
112 train_words_pow += pow(vocab[a].cn, power);
113 i = 0;
114 d1 = pow(vocab[i].cn, power) / (real) train_words_pow;
115 for (a = 0; a < table_size; a++) {
116 table[a] = i;
117 if (a / (real) table_size > d1) {
118 i++;
119 d1 += pow(vocab[i].cn, power) / (real) train_words_pow;
120 }
121 if (i >= vocab_size)
122 i = vocab_size - 1;
123 }
124
125 noise_distribution = (real *) calloc(vocab_size, sizeof(real));
126 for (a = 0; a < vocab_size; a++)
127 noise_distribution[a] = pow(vocab[a].cn, power)
128 / (real) train_words_pow;
129}
130
131// Reads a single word from a file, assuming space + tab + EOL to be word boundaries
132void ReadWord(char *word, FILE *fin) {
133 int a = 0, ch;
134 while (!feof(fin)) {
135 ch = fgetc(fin);
136 if (ch == 13)
137 continue;
138 if ((ch == ' ') || (ch == '\t') || (ch == '\n')) {
139 if (a > 0) {
140 if (ch == '\n')
141 ungetc(ch, fin);
142 break;
143 }
144 if (ch == '\n') {
145 strcpy(word, (char *) "</s>");
146 return;
147 } else
148 continue;
149 }
150 word[a] = ch;
151 a++;
152 if (a >= MAX_STRING - 1)
153 a--; // Truncate too long words
154 }
155 word[a] = 0;
156}
157
158// Returns hash value of a word
159int GetWordHash(char *word) {
160 unsigned long long a, hash = 0;
161 for (a = 0; a < strlen(word); a++)
162 hash = hash * 257 + word[a];
163 hash = hash % vocab_hash_size;
164 return hash;
165}
166
167// Returns position of a word in the vocabulary; if the word is not found, returns -1
168int SearchVocab(char *word) {
169 unsigned int hash = GetWordHash(word);
170 while (1) {
171 if (vocab_hash[hash] == -1)
172 return -1;
173 if (!strcmp(word, vocab[vocab_hash[hash]].word))
174 return vocab_hash[hash];
175 hash = (hash + 1) % vocab_hash_size;
176 }
177 return -1;
178}
179
180// Reads a word and returns its index in the vocabulary
181int ReadWordIndex(FILE *fin) {
182 char word[MAX_STRING];
183 ReadWord(word, fin);
184 if (feof(fin))
185 return -1;
186 return SearchVocab(word);
187}
188
189// Adds a word to the vocabulary
190int AddWordToVocab(char *word) {
191 unsigned int hash, length = strlen(word) + 1;
192 if (length > MAX_STRING)
193 length = MAX_STRING;
194 vocab[vocab_size].word = (char *) calloc(length, sizeof(char));
195 strcpy(vocab[vocab_size].word, word);
196 vocab[vocab_size].cn = 0;
197 vocab_size++;
198 // Reallocate memory if needed
199 if (vocab_size + 2 >= vocab_max_size) {
200 vocab_max_size += 1000;
201 vocab = (struct vocab_word *) realloc(vocab,
202 vocab_max_size * sizeof(struct vocab_word));
203 }
204 hash = GetWordHash(word);
205 while (vocab_hash[hash] != -1)
206 hash = (hash + 1) % vocab_hash_size;
207 vocab_hash[hash] = vocab_size - 1;
208 return vocab_size - 1;
209}
210
211// Used later for sorting by word counts
212int VocabCompare(const void *a, const void *b) {
213 return ((struct vocab_word *) b)->cn - ((struct vocab_word *) a)->cn;
214}
215
216// Sorts the vocabulary by frequency using word counts
217void SortVocab() {
218 int a, size;
219 unsigned int hash;
220 // Sort the vocabulary and keep </s> at the first position
221 qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare);
222 for (a = 0; a < vocab_hash_size; a++)
223 vocab_hash[a] = -1;
224 size = vocab_size;
225 train_words = 0;
226 for (a = 0; a < size; a++) {
227 // Words occuring less than min_count times will be discarded from the vocab
228 if ((vocab[a].cn < min_count) && (a != 0)) {
229 vocab_size--;
230 free(vocab[a].word);
231 } else {
232 // Hash will be re-computed, as after the sorting it is not actual
233 hash = GetWordHash(vocab[a].word);
234 while (vocab_hash[hash] != -1)
235 hash = (hash + 1) % vocab_hash_size;
236 vocab_hash[hash] = a;
237 train_words += vocab[a].cn;
238 }
239 }
240 vocab = (struct vocab_word *) realloc(vocab,
241 (vocab_size + 1) * sizeof(struct vocab_word));
242 // Allocate memory for the binary tree construction
243 for (a = 0; a < vocab_size; a++) {
244 vocab[a].code = (char *) calloc(MAX_CODE_LENGTH, sizeof(char));
245 vocab[a].point = (int *) calloc(MAX_CODE_LENGTH, sizeof(int));
246 }
247}
248
249// Reduces the vocabulary by removing infrequent tokens
250void ReduceVocab() {
251 int a, b = 0;
252 unsigned int hash;
253 for (a = 0; a < vocab_size; a++)
254 if (vocab[a].cn > min_reduce) {
255 vocab[b].cn = vocab[a].cn;
256 vocab[b].word = vocab[a].word;
257 b++;
258 } else
259 free(vocab[a].word);
260 vocab_size = b;
261 for (a = 0; a < vocab_hash_size; a++)
262 vocab_hash[a] = -1;
263 for (a = 0; a < vocab_size; a++) {
264 // Hash will be re-computed, as it is not actual
265 hash = GetWordHash(vocab[a].word);
266 while (vocab_hash[hash] != -1)
267 hash = (hash + 1) % vocab_hash_size;
268 vocab_hash[hash] = a;
269 }
270 fflush(stdout);
271 min_reduce++;
272}
273
274// Create binary Huffman tree using the word counts
275// Frequent words will have short uniqe binary codes
276void CreateBinaryTree() {
277 long long a, b, i, min1i, min2i, pos1, pos2, point[MAX_CODE_LENGTH];
278 char code[MAX_CODE_LENGTH];
279 long long *count = (long long *) calloc(vocab_size * 2 + 1,
280 sizeof(long long));
281 long long *binary = (long long *) calloc(vocab_size * 2 + 1,
282 sizeof(long long));
283 long long *parent_node = (long long *) calloc(vocab_size * 2 + 1,
284 sizeof(long long));
285 for (a = 0; a < vocab_size; a++)
286 count[a] = vocab[a].cn;
287 for (a = vocab_size; a < vocab_size * 2; a++)
288 count[a] = 1e15;
289 pos1 = vocab_size - 1;
290 pos2 = vocab_size;
291 // Following algorithm constructs the Huffman tree by adding one node at a time
292 for (a = 0; a < vocab_size - 1; a++) {
293 // First, find two smallest nodes 'min1, min2'
294 if (pos1 >= 0) {
295 if (count[pos1] < count[pos2]) {
296 min1i = pos1;
297 pos1--;
298 } else {
299 min1i = pos2;
300 pos2++;
301 }
302 } else {
303 min1i = pos2;
304 pos2++;
305 }
306 if (pos1 >= 0) {
307 if (count[pos1] < count[pos2]) {
308 min2i = pos1;
309 pos1--;
310 } else {
311 min2i = pos2;
312 pos2++;
313 }
314 } else {
315 min2i = pos2;
316 pos2++;
317 }
318 count[vocab_size + a] = count[min1i] + count[min2i];
319 parent_node[min1i] = vocab_size + a;
320 parent_node[min2i] = vocab_size + a;
321 binary[min2i] = 1;
322 }
323 // Now assign binary code to each vocabulary word
324 for (a = 0; a < vocab_size; a++) {
325 b = a;
326 i = 0;
327 while (1) {
328 code[i] = binary[b];
329 point[i] = b;
330 i++;
331 b = parent_node[b];
332 if (b == vocab_size * 2 - 2)
333 break;
334 }
335 vocab[a].codelen = i;
336 vocab[a].point[0] = vocab_size - 2;
337 for (b = 0; b < i; b++) {
338 vocab[a].code[i - b - 1] = code[b];
339 vocab[a].point[i - b] = point[b] - vocab_size;
340 }
341 }
342 free(count);
343 free(binary);
344 free(parent_node);
345}
346
347void LearnVocabFromTrainFile() {
348 char word[MAX_STRING];
349 FILE *fin;
350 long long a, i;
351 for (a = 0; a < vocab_hash_size; a++)
352 vocab_hash[a] = -1;
353 fin = fopen(train_file, "rb");
354 if (fin == NULL) {
355 printf("ERROR: training data file not found!\n");
356 exit(1);
357 }
358 vocab_size = 0;
359 AddWordToVocab((char *) "</s>");
360 while (1) {
361 ReadWord(word, fin);
362 if (feof(fin))
363 break;
364 train_words++;
365 if ((debug_mode > 1) && (train_words % 100000 == 0)) {
