blob: df9331714d96e0623f17bbc23dadecf41c1ec0a2 [file] [log] [blame]
#!/usr/local/bin/perl
use Inline C;
#use Inline C => Config => BUILD_NOISY => 1, CFLAGS => $Config{cflags}." -O4 -mtune k9";
use Inline C => Config => CLEAN_AFTER_BUILD => 0, ccflags => $Config{ccflags}." -O4";
use Mojolicious::Lite;
use Mojo::JSON qw(decode_json encode_json to_json);
use Encode qw(decode encode);
use Getopt::Std;
use Mojo::Server::Daemon;
plugin 'Log::Access';
our $opt_i = 0; # latin1-input?
our $opt_l = undef;
our $opt_p = 5676;
our $opt_m;
our $opt_M;
our $opt_n = '';
our $opt_d;
our $opt_G;
my %marked;
my $training_args="";
my $mergedEnd=0;
getopts('d:Gil:p:m:M:');
if($opt_M) {
open my $handle, '<:encoding(UTF-8)', $opt_M
or die "Can't open '$opt_M' for reading: $!";
while(<$handle>) {
foreach my $mw (split /\s+/) {
$marked{$mw}=1
}
}
close($handle);
}
# -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 40 -binary 1 -iter 15
if(!$ARGV[0]) {
init_net("vectors15.bin", $opt_n, ($opt_i? 1 : 0));
} else {
init_net($ARGV[0], $opt_n, ($opt_i? 1 : 0));
if(open(FILE, "$ARGV[0].args")) {
$training_args = <FILE>;
}
close(FILE);
}
if($opt_m) {
$mergedEnd = mergeVectors($opt_m);
}
if($opt_d) { # -d: dump vecs and exit
dump_vecs($opt_d);
exit;
}
my $daemon = Mojo::Server::Daemon->new(
app => app,
listen => ['http://'.($opt_l ? $opt_l : '*').":$opt_p"]
);
if($opt_G) {
print "Filtering garbage\n";
filter_garbage();
}
get '/' => sub {
my $c = shift;
my $word=$c->param('word');
my $no_nbs=$c->param('n') || 100;
my $no_iterations=$c->param('N') || 2000;
my $perplexity=$c->param('perplexity') || 20;
my $epsilon=$c->param('epsilon') || 5;
my $som=$c->param('som') || 0;
my $searchBaseVocabFirst=$c->param('sbf') || 0;
my $sort=$c->param('sort') || 0;
my $json=$c->param('json') || 0;
my $res;
my @lists;
my @collocations;
if(defined($word) && $word !~ /^\s*$/) {
$c->inactivity_timeout(300);
$word =~ s/\s+/ /g;
for my $w (split(' *\| *', $word)) {
$c->app->log->debug('Looking for neighbours of '.$w);
if($opt_i) {
$res = get_neighbours(encode("iso-8859-1", $w), $no_nbs, $sort, $searchBaseVocabFirst);
} else {
$res = get_neighbours($w, $no_nbs, $sort, $searchBaseVocabFirst);
}
push(@lists, $res->{paradigmatic});
}
}
$word =~ s/ *\| */ | /g;
if($json) {
return $c->render(json => {word => $word, list => \@lists, collocators=>$res->{syntagmatic}});
} else {
$c->render(template=>"index", word=>$word, no_nbs=>$no_nbs, no_iterations => $no_iterations, epsilon=> $epsilon, perplexity=> $perplexity, show_som=>$som, searchBaseVocabFirst=>$searchBaseVocabFirst, sort=>$sort, training_args=>$training_args, mergedEnd=> $mergedEnd, marked=>\%marked, lists=> \@lists, collocators=> $res->{syntagmatic});
}
};
$daemon->run; # app->start;
exit;
__END__
__C__
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <malloc.h>
#include <stdlib.h> //strlen
#include <sys/mman.h>
#include <pthread.h>
#define max_size 2000
#define max_w 50
#define MAX_NEIGHBOURS 1000