366 printf("%lldK%c", train_words / 1000, 13);
367 fflush(stdout);
368 }
369 i = SearchVocab(word);
370 if (i == -1) {
371 a = AddWordToVocab(word);
372 vocab[a].cn = 1;
373 } else
374 vocab[i].cn++;
375 if (vocab_size > vocab_hash_size * 0.7)
376 ReduceVocab();
377 }
378 SortVocab();
379 if (debug_mode > 0) {
380 printf("Vocab size: %lld\n", vocab_size);
381 printf("Words in train file: %lld\n", train_words);
382 }
383 file_size = ftell(fin);
384 fclose(fin);
385}
386
387void SaveVocab() {
388 long long i;
389 FILE *fo = fopen(save_vocab_file, "wb");
390 for (i = 0; i < vocab_size; i++)
391 fprintf(fo, "%s %lld\n", vocab[i].word, vocab[i].cn);
392 fclose(fo);
393}
394
395void ReadVocab() {
396 long long a, i = 0;
397 char c;
398 char word[MAX_STRING];
399 FILE *fin = fopen(read_vocab_file, "rb");
400 if (fin == NULL) {
401 printf("Vocabulary file not found\n");
402 exit(1);
403 }
404 for (a = 0; a < vocab_hash_size; a++)
405 vocab_hash[a] = -1;
406 vocab_size = 0;
407 while (1) {
408 ReadWord(word, fin);
409 if (feof(fin))
410 break;
411 a = AddWordToVocab(word);
412 fscanf(fin, "%lld%c", &vocab[a].cn, &c);
413 i++;
414 }
415 SortVocab();
416 if (debug_mode > 0) {
417 printf("Vocab size: %lld\n", vocab_size);
418 printf("Words in train file: %lld\n", train_words);
419 }
420 fin = fopen(train_file, "rb");
421 if (fin == NULL) {
422 printf("ERROR: training data file not found!\n");
423 exit(1);
424 }
425 fseek(fin, 0, SEEK_END);
426 file_size = ftell(fin);
427 fclose(fin);
428}
429
430void InitClassUnigramTable() {
431 long long a, c;
432 printf("loading class unigrams \n");
433 FILE *fin = fopen(negative_classes_file, "rb");
434 if (fin == NULL) {
435 printf("ERROR: class file not found!\n");
436 exit(1);
437 }
438 word_to_group = (int *) malloc(vocab_size * sizeof(int));
439 for (a = 0; a < vocab_size; a++)
440 word_to_group[a] = -1;
441 char class[MAX_STRING];
442 char prev_class[MAX_STRING];
443 prev_class[0] = 0;
444 char word[MAX_STRING];
445 class_number = -1;
446 while (1) {
447 if (feof(fin))
448 break;
449 ReadWord(class, fin);
450 ReadWord(word, fin);
451 int word_index = SearchVocab(word);
452 if (word_index != -1) {
453 if (strcmp(class, prev_class) != 0) {
454 class_number++;
455 strcpy(prev_class, class);
456 }
457 word_to_group[word_index] = class_number;
458 }
459 ReadWord(word, fin);
460 }
461 class_number++;
462 fclose(fin);
463
464 group_to_table = (int *) malloc(table_size * class_number * sizeof(int));
465 long long train_words_pow = 0;
466 real d1, power = 0.75;
467
468 for (c = 0; c < class_number; c++) {
469 long long offset = c * table_size;
470 train_words_pow = 0;
471 for (a = 0; a < vocab_size; a++)
472 if (word_to_group[a] == c)
473 train_words_pow += pow(vocab[a].cn, power);
474 int i = 0;
475 while (word_to_group[i] != c && i < vocab_size)
476 i++;
477 d1 = pow(vocab[i].cn, power) / (real) train_words_pow;
478 for (a = 0; a < table_size; a++) {
479 //printf("index %lld , word %d\n", a, i);
480 group_to_table[offset + a] = i;
481 if (a / (real) table_size > d1) {
482 i++;
483 while (word_to_group[i] != c && i < vocab_size)
484 i++;
485 d1 += pow(vocab[i].cn, power) / (real) train_words_pow;
486 }
487 if (i >= vocab_size)
488 while (word_to_group[i] != c && i >= 0)
489 i--;
490 }
491 }
492}
493
494void SaveNet() {
Marc Kupietzc14eff02016-03-19 15:23:14 +0100495 long long a, b;
496 float len;
497
Marc Kupietz313fcc52016-03-16 16:43:37 +0100498 if(type != 3 || negative <= 0) {
499 fprintf(stderr, "save-net only supported for type 3 with negative sampling\n");
500 return;
501 }
502
Marc Kupietzc14eff02016-03-19 15:23:14 +0100503 for (b = 0; b < vocab_size; b++) {
504 len = 0;
505 for (a = 0; a < layer1_size; a++) len += syn0[a + b * layer1_size] * syn0[a + b * layer1_size];
506 len = sqrt(len);
507 for (a = 0; a < layer1_size; a++) syn0[a + b * layer1_size] /= len;
508 }
509
Marc Kupietzd6f9c712016-03-16 11:50:56 +0100510 FILE *fnet = fopen(save_net_file, "wb");
511 if (fnet == NULL) {
512 printf("Net parameter file not found\n");
513 exit(1);
514 }
Marc Kupietzc6979332016-03-16 15:29:07 +0100515 fwrite(syn0, sizeof(real), vocab_size * layer1_size, fnet);
Marc Kupietz313fcc52016-03-16 16:43:37 +0100516 fwrite(syn1neg_window, sizeof(real), vocab_size * window_layer_size, fnet);
Marc Kupietzd6f9c712016-03-16 11:50:56 +0100517 fclose(fnet);
518}
519
520void InitNet() {
521 long long a, b;
522 unsigned long long next_random = 1;
Marc Kupietz57c0df12016-03-18 12:48:00 +0100523 long long read;
524
Marc Kupietzd6f9c712016-03-16 11:50:56 +0100525 window_layer_size = layer1_size * window * 2;
526 a = posix_memalign((void **) &syn0, 128,
527 (long long) vocab_size * layer1_size * sizeof(real));
528 if (syn0 == NULL) {
529 printf("Memory allocation failed\n");
530 exit(1);
531 }
532
533 if (hs) {
534 a = posix_memalign((void **) &syn1, 128,
535 (long long) vocab_size * layer1_size * sizeof(real));
536 if (syn1 == NULL) {
537 printf("Memory allocation failed\n");
538 exit(1);
539 }
540 a = posix_memalign((void **) &syn1_window, 128,
541 (long long) vocab_size * window_layer_size * sizeof(real));
542 if (syn1_window == NULL) {
543 printf("Memory allocation failed\n");
544 exit(1);
545 }
546 a = posix_memalign((void **) &syn_hidden_word, 128,
547 (long long) vocab_size * window_hidden_size * sizeof(real));
548 if (syn_hidden_word == NULL) {
549 printf("Memory allocation failed\n");
550 exit(1);
551 }
552
553 for (a = 0; a < vocab_size; a++)
554 for (b = 0; b < layer1_size; b++)
555 syn1[a * layer1_size + b] = 0;
556 for (a = 0; a < vocab_size; a++)
557 for (b = 0; b < window_layer_size; b++)
558 syn1_window[a * window_layer_size + b] = 0;
559 for (a = 0; a < vocab_size; a++)
560 for (b = 0; b < window_hidden_size; b++)
561 syn_hidden_word[a * window_hidden_size + b] = 0;
562 }
563 if (negative > 0) {
Marc Kupietz1006a272016-03-16 15:50:20 +0100564 if(type == 0) {
565 a = posix_memalign((void **) &syn1neg, 128,
566 (long long) vocab_size * layer1_size * sizeof(real));
567 if (syn1neg == NULL) {
568 printf("Memory allocation failed\n");
569 exit(1);
570 }
571 for (a = 0; a < vocab_size; a++)
572 for (b = 0; b < layer1_size; b++)
573 syn1neg[a * layer1_size + b] = 0;
574 } else if (type == 3) {
575 a = posix_memalign((void **) &syn1neg_window, 128,
576 (long long) vocab_size * window_layer_size * sizeof(real));
577 if (syn1neg_window == NULL) {
578 printf("Memory allocation failed\n");
579 exit(1);
580 }
581 for (a = 0; a < vocab_size; a++)
582 for (b = 0; b < window_layer_size; b++)
583 syn1neg_window[a * window_layer_size + b] = 0;
584 } else if (type == 4) {
585 a = posix_memalign((void **) &syn_hidden_word_neg, 128,
586 (long long) vocab_size * window_hidden_size * sizeof(real));
587 if (syn_hidden_word_neg == NULL) {
588 printf("Memory allocation failed\n");
589 exit(1);
590 }
591 for (a = 0; a < vocab_size; a++)
592 for (b = 0; b < window_hidden_size; b++)
593 syn_hidden_word_neg[a * window_hidden_size + b] = 0;
Marc Kupietzd6f9c712016-03-16 11:50:56 +0100594 }
Marc Kupietzd6f9c712016-03-16 11:50:56 +0100595 }
596 if (nce > 0) {
597 a = posix_memalign((void **) &syn1nce, 128,
598 (long long) vocab_size * layer1_size * sizeof(real));
599 if (syn1nce == NULL) {
600 printf("Memory allocation failed\n");
601 exit(1);
602 }
603 a = posix_memalign((void **) &syn1nce_window, 128,
604 (long long) vocab_size * window_layer_size * sizeof(real));
605 if (syn1nce_window == NULL) {
606 printf("Memory allocation failed\n");
607 exit(1);
608 }
609 a = posix_memalign((void **) &syn_hidden_word_nce, 128,
610 (long long) vocab_size * window_hidden_size * sizeof(real));
611 if (syn_hidden_word_nce == NULL) {
612 printf("Memory allocation failed\n");
613 exit(1);
614 }
615
616 for (a = 0; a < vocab_size; a++)
617 for (b = 0; b < layer1_size; b++)
618 syn1nce[a * layer1_size + b] = 0;
619 for (a = 0; a < vocab_size; a++)
620 for (b = 0; b < window_layer_size; b++)
621 syn1nce_window[a * window_layer_size + b] = 0;
622 for (a = 0; a < vocab_size; a++)
623 for (b = 0; b < window_hidden_size; b++)
624 syn_hidden_word_nce[a * window_hidden_size + b] = 0;
625 }
Marc Kupietzd6f9c712016-03-16 11:50:56 +0100626
Marc Kupietz1006a272016-03-16 15:50:20 +0100627 if(type == 4) {
Marc Kupietzd6f9c712016-03-16 11:50:56 +0100628 a = posix_memalign((void **) &syn_window_hidden, 128,
629 window_hidden_size * window_layer_size * sizeof(real));
630 if (syn_window_hidden == NULL) {
631 printf("Memory allocation failed\n");
632 exit(1);
633 }
634 for (a = 0; a < window_hidden_size * window_layer_size; a++) {
635 next_random = next_random * (unsigned long long) 25214903917 + 11;
636 syn_window_hidden[a] = (((next_random & 0xFFFF) / (real) 65536)
637 - 0.5) / (window_hidden_size * window_layer_size);
638 }
639 }
Marc Kupietz1006a272016-03-16 15:50:20 +0100640
641 if (read_net_file[0] == 0) {
642 for (a = 0; a < vocab_size; a++)
643 for (b = 0; b < layer1_size; b++) {
644 next_random = next_random * (unsigned long long) 25214903917
645 + 11;
646 syn0[a * layer1_size + b] = (((next_random & 0xFFFF)
647 / (real) 65536) - 0.5) / layer1_size;
648 }
Marc Kupietz313fcc52016-03-16 16:43:37 +0100649 } else if(type == 3 && negative > 0) {
Marc Kupietzd6f9c712016-03-16 11:50:56 +0100650 FILE *fnet = fopen(read_net_file, "rb");
651 if (fnet == NULL) {
652 printf("Net parameter file not found\n");
653 exit(1);
654 }
Marc Kupietz57c0df12016-03-18 12:48:00 +0100655 printf("vocab-size: %lld, layer1_size: %lld, window_layer_size %d\n", vocab_size, layer1_size, window_layer_size);
656 read = fread(syn0, sizeof(real), vocab_size * layer1_size, fnet);
657 if(read != vocab_size * layer1_size) {
658 fprintf(stderr, "read-net failed %lld\n", read);
659 exit(-1);
660 }
661 read = fread(syn1neg_window, sizeof(real), vocab_size * window_layer_size, fnet);
662 if(read != (long long) vocab_size * window_layer_size) {
663 fprintf(stderr, "read-net failed, read %lld, expected: %lld\n", read ,
664 (long long) sizeof(real) * vocab_size * window_layer_size);
665 exit(-1);
666 }
667 fgetc(fnet);
668 if(!feof(fnet)) {
669 fprintf(stderr, "Remaining bytes in net-file after read-net. File position: %ld\n", ftell(fnet));
670 exit(-1);
671 }
Marc Kupietzd6f9c712016-03-16 11:50:56 +0100672 fclose(fnet);
Marc Kupietz313fcc52016-03-16 16:43:37 +0100673 } else {
674 fprintf(stderr, "read-net only supported for type 3 with negative sampling\n");
675 exit(-1);
Marc Kupietzd6f9c712016-03-16 11:50:56 +0100676 }
677
678 CreateBinaryTree();
679}
680
681void *TrainModelThread(void *id) {
682 long long a, b, d, cw, word, last_word, sentence_length = 0,
683 sentence_position = 0;
684 long long word_count = 0, last_word_count = 0, sen[MAX_SENTENCE_LENGTH + 1];
685 long long l1, l2, c, target, label, local_iter = iter;
686 unsigned long long next_random = (long long) id;
687 real f, g;
688 clock_t now;
689 int input_len_1 = layer1_size;
690 int window_offset = -1;
691 if (type == 2 || type == 4) {
692 input_len_1 = window_layer_size;
693 }
694 real *neu1 = (real *) calloc(input_len_1, sizeof(real));
695 real *neu1e = (real *) calloc(input_len_1, sizeof(real));
696
697 int input_len_2 = 0;
698 if (type == 4) {
699 input_len_2 = window_hidden_size;
700 }
701 real *neu2 = (real *) calloc(input_len_2, sizeof(real));
702 real *neu2e = (real *) calloc(input_len_2, sizeof(real));
703
704 FILE *fi = fopen(train_file, "rb");
705 fseek(fi, file_size / (long long) num_threads * (long long) id, SEEK_SET);
706 while (1) {
707 if (word_count - last_word_count > 10000) {
708 word_count_actual += word_count - last_word_count;
709 last_word_count = word_count;
710 if ((debug_mode > 1)) {
711 now = clock();
712 printf(
713 "%cAlpha: %f Progress: %.2f%% Words/thread/sec: %.2fk ",
714 13, alpha,
715 word_count_actual / (real) (iter * train_words + 1)
716 * 100,
717 word_count_actual
718 / ((real) (now - start + 1)
719 / (real) CLOCKS_PER_SEC * 1000));
720 fflush(stdout);
721 }
722 alpha = starting_alpha
723 * (1 - word_count_actual / (real) (iter * train_words + 1));
724 if (alpha < starting_alpha * 0.0001)
725 alpha = starting_alpha * 0.0001;
726 }
727 if (sentence_length == 0) {
728 while (1) {
729 word = ReadWordIndex(fi);
730 if (feof(fi))
731 break;
732 if (word == -1)
733 continue;
734 word_count++;
735 if (word == 0)
736 break;
737 // The subsampling randomly discards frequent words while keeping the ranking same
738 if (sample > 0) {
739 real ran = (sqrt(vocab[word].cn / (sample * train_words))
740 + 1) * (sample * train_words) / vocab[word].cn;
741 next_random = next_random * (unsigned long long) 25214903917
742 + 11;
743 if (ran < (next_random & 0xFFFF) / (real) 65536)
744 continue;
745 }
746 sen[sentence_length] = word;
747 sentence_length++;
748 if (sentence_length >= MAX_SENTENCE_LENGTH)
749 break;
750 }
751 sentence_position = 0;
752 }
753 if (feof(fi) || (word_count > train_words / num_threads)) {
754 word_count_actual += word_count - last_word_count;
755 local_iter--;
756 if (local_iter == 0)
757 break;
758 word_count = 0;
759 last_word_count = 0;
760 sentence_length = 0;
761 fseek(fi, file_size / (long long) num_threads * (long long) id,
762 SEEK_SET);
763 continue;
764 }
765 word = sen[sentence_position];
766 if (word == -1)
767 continue;
768 for (c = 0; c < input_len_1; c++)
769 neu1[c] = 0;
770 for (c = 0; c < input_len_1; c++)
771 neu1e[c] = 0;
772 for (c = 0; c < input_len_2; c++)
773 neu2[c] = 0;
774 for (c = 0; c < input_len_2; c++)
775 neu2e[c] = 0;
776 next_random = next_random * (unsigned long long) 25214903917 + 11;
777 b = next_random % window;
778 if (type == 0) { //train the cbow architecture
779 // in -> hidden
780 cw = 0;
781 for (a = b; a < window * 2 + 1 - b; a++)
782 if (a != window) {
783 c = sentence_position - window + a;
784 if (c < 0)
785 continue;
786 if (c >= sentence_length)
787 continue;
788 last_word = sen[c];
789 if (last_word == -1)
790 continue;
791 for (c = 0; c < layer1_size; c++)
792 neu1[c] += syn0[c + last_word * layer1_size];
793 cw++;
794 }
795 if (cw) {
796 for (c = 0; c < layer1_size; c++)
797 neu1[c] /= cw;
798 if (hs)
799 for (d = 0; d < vocab[word].codelen; d++) {
800 f = 0;
801 l2 = vocab[word].point[d] * layer1_size;
802 // Propagate hidden -> output
803 for (c = 0; c < layer1_size; c++)
804 f += neu1[c] * syn1[c + l2];