#define MAX_WORDS -1
#define MAX_THREADS 100
#define MAX_CC 50
#define EXP_TABLE_SIZE 1000
#define MAX_EXP 6
#define MIN_RESP 0.50
//the thread function
void *connection_handler(void *);
typedef struct {
long long *index;
float *dist;
float *norm;
long long *pos;
int length;
} knn;
typedef struct {
long long wordi[MAX_NEIGHBOURS];
char sep[MAX_NEIGHBOURS];
int length;
} wordlist;
typedef struct {
wordlist *wl;
char *token;
int N;
long from;
unsigned long upto;
float *target_sums;
} knnpars;
float *M, *M2=0L, *syn1neg_window, *expTable;
char *vocab;
char *garbage = NULL;
long long words, size, merged_end;
int num_threads=20;
int latin_enc=0;
int window;
int init_net(char *file_name, char *net_name, int latin) {
FILE *f, *binvecs, *binwords;
int binwords_fd, binvecs_fd, net_fd, i;
long long a, b, c, d, cn;
float len;
double val;
char binvecs_fname[256], binwords_fname[256];
strcpy(binwords_fname, file_name);
strcat(binwords_fname, ".words");
strcpy(binvecs_fname, file_name);
strcat(binvecs_fname, ".vecs");
latin_enc = latin;
f = fopen(file_name, "rb");
if (f == NULL) {
printf("Input file %s not found\n", file_name);
return -1;
}
fscanf(f, "%lld", &words);
if(MAX_WORDS > 0 && words > MAX_WORDS) words = MAX_WORDS;
fscanf(f, "%lld", &size);
if( (binvecs_fd = open(binvecs_fname, O_RDONLY)) < 0 || (binwords_fd = open(binwords_fname, O_RDONLY)) < 0) {
printf("Converting %s to memory mappable structures\n", file_name);
vocab = (char *)malloc((long long)words * max_w * sizeof(char));
M = (float *)malloc((long long)words * (long long)size * sizeof(float));
if (M == NULL) {
printf("Cannot allocate memory: %lld MB %lld %lld\n", (long long)words * size * sizeof(float) / 1048576, words, size);
return -1;
}
if(strstr(file_name, ".txt")) {
for (b = 0; b < words; b++) {
a = 0;
while (1) {
vocab[b * max_w + a] = fgetc(f);
if (feof(f) || (vocab[b * max_w + a] == ' ')) break;
if ((a < max_w) && (vocab[b * max_w + a] != '\n')) a++;
}
vocab[b * max_w + a] = 0;
len = 0;
for (a = 0; a < size; a++) {
fscanf(f, "%lf", &val);
M[a + b * size] = val;
len += val * val;
}
len = sqrt(len);
for (a = 0; a < size; a++) M[a + b * size] /= len;
}
} else {
for (b = 0; b < words; b++) {
a = 0;
while (1) {
vocab[b * max_w + a] = fgetc(f);
if (feof(f) || (vocab[b * max_w + a] == ' ')) break;
if ((a < max_w) && (vocab[b * max_w + a] != '\n')) a++;
}
vocab[b * max_w + a] = 0;
fread(&M[b * size], sizeof(float), size, f);
len = 0;
for (a = 0; a < size; a++) len += M[a + b * size] * M[a + b * size];
len = sqrt(len);
for (a = 0; a < size; a++) M[a + b * size] /= len;
}
}
if( (binvecs = fopen(binvecs_fname, "wb")) != NULL && (binwords = fopen(binwords_fname, "wb")) != NULL) {
fwrite(M, sizeof(float), (long long)words * (long long)size, binvecs);
fclose(binvecs);
fwrite(vocab, sizeof(char), (long long)words * max_w, binwords);
fclose(binwords);
}
}
if( (binvecs_fd = open(binvecs_fname, O_RDONLY)) >= 0 && (binwords_fd = open(binwords_fname, O_RDONLY)) >= 0) {