805 if (f <= -MAX_EXP)
806 continue;
807 else if (f >= MAX_EXP)
808 continue;
809 else
810 f = expTable[(int) ((f + MAX_EXP)
811 * (EXP_TABLE_SIZE / MAX_EXP / 2))];
812 // 'g' is the gradient multiplied by the learning rate
813 g = (1 - vocab[word].code[d] - f) * alpha;
814 // Propagate errors output -> hidden
815 for (c = 0; c < layer1_size; c++)
816 neu1e[c] += g * syn1[c + l2];
817 // Learn weights hidden -> output
818 for (c = 0; c < layer1_size; c++)
819 syn1[c + l2] += g * neu1[c];
820 if (cap == 1)
821 for (c = 0; c < layer1_size; c++)
822 capParam(syn1, c + l2);
823 }
824 // NEGATIVE SAMPLING
825 if (negative > 0)
826 for (d = 0; d < negative + 1; d++) {
827 if (d == 0) {
828 target = word;
829 label = 1;
830 } else {
831 next_random = next_random
832 * (unsigned long long) 25214903917 + 11;
833 if (word_to_group != NULL
834 && word_to_group[word] != -1) {
835 target = word;
836 while (target == word) {
837 target = group_to_table[word_to_group[word]
838 * table_size
839 + (next_random >> 16) % table_size];
840 next_random = next_random
841 * (unsigned long long) 25214903917
842 + 11;
843 }
844 //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
845 } else {
846 target =
847 table[(next_random >> 16) % table_size];
848 }
849 if (target == 0)
850 target = next_random % (vocab_size - 1) + 1;
851 if (target == word)
852 continue;
853 label = 0;
854 }
855 l2 = target * layer1_size;
856 f = 0;
857 for (c = 0; c < layer1_size; c++)
858 f += neu1[c] * syn1neg[c + l2];
859 if (f > MAX_EXP)
860 g = (label - 1) * alpha;
861 else if (f < -MAX_EXP)
862 g = (label - 0) * alpha;
863 else
864 g = (label
865 - expTable[(int) ((f + MAX_EXP)
866 * (EXP_TABLE_SIZE / MAX_EXP / 2))])
867 * alpha;
868 for (c = 0; c < layer1_size; c++)
869 neu1e[c] += g * syn1neg[c + l2];
870 for (c = 0; c < layer1_size; c++)
871 syn1neg[c + l2] += g * neu1[c];
872 if (cap == 1)
873 for (c = 0; c < layer1_size; c++)
874 capParam(syn1neg, c + l2);
875 }
876 // Noise Contrastive Estimation
877 if (nce > 0)
878 for (d = 0; d < nce + 1; d++) {
879 if (d == 0) {
880 target = word;
881 label = 1;
882 } else {
883 next_random = next_random
884 * (unsigned long long) 25214903917 + 11;
885 if (word_to_group != NULL
886 && word_to_group[word] != -1) {
887 target = word;
888 while (target == word) {
889 target = group_to_table[word_to_group[word]
890 * table_size
891 + (next_random >> 16) % table_size];
892 next_random = next_random
893 * (unsigned long long) 25214903917
894 + 11;
895 }
896 } else {
897 target =
898 table[(next_random >> 16) % table_size];
899 }
900 if (target == 0)
901 target = next_random % (vocab_size - 1) + 1;
902 if (target == word)
903 continue;
904 label = 0;
905 }
906 l2 = target * layer1_size;
907 f = 0;
908
909 for (c = 0; c < layer1_size; c++)
910 f += neu1[c] * syn1nce[c + l2];
911 if (f > MAX_EXP)
912 g = (label - 1) * alpha;
913 else if (f < -MAX_EXP)
914 g = (label - 0) * alpha;
915 else {
916 f = exp(f);
917 g =
918 (label
919 - f
920 / (noise_distribution[target]
921 * nce + f)) * alpha;
922 }
923 for (c = 0; c < layer1_size; c++)
924 neu1e[c] += g * syn1nce[c + l2];
925 for (c = 0; c < layer1_size; c++)
926 syn1nce[c + l2] += g * neu1[c];
927 if (cap == 1)
928 for (c = 0; c < layer1_size; c++)
929 capParam(syn1nce, c + l2);
930 }
931 // hidden -> in
932 for (a = b; a < window * 2 + 1 - b; a++)
933 if (a != window) {
934 c = sentence_position - window + a;
935 if (c < 0)
936 continue;
937 if (c >= sentence_length)
938 continue;
939 last_word = sen[c];
940 if (last_word == -1)
941 continue;
942 for (c = 0; c < layer1_size; c++)
943 syn0[c + last_word * layer1_size] += neu1e[c];
944 }
945 }
946 } else if (type == 1) { //train skip-gram
947 for (a = b; a < window * 2 + 1 - b; a++)
948 if (a != window) {
949 c = sentence_position - window + a;
950 if (c < 0)
951 continue;
952 if (c >= sentence_length)
953 continue;
954 last_word = sen[c];
955 if (last_word == -1)
956 continue;
957 l1 = last_word * layer1_size;
958 for (c = 0; c < layer1_size; c++)
959 neu1e[c] = 0;
960 // HIERARCHICAL SOFTMAX
961 if (hs)
962 for (d = 0; d < vocab[word].codelen; d++) {
963 f = 0;
964 l2 = vocab[word].point[d] * layer1_size;
965 // Propagate hidden -> output
966 for (c = 0; c < layer1_size; c++)
967 f += syn0[c + l1] * syn1[c + l2];
968 if (f <= -MAX_EXP)
969 continue;
970 else if (f >= MAX_EXP)
971 continue;
972 else
973 f = expTable[(int) ((f + MAX_EXP)
974 * (EXP_TABLE_SIZE / MAX_EXP / 2))];
975 // 'g' is the gradient multiplied by the learning rate
976 g = (1 - vocab[word].code[d] - f) * alpha;
977 // Propagate errors output -> hidden
978 for (c = 0; c < layer1_size; c++)
979 neu1e[c] += g * syn1[c + l2];
980 // Learn weights hidden -> output
981 for (c = 0; c < layer1_size; c++)
982 syn1[c + l2] += g * syn0[c + l1];
983 if (cap == 1)
984 for (c = 0; c < layer1_size; c++)
985 capParam(syn1, c + l2);
986 }
987 // NEGATIVE SAMPLING
988 if (negative > 0)
989 for (d = 0; d < negative + 1; d++) {
990 if (d == 0) {
991 target = word;
992 label = 1;
993 } else {
994 next_random = next_random
995 * (unsigned long long) 25214903917 + 11;
996 if (word_to_group != NULL
997 && word_to_group[word] != -1) {
998 target = word;
999 while (target == word) {
1000 target =
1001 group_to_table[word_to_group[word]
1002 * table_size
1003 + (next_random >> 16)
1004 % table_size];
1005 next_random =
1006 next_random
1007 * (unsigned long long) 25214903917
1008 + 11;
1009 }
1010 //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
1011 } else {
1012 target = table[(next_random >> 16)
1013 % table_size];
1014 }
1015 if (target == 0)
1016 target = next_random % (vocab_size - 1) + 1;
1017 if (target == word)
1018 continue;
1019 label = 0;
1020 }
1021 l2 = target * layer1_size;
1022 f = 0;
1023 for (c = 0; c < layer1_size; c++)
1024 f += syn0[c + l1] * syn1neg[c + l2];
1025 if (f > MAX_EXP)
1026 g = (label - 1) * alpha;
1027 else if (f < -MAX_EXP)
1028 g = (label - 0) * alpha;
1029 else
1030 g =
1031 (label
1032 - expTable[(int) ((f + MAX_EXP)
1033 * (EXP_TABLE_SIZE
1034 / MAX_EXP / 2))])
1035 * alpha;
1036 for (c = 0; c < layer1_size; c++)
1037 neu1e[c] += g * syn1neg[c + l2];
1038 for (c = 0; c < layer1_size; c++)
1039 syn1neg[c + l2] += g * syn0[c + l1];
1040 if (cap == 1)
1041 for (c = 0; c < layer1_size; c++)
1042 capParam(syn1neg, c + l2);
1043 }
1044 //Noise Contrastive Estimation
1045 if (nce > 0)
1046 for (d = 0; d < nce + 1; d++) {
1047 if (d == 0) {
1048 target = word;
1049 label = 1;
1050 } else {
1051 next_random = next_random
1052 * (unsigned long long) 25214903917 + 11;
1053 if (word_to_group != NULL
1054 && word_to_group[word] != -1) {
1055 target = word;
1056 while (target == word) {
1057 target =
1058 group_to_table[word_to_group[word]
1059 * table_size
1060 + (next_random >> 16)
1061 % table_size];
1062 next_random =
1063 next_random
1064 * (unsigned long long) 25214903917
1065 + 11;
1066 }
1067 //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
1068 } else {
1069 target = table[(next_random >> 16)
1070 % table_size];
1071 }
1072 if (target == 0)
1073 target = next_random % (vocab_size - 1) + 1;
1074 if (target == word)
1075 continue;