M = mmap(0, sizeof(float) * (long long)words * (long long)size, PROT_READ, MAP_SHARED, binvecs_fd, 0);
vocab = mmap(0, sizeof(char) * (long long)words * max_w, PROT_READ, MAP_SHARED, binwords_fd, 0);
if (M == MAP_FAILED || vocab == MAP_FAILED) {
close(binvecs_fd);
close(binwords_fd);
fprintf(stderr, "Cannot mmap %s or %s\n", binwords_fname, binvecs_fname);
exit(-1);
}
} else {
fprintf(stderr, "Cannot open %s or %s\n", binwords_fname, binvecs_fname);
exit(-1);
}
fclose(f);
if(net_name && strlen(net_name) > 0) {
if( (net_fd = open(net_name, O_RDONLY)) >= 0) {
window = (lseek(net_fd, 0, SEEK_END) - sizeof(float) * words * size) / words / size / sizeof(float) / 2;
// lseek(net_fd, sizeof(float) * words * size, SEEK_SET);
// munmap(M, sizeof(float) * words * size);
M2 = mmap(0, sizeof(float) * words * size + sizeof(float) * 2 * window * size * words, PROT_READ, MAP_SHARED, net_fd, 0);
if (M2 == MAP_FAILED) {
close(net_fd);
fprintf(stderr, "Cannot mmap %s\n", net_name);
exit(-1);
}
syn1neg_window = M2 + words * size;
} else {
fprintf(stderr, "Cannot open %s\n", net_name);
exit(-1);
}
fprintf(stderr, "Successfully memmaped %s. Determined window size: %d\n", net_name, window);
}
expTable = (float *) malloc((EXP_TABLE_SIZE + 1) * sizeof(float));
for (i = 0; i < EXP_TABLE_SIZE; i++) {
expTable[i] = exp((i / (float) EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table
expTable[i] = expTable[i] / (expTable[i] + 1); // Precompute f(x) = x / (x + 1)
}
return 0;
}
long mergeVectors(char *file_name){
FILE *f, *binvecs, *binwords;
int binwords_fd, binvecs_fd, net_fd, i;
long long a, b, c, d, cn;
float len;
float *merge_vecs;
char *merge_vocab;
long long merge_words, merge_size;
char binvecs_fname[256], binwords_fname[256];
strcpy(binwords_fname, file_name);
strcat(binwords_fname, ".words");
strcpy(binvecs_fname, file_name);
strcat(binvecs_fname, ".vecs");
f = fopen(file_name, "rb");
if (f == NULL) {
printf("Input file %s not found\n", file_name);
exit -1;
}
fscanf(f, "%lld", &merge_words);
fscanf(f, "%lld", &merge_size);
if(merge_size != size){
fprintf(stderr, "vectors must have the same length\n");
exit(-1);
}
if( (binvecs_fd = open(binvecs_fname, O_RDONLY)) >= 0 && (binwords_fd = open(binwords_fname, O_RDONLY)) >= 0) {
merge_vecs = malloc(sizeof(float) * (words + merge_words) * size);
merge_vocab = malloc(sizeof(char) * (words + merge_words) * max_w);
if (merge_vecs == NULL || merge_vocab == NULL) {
close(binvecs_fd);
close(binwords_fd);
fprintf(stderr, "Cannot reserve memory for %s or %s\n", binwords_fname, binvecs_fname);
exit(-1);
}
read(binvecs_fd, merge_vecs, merge_words * size * sizeof(float));
read(binwords_fd, merge_vocab, merge_words * max_w);
} else {
fprintf(stderr, "Cannot open %s or %s\n", binwords_fname, binvecs_fname);
exit(-1);
}
printf("Successfully reallocated memory\nMerging...\n");
fflush(stdout);
memcpy(merge_vecs + merge_words * size, M, words * size * sizeof(float));