1076 label = 0;
1077 }
1078 l2 = target * layer1_size;
1079 f = 0;
1080 for (c = 0; c < layer1_size; c++)
1081 f += syn0[c + l1] * syn1nce[c + l2];
1082 if (f > MAX_EXP)
1083 g = (label - 1) * alpha;
1084 else if (f < -MAX_EXP)
1085 g = (label - 0) * alpha;
1086 else {
1087 f = exp(f);
1088 g = (label
1089 - f
1090 / (noise_distribution[target]
1091 * nce + f)) * alpha;
1092 }
1093 for (c = 0; c < layer1_size; c++)
1094 neu1e[c] += g * syn1nce[c + l2];
1095 for (c = 0; c < layer1_size; c++)
1096 syn1nce[c + l2] += g * syn0[c + l1];
1097 if (cap == 1)
1098 for (c = 0; c < layer1_size; c++)
1099 capParam(syn1nce, c + l2);
1100 }
1101 // Learn weights input -> hidden
1102 for (c = 0; c < layer1_size; c++)
1103 syn0[c + l1] += neu1e[c];
1104 }
1105 } else if (type == 2) { //train the cwindow architecture
1106 // in -> hidden
1107 cw = 0;
1108 for (a = 0; a < window * 2 + 1; a++)
1109 if (a != window) {
1110 c = sentence_position - window + a;
1111 if (c < 0)
1112 continue;
1113 if (c >= sentence_length)
1114 continue;
1115 last_word = sen[c];
1116 if (last_word == -1)
1117 continue;
1118 window_offset = a * layer1_size;
1119 if (a > window)
1120 window_offset -= layer1_size;
1121 for (c = 0; c < layer1_size; c++)
1122 neu1[c + window_offset] += syn0[c
1123 + last_word * layer1_size];
1124 cw++;
1125 }
1126 if (cw) {
1127 if (hs)
1128 for (d = 0; d < vocab[word].codelen; d++) {
1129 f = 0;
1130 l2 = vocab[word].point[d] * window_layer_size;
1131 // Propagate hidden -> output
1132 for (c = 0; c < window_layer_size; c++)
1133 f += neu1[c] * syn1_window[c + l2];
1134 if (f <= -MAX_EXP)
1135 continue;
1136 else if (f >= MAX_EXP)
1137 continue;
1138 else
1139 f = expTable[(int) ((f + MAX_EXP)
1140 * (EXP_TABLE_SIZE / MAX_EXP / 2))];
1141 // 'g' is the gradient multiplied by the learning rate
1142 g = (1 - vocab[word].code[d] - f) * alpha;
1143 // Propagate errors output -> hidden
1144 for (c = 0; c < window_layer_size; c++)
1145 neu1e[c] += g * syn1_window[c + l2];
1146 // Learn weights hidden -> output
1147 for (c = 0; c < window_layer_size; c++)
1148 syn1_window[c + l2] += g * neu1[c];
1149 if (cap == 1)
1150 for (c = 0; c < window_layer_size; c++)
1151 capParam(syn1_window, c + l2);
1152 }
1153 // NEGATIVE SAMPLING
1154 if (negative > 0)
1155 for (d = 0; d < negative + 1; d++) {
1156 if (d == 0) {
1157 target = word;
1158 label = 1;
1159 } else {
1160 next_random = next_random
1161 * (unsigned long long) 25214903917 + 11;
1162 if (word_to_group != NULL
1163 && word_to_group[word] != -1) {
1164 target = word;
1165 while (target == word) {
1166 target = group_to_table[word_to_group[word]
1167 * table_size
1168 + (next_random >> 16) % table_size];
1169 next_random = next_random
1170 * (unsigned long long) 25214903917
1171 + 11;
1172 }
1173 //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
1174 } else {
1175 target =
1176 table[(next_random >> 16) % table_size];
1177 }
1178 if (target == 0)
1179 target = next_random % (vocab_size - 1) + 1;
1180 if (target == word)
1181 continue;
1182 label = 0;
1183 }
1184 l2 = target * window_layer_size;
1185 f = 0;
1186 for (c = 0; c < window_layer_size; c++)
1187 f += neu1[c] * syn1neg_window[c + l2];
1188 if (f > MAX_EXP)
1189 g = (label - 1) * alpha;
1190 else if (f < -MAX_EXP)
1191 g = (label - 0) * alpha;
1192 else
1193 g = (label
1194 - expTable[(int) ((f + MAX_EXP)
1195 * (EXP_TABLE_SIZE / MAX_EXP / 2))])
1196 * alpha;
1197 for (c = 0; c < window_layer_size; c++)
1198 neu1e[c] += g * syn1neg_window[c + l2];
1199 for (c = 0; c < window_layer_size; c++)
1200 syn1neg_window[c + l2] += g * neu1[c];
1201 if (cap == 1)
1202 for (c = 0; c < window_layer_size; c++)
1203 capParam(syn1neg_window, c + l2);
1204 }
1205 // Noise Contrastive Estimation
1206 if (nce > 0)
1207 for (d = 0; d < nce + 1; d++) {
1208 if (d == 0) {
1209 target = word;
1210 label = 1;
1211 } else {
1212 next_random = next_random
1213 * (unsigned long long) 25214903917 + 11;
1214 if (word_to_group != NULL
1215 && word_to_group[word] != -1) {
1216 target = word;
1217 while (target == word) {
1218 target = group_to_table[word_to_group[word]
1219 * table_size
1220 + (next_random >> 16) % table_size];
1221 next_random = next_random
1222 * (unsigned long long) 25214903917
1223 + 11;
1224 }
1225 //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
1226 } else {
1227 target =
1228 table[(next_random >> 16) % table_size];
1229 }
1230 if (target == 0)
1231 target = next_random % (vocab_size - 1) + 1;
1232 if (target == word)
1233 continue;
1234 label = 0;
1235 }
1236 l2 = target * window_layer_size;
1237 f = 0;
1238 for (c = 0; c < window_layer_size; c++)
1239 f += neu1[c] * syn1nce_window[c + l2];
1240 if (f > MAX_EXP)
1241 g = (label - 1) * alpha;
1242 else if (f < -MAX_EXP)
1243 g = (label - 0) * alpha;
1244 else {
1245 f = exp(f);
1246 g =
1247 (label
1248 - f
1249 / (noise_distribution[target]
1250 * nce + f)) * alpha;
1251 }
1252 for (c = 0; c < window_layer_size; c++)
1253 neu1e[c] += g * syn1nce_window[c + l2];
1254 for (c = 0; c < window_layer_size; c++)
1255 syn1nce_window[c + l2] += g * neu1[c];
1256 if (cap == 1)
1257 for (c = 0; c < window_layer_size; c++)
1258 capParam(syn1nce_window, c + l2);
1259 }
1260 // hidden -> in
1261 for (a = 0; a < window * 2 + 1; a++)
1262 if (a != window) {
1263 c = sentence_position - window + a;
1264 if (c < 0)
1265 continue;
1266 if (c >= sentence_length)
1267 continue;
1268 last_word = sen[c];
1269 if (last_word == -1)
1270 continue;
1271 window_offset = a * layer1_size;
1272 if (a > window)
1273 window_offset -= layer1_size;
1274 for (c = 0; c < layer1_size; c++)
1275 syn0[c + last_word * layer1_size] += neu1e[c
1276 + window_offset];
1277 }
1278 }
1279 } else if (type == 3) { //train structured skip-gram
1280 for (a = 0; a < window * 2 + 1; a++)
1281 if (a != window) {
1282 c = sentence_position - window + a;
1283 if (c < 0)
1284 continue;
1285 if (c >= sentence_length)
1286 continue;
1287 last_word = sen[c];
1288 if (last_word == -1)
1289 continue;
1290 l1 = last_word * layer1_size;
1291 window_offset = a * layer1_size;
1292 if (a > window)
1293 window_offset -= layer1_size;
1294 for (c = 0; c < layer1_size; c++)
1295 neu1e[c] = 0;
1296 // HIERARCHICAL SOFTMAX
1297 if (hs)
1298 for (d = 0; d < vocab[word].codelen; d++) {
1299 f = 0;
1300 l2 = vocab[word].point[d] * window_layer_size;
1301 // Propagate hidden -> output
1302 for (c = 0; c < layer1_size; c++)
1303 f += syn0[c + l1]
1304 * syn1_window[c + l2 + window_offset];
1305 if (f <= -MAX_EXP)
1306 continue;
1307 else if (f >= MAX_EXP)
1308 continue;
1309 else
1310 f = expTable[(int) ((f + MAX_EXP)
1311 * (EXP_TABLE_SIZE / MAX_EXP / 2))];
1312 // 'g' is the gradient multiplied by the learning rate
1313 g = (1 - vocab[word].code[d] - f) * alpha;
1314 // Propagate errors output -> hidden
1315 for (c = 0; c < layer1_size; c++)
1316 neu1e[c] += g
1317 * syn1_window[c + l2 + window_offset];
1318 // Learn weights hidden -> output
1319 for (c = 0; c < layer1_size; c++)
1320 syn1[c + l2 + window_offset] += g
1321 * syn0[c + l1];
1322 if (cap == 1)
1323 for (c = 0; c < layer1_size; c++)
1324 capParam(syn1, c + l2 + window_offset);
1325 }
1326 // NEGATIVE SAMPLING
1327 if (negative > 0)
1328 for (d = 0; d < negative + 1; d++) {
1329 if (d == 0) {
1330 target = word;
1331 label = 1;
1332 } else {
1333 next_random = next_random
1334 * (unsigned long long) 25214903917 + 11;
1335 if (word_to_group != NULL
1336 && word_to_group[word] != -1) {
1337 target = word;
1338 while (target == word) {
1339 target =
1340 group_to_table[word_to_group[word]
1341 * table_size
1342 + (next_random >> 16)
1343 % table_size];
1344 next_random =
1345 next_random
1346 * (unsigned long long) 25214903917
1347 + 11;
1348 }
1349 //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
1350 } else {
1351 target = table[(next_random >> 16)
1352 % table_size];
1353 }
1354 if (target == 0)
1355 target = next_random % (vocab_size - 1) + 1;
1356 if (target == word)
1357 continue;
1358 label = 0;
1359 }
1360 l2 = target * window_layer_size;
1361 f = 0;
1362 for (c = 0; c < layer1_size; c++)
1363 f +=
1364 syn0[c + l1]
1365 * syn1neg_window[c + l2
1366 + window_offset];
1367 if (f > MAX_EXP)
1368 g = (label - 1) * alpha;
1369 else if (f < -MAX_EXP)
1370 g = (label - 0) * alpha;
1371 else
1372 g =
1373 (label
1374 - expTable[(int) ((f + MAX_EXP)
1375 * (EXP_TABLE_SIZE
1376 / MAX_EXP / 2))])
1377 * alpha;
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +01001378 if(debug_mode > 2 && ((long long) id) == 0) {
1379 printf("negative sampling %lld for input (word) %s (#%lld), target (last word) %s returned %s (#%lld), ", d, vocab[word].word, word, vocab[last_word].word, vocab[target].word, target);
1380 printf("label %lld, a %lld, gain %.4f\n", label, a-window, g);
1381 }
Marc Kupietzd6f9c712016-03-16 11:50:56 +01001382 for (c = 0; c < layer1_size; c++)
1383 neu1e[c] +=
1384 g
1385 * syn1neg_window[c + l2
1386 + window_offset];
1387 for (c = 0; c < layer1_size; c++)
1388 syn1neg_window[c + l2 + window_offset] += g
1389 * syn0[c + l1];
1390 if (cap == 1)
1391 for (c = 0; c < layer1_size; c++)
1392 capParam(syn1neg_window,
1393 c + l2 + window_offset);
1394 }
1395 // Noise Constrastive Estimation
1396 if (nce > 0)
1397 for (d = 0; d < nce + 1; d++) {
1398 if (d == 0) {
1399 target = word;
1400 label = 1;
1401 } else {
1402 next_random = next_random
1403 * (unsigned long long) 25214903917 + 11;
1404 if (word_to_group != NULL
1405 && word_to_group[word] != -1) {
1406 target = word;
1407 while (target == word) {
1408 target =
1409 group_to_table[word_to_group[word]
1410 * table_size
1411 + (next_random >> 16)
1412 % table_size];
1413 next_random =
1414 next_random
1415 * (unsigned long long) 25214903917
1416 + 11;
1417 }
1418 //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
1419 } else {
1420 target = table[(next_random >> 16)
1421 % table_size];
1422 }
1423 if (target == 0)
1424 target = next_random % (vocab_size - 1) + 1;
1425 if (target == word)
1426 continue;
1427 label = 0;
1428 }
1429 l2 = target * window_layer_size;
1430 f = 0;
1431 for (c = 0; c < layer1_size; c++)
1432 f +=
1433 syn0[c + l1]
1434 * syn1nce_window[c + l2
1435 + window_offset];
1436 if (f > MAX_EXP)
1437 g = (label - 1) * alpha;
1438 else if (f < -MAX_EXP)
1439 g = (label - 0) * alpha;
1440 else {
1441 f = exp(f);
1442 g = (label
1443 - f
1444 / (noise_distribution[target]
1445 * nce + f)) * alpha;
1446 }
1447 for (c = 0; c < layer1_size; c++)
1448 neu1e[c] +=
1449 g
1450 * syn1nce_window[c + l2
1451 + window_offset];
1452 for (c = 0; c < layer1_size; c++)
1453 syn1nce_window[c + l2 + window_offset] += g
1454 * syn0[c + l1];
1455 if (cap == 1)
1456 for (c = 0; c < layer1_size; c++)
1457 capParam(syn1nce_window,
1458 c + l2 + window_offset);
1459 }
1460 // Learn weights input -> hidden
1461 for (c = 0; c < layer1_size; c++) {
1462 syn0[c + l1] += neu1e[c];
1463 if (syn0[c + l1] > 50)
1464 syn0[c + l1] = 50;
1465 if (syn0[c + l1] < -50)
1466 syn0[c + l1] = -50;
1467 }
1468 }
1469 } else if (type == 4) { //training senna
1470 // in -> hidden
1471 cw = 0;
1472 for (a = 0; a < window * 2 + 1; a++)
1473 if (a != window) {
1474 c = sentence_position - window + a;
1475 if (c < 0)
1476 continue;
1477 if (c >= sentence_length)
1478 continue;
1479 last_word = sen[c];
1480 if (last_word == -1)
1481 continue;
1482 window_offset = a * layer1_size;
1483 if (a > window)
1484 window_offset -= layer1_size;
1485 for (c = 0; c < layer1_size; c++)
1486 neu1[c + window_offset] += syn0[c
1487 + last_word * layer1_size];
1488 cw++;
1489 }
1490 if (cw) {
1491 for (a = 0; a < window_hidden_size; a++) {
1492 c = a * window_layer_size;
1493 for (b = 0; b < window_layer_size; b++) {
1494 neu2[a] += syn_window_hidden[c + b] * neu1[b];
1495 }
1496 }
1497 if (hs)
1498 for (d = 0; d < vocab[word].codelen; d++) {
1499 f = 0;
1500 l2 = vocab[word].point[d] * window_hidden_size;
1501 // Propagate hidden -> output
1502 for (c = 0; c < window_hidden_size; c++)
1503 f += hardTanh(neu2[c]) * syn_hidden_word[c + l2];
1504 if (f <= -MAX_EXP)
1505 continue;
1506 else if (f >= MAX_EXP)
1507 continue;
1508 else
1509 f = expTable[(int) ((f + MAX_EXP)
1510 * (EXP_TABLE_SIZE / MAX_EXP / 2))];
1511 // 'g' is the gradient multiplied by the learning rate
1512 g = (1 - vocab[word].code[d] - f) * alpha;
1513 // Propagate errors output -> hidden
1514 for (c = 0; c < window_hidden_size; c++)
1515 neu2e[c] += dHardTanh(neu2[c], g) * g
1516 * syn_hidden_word[c + l2];
1517 // Learn weights hidden -> output
1518 for (c = 0; c < window_hidden_size; c++)
1519 syn_hidden_word[c + l2] += dHardTanh(neu2[c], g) * g
1520 * neu2[c];
1521 }
1522 // NEGATIVE SAMPLING
1523 if (negative > 0)
1524 for (d = 0; d < negative + 1; d++) {
1525 if (d == 0) {
1526 target = word;
1527 label = 1;
1528 } else {
1529 next_random = next_random
1530 * (unsigned long long) 25214903917 + 11;
1531 if (word_to_group != NULL
1532 && word_to_group[word] != -1) {
1533 target = word;
1534 while (target == word) {
1535 target = group_to_table[word_to_group[word]
1536 * table_size
1537 + (next_random >> 16) % table_size];
1538 next_random = next_random
1539 * (unsigned long long) 25214903917
1540 + 11;
1541 }
1542 //printf("negative sampling %lld for word %s returned %s\n", d, vocab[word].word, vocab[target].word);
1543 } else {
1544 target =
1545 table[(next_random >> 16) % table_size];
1546 }
1547 if (target == 0)
1548 target = next_random % (vocab_size - 1) + 1;
1549 if (target == word)
1550 continue;
1551 label = 0;
1552 }
1553 l2 = target * window_hidden_size;
1554 f = 0;
1555 for (c = 0; c < window_hidden_size; c++)
1556 f += hardTanh(neu2[c])
1557 * syn_hidden_word_neg[c + l2];
1558 if (f > MAX_EXP)
1559 g = (label - 1) * alpha / negative;
1560 else if (f < -MAX_EXP)
1561 g = (label - 0) * alpha / negative;
1562 else
1563 g = (label
1564 - expTable[(int) ((f + MAX_EXP)
1565 * (EXP_TABLE_SIZE / MAX_EXP / 2))])
1566 * alpha / negative;
1567 for (c = 0; c < window_hidden_size; c++)
1568 neu2e[c] += dHardTanh(neu2[c], g) * g
1569 * syn_hidden_word_neg[c + l2];
1570 for (c = 0; c < window_hidden_size; c++)
1571 syn_hidden_word_neg[c + l2] += dHardTanh(neu2[c], g)
1572 * g * neu2[c];
1573 }
1574 for (a = 0; a < window_hidden_size; a++)
1575 for (b = 0; b < window_layer_size; b++)