memcpy(merge_vocab + merge_words * max_w, vocab, words * max_w);
munmap(M, words * size * sizeof(float));
munmap(vocab, words * max_w);
M = merge_vecs;
vocab = merge_vocab;
merged_end = merge_words;
words += merge_words;
fclose(f);
printf("merged_end: %lld, words: %lld\n", merged_end, words);
return((long) merged_end);
}
void filter_garbage() {
long i;
unsigned char *w, previous, c;
garbage = malloc(words);
memset(garbage, 0, words);
for (i = 0; i < words; i++) {
w = vocab + i * max_w;
previous = 0;
while((c = *w++) && !garbage[i]) {
if( ((c <= 90 && c >= 65) && (previous >= 97 && previous <= 122)) ||
(previous == '-' && (c & 32)) ||
(previous == 0xc2 && (c == 0xa4 || c == 0xb6 ))
) {
garbage[i]=1;
continue;
}
previous = c;
}
}
return;
}
void *getCollocators(knnpars *pars) {
int N = pars->N;
int cc = pars->wl->wordi[0];
knn *nbs = NULL;
long window_layer_size = size * window * 2;
long a, b, c, d, e, window_offset, target, max_target=0, maxmax_target;
float f, max_f, maxmax_f;
float *target_sums, *bestf, *bestn, worstbest, wpos_sum;
long long *besti, *bestp;
if(M2 == NULL || cc == -1)
return NULL;
a = posix_memalign((void **) &target_sums, 128, words * sizeof(float));
besti = malloc(N * sizeof(long long));
bestp = malloc(N * sizeof(long long));
bestf = malloc(N * sizeof(float));
bestn = malloc(N * sizeof(float));
worstbest = MIN_RESP;
for (b = 0; b < words; b++)
target_sums[b]=0;
for (b = 0; b < N; b++) {
besti[b] = -1;
bestn[b] = 1;
bestf[b] = worstbest;
}
d = cc;
maxmax_f = -1;
maxmax_target = 0;
for (a = pars->from; a < pars->upto; a++) {
if(a >= window)
a++;
wpos_sum = 0;
printf("window pos: %ld\n", a);
if (a != window) {
max_f = -1;
window_offset = a * size;
if (a > window)
window_offset -= size;
for(target = 0; target < words; target ++) {
if(target == d)
continue;
f = 0;
for (c = 0; c < size; c++)
f += M2[d* size + c] * syn1neg_window[target * window_layer_size + window_offset + c];
if (f < -MAX_EXP)
continue;
else if (f > MAX_EXP)
continue;
else
f = expTable[(int) ((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
wpos_sum += f;
target_sums[target] += f;
if(f > worstbest) {
for (b = 0; b < N; b++) {
if (f > bestf[b]) {
memmove(bestf + b + 1, bestf + b, (N - b -1) * sizeof(float));
memmove(besti + b + 1, besti + b, (N - b -1) * sizeof(long long));
memmove(bestp + b + 1, bestp + b, (N - b -1) * sizeof(long long));
bestf[b] = f;
besti[b] = target;
bestp[b] = window-a;
break;
}
}
if(b == N - 1)
worstbest = bestf[N-1];
}
}
printf("%d %.2f\n", max_target, max_f);
printf("%s (%.2f) ", &vocab[max_target * max_w], max_f);
if(max_f > maxmax_f) {
maxmax_f = max_f;
maxmax_target = max_target;
}
for (b = 0; b < N; b++)
if(bestp[b] == window-a)
bestn[b] = bestf[b] / wpos_sum;
} else {
printf("\x1b[1m%s\x1b[0m ", &vocab[d*max_w]);
}
}
for (b = 0; b < words; b++)
pars->target_sums[b] += (target_sums[b] / wpos_sum ) / (window * 2);
free(target_sums);
for(b=0; b<N && besti[b] >= 0; b++) // THIS LOOP IS NEEDED (b...)
printf("%s %.2f %d * ", &vocab[besti[b]*max_w], bestf[b], bestp[b]);
printf("\n");
nbs = malloc(sizeof(knn));
nbs->index = besti;
nbs->dist = bestf;
nbs->norm = bestn;
nbs->pos = bestp;
nbs->length = b-1;
pthread_exit(nbs);
}
wordlist *getTargetWords(char *st1, int search_backw) {
wordlist *wl = malloc(sizeof(wordlist));
char st[100][max_size], sep[100];
long a, b=0, c=0, cn=0;
int unmerged;
while (1) {
st[cn][b] = st1[c];
b++;
c++;
st[cn][b] = 0;
if (st1[c] == 0) break;
if (st1[c] == ' ' || st1[c] == '-') {
sep[cn++] = st1[c];
b = 0;
c++;
}
}
cn++;
for (a = 0; a < cn; a++) {
if(search_backw) {
for (b = words - 1; b >= 0; b--) if (!strcmp(&vocab[b * max_w], st[a])) break;
} else {
for (b = 0; b < words; b++) if (!strcmp(&vocab[b * max_w], st[a])) break;
}
if (b == words) b = -1;
wl->wordi[a] = b;
fprintf(stderr, "Word: \"%s\" Position in vocabulary: %lld\n", st[a], wl->wordi[a]);
if (b == -1) {
fprintf(stderr, "Out of dictionary word!\n");
cn--;
break;
}
}
wl->length=cn;
return(wl);
}
void *_get_neighbours(knnpars *pars) {
char *st1 = pars->token;
int N = pars->N;
long from = pars -> from;
unsigned long upto = pars -> upto;
char file_name[max_size], st[100][max_size], *sep;
float dist, len, *bestd, vec[max_size];
long long a, b, c, d, cn, *bi, *besti;
char ch;
knn *nbs = NULL;
wordlist *wl = pars->wl;
besti = malloc(N * sizeof(long long));
bestd = malloc(N * sizeof(float));
float worstbest=-1;
for (a = 0; a < N; a++) bestd[a] = 0;
a = 0;
bi = wl->wordi;
cn = wl->length;
sep = wl->sep;
b = bi[0];
c = 0;
if (b == -1) {
N = 0;
goto end;
}
for (a = 0; a < size; a++) vec[a] = 0;
for (b = 0; b < cn; b++) {
if (bi[b] == -1) continue;
if(b>0 && sep[b-1] == '-')
for (a = 0; a < size; a++) vec[a] -= M[a + bi[b] * size];
else
for (a = 0; a < size; a++) vec[a] += M[a + bi[b] * size];
}
len = 0;
for (a = 0; a < size; a++) len += vec[a] * vec[a];
len = sqrt(len);
for (a = 0; a < size; a++) vec[a] /= len;
for (a = 0; a < N; a++) bestd[a] = -1;
for (c = from; c < upto; c++) {
if(garbage && garbage[c]) continue;
a = 0;
// do not skip taget word
// for (b = 0; b < cn; b++) if (bi[b] == c) a = 1;
// if (a == 1) continue;
dist = 0;
for (a = 0; a < size; a++) dist += vec[a] * M[a + c * size];
if(dist > worstbest) {
for (a = 0; a < N; a++) {
if (dist > bestd[a]) {
memmove(bestd + a + 1, bestd + a, (N - a -1) * sizeof(float));
memmove(besti + a + 1, besti + a, (N - a -1) * sizeof(long long));
bestd[a] = dist;
besti[a] = c;
break;
}
}
worstbest = bestd[N-1];
}
}
nbs = malloc(sizeof(knn));
nbs->index = besti;
nbs->dist = bestd;
nbs->length = N;
end:
pthread_exit(nbs);
}