1576 neu1e[b] += neu2e[a]
1577 * syn_window_hidden[a * window_layer_size + b];
1578 for (a = 0; a < window_hidden_size; a++)
1579 for (b = 0; b < window_layer_size; b++)
1580 syn_window_hidden[a * window_layer_size + b] += neu2e[a]
1581 * neu1[b];
1582 // hidden -> in
1583 for (a = 0; a < window * 2 + 1; a++)
1584 if (a != window) {
1585 c = sentence_position - window + a;
1586 if (c < 0)
1587 continue;
1588 if (c >= sentence_length)
1589 continue;
1590 last_word = sen[c];
1591 if (last_word == -1)
1592 continue;
1593 window_offset = a * layer1_size;
1594 if (a > window)
1595 window_offset -= layer1_size;
1596 for (c = 0; c < layer1_size; c++)
1597 syn0[c + last_word * layer1_size] += neu1e[c
1598 + window_offset];
1599 }
1600 }
1601 } else {
1602 printf("unknown type %i", type);
1603 exit(0);
1604 }
1605 sentence_position++;
1606 if (sentence_position >= sentence_length) {
1607 sentence_length = 0;
1608 continue;
1609 }
1610 }
1611 fclose(fi);
1612 free(neu1);
1613 free(neu1e);
1614 pthread_exit(NULL);
1615}
1616
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +01001617void ShowCollocations() {
Marc Kupietz71996e72016-03-18 13:40:24 +01001618 long a, b, c, d, e, window_offset, target, max_target=0, maxmax_target;
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +01001619 real f, max_f, maxmax_f;
Marc Kupietz71996e72016-03-18 13:40:24 +01001620 real *target_sums, bestf[MAX_CC], worstbest;
1621 long besti[MAX_CC];
Marc Kupietz79fd83d2016-03-18 14:09:07 +01001622 int N = 10, bestp[MAX_CC];
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +01001623 a = posix_memalign((void **) &target_sums, 128, vocab_size * sizeof(real));
1624
1625 for (d = cc; d < vocab_size; d++) {
1626 for (b = 0; b < vocab_size; b++)
1627 target_sums[b]=0;
Marc Kupietz71996e72016-03-18 13:40:24 +01001628 for (b = 0; b < N; b++)
1629 bestf[b]=-1;
1630 worstbest = -1;
1631
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +01001632 maxmax_f = -1;
1633 maxmax_target = 0;
Marc Kupietz0a664c12016-03-18 13:18:22 +01001634 for (a = window * 2 + 1; a >=0; a--) {
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +01001635 if (a != window) {
1636 max_f = -1;
1637 window_offset = a * layer1_size;
1638 if (a > window)
1639 window_offset -= layer1_size;
1640 for(target = 0; target < vocab_size; target ++) {
1641 if(target == d)
1642 continue;
1643 f = 0;
1644 for (c = 0; c < layer1_size; c++)
1645 f += syn0[d* layer1_size + c] * syn1neg_window[target * window_layer_size + window_offset + c];
1646 if (f < -MAX_EXP)
1647 continue;
1648 else if (f > MAX_EXP)
1649 continue;
1650 else
1651 f = expTable[(int) ((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
1652 if(f > max_f) {
1653 max_f = f;
1654 max_target = target;
1655 }
Marc Kupietz0fb5d612016-03-18 11:01:21 +01001656 target_sums[target] += (1-target_sums[target]) * f;
Marc Kupietz71996e72016-03-18 13:40:24 +01001657 if(f > worstbest) {
1658 for (b = 0; b < N; b++) {
1659 if (f > bestf[b]) {
1660 for (e = N - 1; e > b; e--) {
1661 bestf[e] = bestf[e - 1];
1662 besti[e] = besti[e - 1];
Marc Kupietz79fd83d2016-03-18 14:09:07 +01001663 bestp[e] = bestp[e - 1];
Marc Kupietz71996e72016-03-18 13:40:24 +01001664 }
1665 bestf[b] = f;
1666 besti[b] = target;
Marc Kupietz79fd83d2016-03-18 14:09:07 +01001667 bestp[b] = window-a;
Marc Kupietz71996e72016-03-18 13:40:24 +01001668 break;
1669 }
1670 }
1671 worstbest = bestf[N-1];
1672 }
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +01001673 }
1674 printf("%s (%.2f) ", vocab[max_target].word, max_f);
1675 if(max_f > maxmax_f) {
1676 maxmax_f = max_f;
1677 maxmax_target = max_target;
1678 }
1679 } else {
1680 printf("\x1b[1m%s\x1b[0m ", vocab[d].word);
1681 }
1682 }
1683 max_f = -1;
1684 for (b = 0; b < vocab_size; b++) {
1685 if(target_sums[b] > max_f) {
1686 max_f = target_sums[b];
1687 max_target = b;
1688 }
1689 }
1690 printf(" – max sum: %s (%.2f), max resp.: \x1b[1m%s\x1b[0m (%.2f)\n",
Marc Kupietz0fb5d612016-03-18 11:01:21 +01001691 vocab[max_target].word, max_f,
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +01001692 vocab[maxmax_target].word, maxmax_f);
Marc Kupietz71996e72016-03-18 13:40:24 +01001693 for(b=0; b<N && bestf[b]>-1; b++)
Marc Kupietz79fd83d2016-03-18 14:09:07 +01001694 printf("%-32s %.2f %d\n", vocab[besti[b]].word, bestf[b], bestp[b]);
Marc Kupietz71996e72016-03-18 13:40:24 +01001695 printf("\n");
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +01001696 }
1697}
1698
Marc Kupietzd6f9c712016-03-16 11:50:56 +01001699void TrainModel() {
1700 long a, b, c, d;
1701 FILE *fo;
1702 pthread_t *pt = (pthread_t *) malloc(num_threads * sizeof(pthread_t));
1703 printf("Starting training using file %s\n", train_file);
1704 starting_alpha = alpha;
1705 if (read_vocab_file[0] != 0)
1706 ReadVocab();
1707 else
1708 LearnVocabFromTrainFile();
1709 if (save_vocab_file[0] != 0)
1710 SaveVocab();
1711 if (output_file[0] == 0)
1712 return;
1713 InitNet();
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +01001714 if(cc > 0)
1715 ShowCollocations();
Marc Kupietzd6f9c712016-03-16 11:50:56 +01001716 if (negative > 0 || nce > 0)
1717 InitUnigramTable();
1718 if (negative_classes_file[0] != 0)
1719 InitClassUnigramTable();
1720 start = clock();
1721 for (a = 0; a < num_threads; a++)
1722 pthread_create(&pt[a], NULL, TrainModelThread, (void *) a);
1723 for (a = 0; a < num_threads; a++)
1724 pthread_join(pt[a], NULL);
1725 fo = fopen(output_file, "wb");
1726 if (classes == 0) {
1727 // Save the word vectors
1728 fprintf(fo, "%lld %lld\n", vocab_size, layer1_size);
1729 for (a = 0; a < vocab_size; a++) {
1730 fprintf(fo, "%s ", vocab[a].word);
1731 if (binary)
1732 for (b = 0; b < layer1_size; b++)
1733 fwrite(&syn0[a * layer1_size + b], sizeof(real), 1, fo);
1734 else
1735 for (b = 0; b < layer1_size; b++)
1736 fprintf(fo, "%lf ", syn0[a * layer1_size + b]);
1737 fprintf(fo, "\n");
1738 }
1739 } else {
1740 // Run K-means on the word vectors
1741 int clcn = classes, iter = 10, closeid;
1742 int *centcn = (int *) malloc(classes * sizeof(int));
1743 int *cl = (int *) calloc(vocab_size, sizeof(int));
1744 real closev, x;
1745 real *cent = (real *) calloc(classes * layer1_size, sizeof(real));
1746 for (a = 0; a < vocab_size; a++)
1747 cl[a] = a % clcn;
1748 for (a = 0; a < iter; a++) {
1749 for (b = 0; b < clcn * layer1_size; b++)
1750 cent[b] = 0;
1751 for (b = 0; b < clcn; b++)
1752 centcn[b] = 1;
1753 for (c = 0; c < vocab_size; c++) {
1754 for (d = 0; d < layer1_size; d++)
1755 cent[layer1_size * cl[c] + d] += syn0[c * layer1_size + d];
1756 centcn[cl[c]]++;
1757 }
1758 for (b = 0; b < clcn; b++) {
1759 closev = 0;
1760 for (c = 0; c < layer1_size; c++) {
1761 cent[layer1_size * b + c] /= centcn[b];
1762 closev += cent[layer1_size * b + c]
1763 * cent[layer1_size * b + c];
1764 }
1765 closev = sqrt(closev);
1766 for (c = 0; c < layer1_size; c++)
1767 cent[layer1_size * b + c] /= closev;
1768 }
1769 for (c = 0; c < vocab_size; c++) {
1770 closev = -10;
1771 closeid = 0;
1772 for (d = 0; d < clcn; d++) {
1773 x = 0;
1774 for (b = 0; b < layer1_size; b++)
1775 x += cent[layer1_size * d + b]
1776 * syn0[c * layer1_size + b];
1777 if (x > closev) {
1778 closev = x;
1779 closeid = d;
1780 }
1781 }
1782 cl[c] = closeid;
1783 }
1784 }
1785 // Save the K-means classes
1786 for (a = 0; a < vocab_size; a++)
1787 fprintf(fo, "%s %d\n", vocab[a].word, cl[a]);
1788 free(centcn);
1789 free(cent);
1790 free(cl);
1791 }
1792 fclose(fo);
1793 if (save_net_file[0] != 0)
1794 SaveNet();
1795}
1796
1797int ArgPos(char *str, int argc, char **argv) {
1798 int a;
1799 for (a = 1; a < argc; a++)
1800 if (!strcmp(str, argv[a])) {
1801 if (a == argc - 1) {
1802 printf("Argument missing for %s\n", str);
1803 exit(1);
1804 }
1805 return a;
1806 }
1807 return -1;
1808}
1809
1810int main(int argc, char **argv) {
1811 int i;
1812 if (argc == 1) {
1813 printf("WORD VECTOR estimation toolkit v 0.1c\n\n");
1814 printf("Options:\n");
1815 printf("Parameters for training:\n");
1816 printf("\t-train <file>\n");
1817 printf("\t\tUse text data from <file> to train the model\n");
1818 printf("\t-output <file>\n");
1819 printf(
1820 "\t\tUse <file> to save the resulting word vectors / word clusters\n");
1821 printf("\t-size <int>\n");
1822 printf("\t\tSet size of word vectors; default is 100\n");
1823 printf("\t-window <int>\n");
1824 printf("\t\tSet max skip length between words; default is 5\n");
1825 printf("\t-sample <float>\n");
1826 printf(
1827 "\t\tSet threshold for occurrence of words. Those that appear with higher frequency in the training data\n");
1828 printf(
1829 "\t\twill be randomly down-sampled; default is 1e-3, useful range is (0, 1e-5)\n");
1830 printf("\t-hs <int>\n");
1831 printf("\t\tUse Hierarchical Softmax; default is 0 (not used)\n");
1832 printf("\t-negative <int>\n");
1833 printf(
1834 "\t\tNumber of negative examples; default is 5, common values are 3 - 10 (0 = not used)\n");
1835 printf("\t-negative-classes <file>\n");
1836 printf("\t\tNegative classes to sample from\n");
1837 printf("\t-nce <int>\n");
1838 printf(
1839 "\t\tNumber of negative examples for nce; default is 0, common values are 3 - 10 (0 = not used)\n");
1840 printf("\t-threads <int>\n");
1841 printf("\t\tUse <int> threads (default 12)\n");
1842 printf("\t-iter <int>\n");
1843 printf("\t\tRun more training iterations (default 5)\n");
1844 printf("\t-min-count <int>\n");
1845 printf(
1846 "\t\tThis will discard words that appear less than <int> times; default is 5\n");
1847 printf("\t-alpha <float>\n");
1848 printf(
1849 "\t\tSet the starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW\n");
1850 printf("\t-classes <int>\n");
1851 printf(
1852 "\t\tOutput word classes rather than word vectors; default number of classes is 0 (vectors are written)\n");
1853 printf("\t-debug <int>\n");
1854 printf(
1855 "\t\tSet the debug mode (default = 2 = more info during training)\n");
1856 printf("\t-binary <int>\n");
1857 printf(
1858 "\t\tSave the resulting vectors in binary moded; default is 0 (off)\n");
1859 printf("\t-save-vocab <file>\n");
1860 printf("\t\tThe vocabulary will be saved to <file>\n");
1861 printf("\t-read-vocab <file>\n");
1862 printf(
1863 "\t\tThe vocabulary will be read from <file>, not constructed from the training data\n");
1864 printf("\t-read-net <file>\n");
1865 printf(
1866 "\t\tThe net parameters will be read from <file>, not initialized randomly\n");
1867 printf("\t-save-net <file>\n");
1868 printf("\t\tThe net parameters will be saved to <file>\n");
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +01001869 printf("\t-show-cc <int>\n");
1870 printf("\t\tShow words with their collocators starting from word rank <int>. Depends on -read-vocab and -read-net.\n");
Marc Kupietzd6f9c712016-03-16 11:50:56 +01001871 printf("\t-type <int>\n");
1872 printf(
1873 "\t\tType of embeddings (0 for cbow, 1 for skipngram, 2 for cwindow, 3 for structured skipngram, 4 for senna type)\n");
1874 printf("\t-cap <int>\n");
1875 printf(
1876 "\t\tlimit the parameter values to the range [-50, 50]; default is 0 (off)\n");
1877 printf("\nExamples:\n");
1878 printf(
1879 "./word2vec -train data.txt -output vec.txt -size 200 -window 5 -sample 1e-4 -negative 5 -hs 0 -binary 0 -type 1 -iter 3\n\n");
1880 return 0;
1881 }
1882 output_file[0] = 0;
1883 save_vocab_file[0] = 0;
1884 read_vocab_file[0] = 0;
1885 save_net_file[0] = 0;
1886 read_net_file[0] = 0;
1887 negative_classes_file[0] = 0;
1888 if ((i = ArgPos((char *) "-size", argc, argv)) > 0)
1889 layer1_size = atoi(argv[i + 1]);
1890 if ((i = ArgPos((char *) "-train", argc, argv)) > 0)
1891 strcpy(train_file, argv[i + 1]);
1892 if ((i = ArgPos((char *) "-save-vocab", argc, argv)) > 0)
1893 strcpy(save_vocab_file, argv[i + 1]);
1894 if ((i = ArgPos((char *) "-read-vocab", argc, argv)) > 0)
1895 strcpy(read_vocab_file, argv[i + 1]);
1896 if ((i = ArgPos((char *) "-save-net", argc, argv)) > 0)
1897 strcpy(save_net_file, argv[i + 1]);
1898 if ((i = ArgPos((char *) "-read-net", argc, argv)) > 0)
1899 strcpy(read_net_file, argv[i + 1]);
1900 if ((i = ArgPos((char *) "-debug", argc, argv)) > 0)
1901 debug_mode = atoi(argv[i + 1]);
1902 if ((i = ArgPos((char *) "-binary", argc, argv)) > 0)
1903 binary = atoi(argv[i + 1]);
Marc Kupietz6b1f2ba2016-03-17 21:17:42 +01001904 if ((i = ArgPos((char *) "-show-cc", argc, argv)) > 0)
1905 cc = atoi(argv[i + 1]);
Marc Kupietzd6f9c712016-03-16 11:50:56 +01001906 if ((i = ArgPos((char *) "-type", argc, argv)) > 0)
1907 type = atoi(argv[i + 1]);
1908 if ((i = ArgPos((char *) "-output", argc, argv)) > 0)
1909 strcpy(output_file, argv[i + 1]);
1910 if ((i = ArgPos((char *) "-window", argc, argv)) > 0)
1911 window = atoi(argv[i + 1]);
1912 if ((i = ArgPos((char *) "-sample", argc, argv)) > 0)
1913 sample = atof(argv[i + 1]);
1914 if ((i = ArgPos((char *) "-hs", argc, argv)) > 0)
1915 hs = atoi(argv[i + 1]);
1916 if ((i = ArgPos((char *) "-negative", argc, argv)) > 0)
1917 negative = atoi(argv[i + 1]);
1918 if ((i = ArgPos((char *) "-negative-classes", argc, argv)) > 0)
1919 strcpy(negative_classes_file, argv[i + 1]);
1920 if ((i = ArgPos((char *) "-nce", argc, argv)) > 0)
1921 nce = atoi(argv[i + 1]);
1922 if ((i = ArgPos((char *) "-threads", argc, argv)) > 0)
1923 num_threads = atoi(argv[i + 1]);
1924 if ((i = ArgPos((char *) "-iter", argc, argv)) > 0)
1925 iter = atoi(argv[i + 1]);
1926 if ((i = ArgPos((char *) "-min-count", argc, argv)) > 0)
1927 min_count = atoi(argv[i + 1]);
1928 if ((i = ArgPos((char *) "-classes", argc, argv)) > 0)
1929 classes = atoi(argv[i + 1]);
1930 if ((i = ArgPos((char *) "-cap", argc, argv)) > 0)
1931 cap = atoi(argv[i + 1]);
1932 if (type == 0 || type == 2 || type == 4)
1933 alpha = 0.05;
1934 if ((i = ArgPos((char *) "-alpha", argc, argv)) > 0)
1935 alpha = atof(argv[i + 1]);
1936 vocab = (struct vocab_word *) calloc(vocab_max_size,
1937 sizeof(struct vocab_word));
1938 vocab_hash = (int *) calloc(vocab_hash_size, sizeof(int));
1939 expTable = (real *) malloc((EXP_TABLE_SIZE + 1) * sizeof(real));
1940 for (i = 0; i < EXP_TABLE_SIZE; i++) {
1941 expTable[i] = exp((i / (real) EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table
1942 expTable[i] = expTable[i] / (expTable[i] + 1); // Precompute f(x) = x / (x + 1)
1943 }
1944 TrainModel();
1945 return 0;
1946}
1947