SV *get_neighbours(char *st1, int N, int sort_by, int search_backw) {
HV *result = newHV();
float *target_sums, bestd[MAX_NEIGHBOURS], bestn[MAX_NEIGHBOURS], bests[MAX_NEIGHBOURS], vec[max_size];
long besti[MAX_NEIGHBOURS], bestp[MAX_NEIGHBOURS], a, b, c, d, slice;
knn *para_nbs[MAX_THREADS];
knn *syn_nbs[MAX_THREADS];
knnpars pars[MAX_THREADS];
pthread_t *pt = (pthread_t *)malloc((num_threads+1) * sizeof(pthread_t));
wordlist *wl;
int syn_threads = (M2? window * 2 : 0);
int para_threads = num_threads - syn_threads;
if(N>MAX_NEIGHBOURS) N=MAX_NEIGHBOURS;
slice = words / para_threads;
wl = getTargetWords(st1, search_backw);
if(wl->length < 1)
goto end;
a = posix_memalign((void **) &target_sums, 128, words * sizeof(float));
for(a = 0; a < words; a++)
target_sums[a] = 0;
printf("Starting %d threads\n", para_threads);
fflush(stdout);
for(a=0; a < para_threads; a++) {
pars[a].token = st1;
pars[a].wl = wl;
pars[a].N = N;
pars[a].from = a*slice;
pars[a].upto = ((a+1)*slice > words? words:(a+1)*slice);
pthread_create(&pt[a], NULL, _get_neighbours, (void *) &pars[a]);
}
if(M2) {
for(a=0; a < syn_threads; a++) {
pars[a + para_threads].target_sums = target_sums;
pars[a + para_threads].wl = wl;
pars[a + para_threads].N = N;
pars[a + para_threads].from = a;
pars[a + para_threads].upto = a+1;
pthread_create(&pt[a + para_threads], NULL, getCollocators, (void *) &pars[a + para_threads]);
}
}
printf("Waiting for para threads to join\n");
fflush(stdout);
for (a = 0; a < para_threads; a++) pthread_join(pt[a], &para_nbs[a]);
printf("Para threads joint\n");
fflush(stdout);
/* if(!syn_nbs[0]) */
/* goto end; */
for(b=0; b < N; b++) {
besti[b] = para_nbs[0]->index[b];
bestd[b] = para_nbs[0]->dist[b];
}
for(a=1; a < para_threads; a++) {
for(b=0; b < para_nbs[a]->length && para_nbs[a]->index[b] >= 0; b++) {
for(c=0; c < N; c++) {
if(para_nbs[a]->dist[b] > bestd[c]) {
for(d=N-1; d>c; d--) {
bestd[d] = bestd[d-1];
besti[d] = besti[d-1];
}
besti[c] = para_nbs[a]->index[b];
bestd[c] = para_nbs[a]->dist[b];
break;
}
}
}
}
AV* array = newAV();
for (a = 0; a < N; a++) {
HV* hash = newHV();
SV* word = newSVpvf(&vocab[besti[a] * max_w], 0);
if(latin_enc == 0) SvUTF8_on(word);
hv_store(hash, "word", strlen("word"), word , 0);
hv_store(hash, "dist", strlen("dist"), newSVnv(bestd[a]), 0);
hv_store(hash, "rank", strlen("rank"), newSVuv(besti[a]), 0);
AV *vector = newAV();
for (b = 0; b < size; b++) {
av_push(vector, newSVnv(M[b + besti[a] * size]));
}
hv_store(hash, "vector", strlen("vector"), newRV_noinc((SV*)vector), 0);
av_push(array, newRV_noinc((SV*)hash));
}
hv_store(result, "paradigmatic", strlen("paradigmatic"), newRV_noinc((SV*)array), 0);
for(b=0; b < MAX_NEIGHBOURS; b++) {
besti[b] = -1L;
bestd[b] = 0;
bestn[b] = 0;
bestp[b] = 0;
bests[b] = 0;
}
if (M2) {
printf("Waiting for syn threads to join\n");
fflush(stdout);
for (a = 0; a < syn_threads; a++) pthread_join(pt[a+para_threads], &syn_nbs[a]);
printf("syn threads joint\n");
fflush(stdout);
for(b=0; b < syn_nbs[0]->length; b++) {
besti[b] = syn_nbs[0]->index[b];
bestd[b] = syn_nbs[0]->dist[b];
bestn[b] = syn_nbs[0]->norm[b];
bestp[b] = syn_nbs[0]->pos[b];
bests[b] = target_sums[syn_nbs[0]->index[b]];
}
if(sort_by != 1) { // sort by responsiveness
for(a=1; a < syn_threads; a++) {
for(b=0; b < syn_nbs[a]->length; b++) {
for(c=0; c < MAX_NEIGHBOURS; c++) {
if(syn_nbs[a]->dist[b] > bestd[c]) {
for(d=MAX_NEIGHBOURS-1; d>c; d--) {
bestd[d] = bestd[d-1];
besti[d] = besti[d-1];
bestn[d] = bestn[d-1];
bestp[d] = bestp[d-1];
}
besti[c] = syn_nbs[a]->index[b];
bestd[c] = syn_nbs[a]->dist[b];
bestn[c] = syn_nbs[a]->norm[b];
bestp[c] = syn_nbs[a]->pos[b];
break;
}
}
}
}
} else { // sort by mean p
for(a=1; a < syn_threads; a++) {
for(b=0; b < syn_nbs[a]->length; b++) {
for(c=0; c < MAX_NEIGHBOURS; c++) {
if(target_sums[syn_nbs[a]->index[b]] > bests[c]) {
for(d=MAX_NEIGHBOURS-1; d>c; d--) {
bestd[d] = bestd[d-1];
besti[d] = besti[d-1];
bestn[d] = bestn[d-1];
bestp[d] = bestp[d-1];
bests[d] = bests[d-1];
}
besti[c] = syn_nbs[a]->index[b];
bestd[c] = syn_nbs[a]->dist[b];
bestn[c] = syn_nbs[a]->norm[b];
bestp[c] = syn_nbs[a]->pos[b];
bests[c] = target_sums[syn_nbs[a]->index[b]];
break;
}
}
}
}
}
array = newAV();
for (a = 0; a < MAX_NEIGHBOURS && besti[a] >= 0; a++) {
HV* hash = newHV();
SV* word = newSVpvf(&vocab[besti[a] * max_w], 0);
if(latin_enc == 0) SvUTF8_on(word);
hv_store(hash, "word", strlen("word"), word , 0);
hv_store(hash, "dist", strlen("dist"), newSVnv(bestd[a]), 0);
hv_store(hash, "norm", strlen("norm"), newSVnv(bestn[a]), 0);
hv_store(hash, "sum", strlen("sum"), newSVnv(target_sums[besti[a]]), 0);
hv_store(hash, "pos", strlen("pos"), newSVnv(bestp[a]), 0);
av_push(array, newRV_noinc((SV*)hash));
}
hv_store(result, "syntagmatic", strlen("syntagmatic"), newRV_noinc((SV*)array), 0);
}
end:
return newRV_noinc((SV*)result);
}
int dump_vecs(char *fname) {
long i, j;
FILE *f;
/* if(words>200000) */
/* words=200000; */
if((f=fopen(fname, "w")) == NULL) {
fprintf(stderr, "cannot open %s for writing\n", fname);
return(-1);
}
fprintf(f, "%lld %lld\n", words, size);
for (i=0; i < words; i++) {
fprintf(f, "%s ", &vocab[i * max_w]);
for(j=0; j < size - 1; j++)
fprintf(f, "%f ", M[i*size + j]);
fprintf(f, "%f\n", M[i*size + j]);
}
fclose(f);
return(0);
}