| #' Retrieves text embeddings for character input from a vector from the GPT-3 API |
| #' |
| #' @description |
| #' `gpt3_bunch_embedding()` extends the single embeddings function `gpt3_make_embedding()` to allow for the processing of a whole vector |
| #' @details The returned data.table contains the column `id` which indicates the text id (or its generic alternative if not specified) and the columns `dim_1` ... `dim_{max}`, where `max` is the length of the text embeddings vector that the four different models return. For the default "Ada" model, these are 1024 dimensions (i.e., `dim_1`... `dim_1024`). |
| #' |
| #' The function supports the text similarity embeddings for the four GPT-3 models as specified in the parameter list. The main difference between the four models is the sophistication of the embedding representation as indicated by the vector embedding size. |
| #' - Ada (1024 dimensions) |
| #' - Babbage (2048 dimensions) |
| #' - Curie (4096 dimensions) |
| #' - Davinci (12288 dimensions) |
| #' |
| #' Note that the dimension size (= vector length), speed and [associated costs](https://openai.com/api/pricing/) differ considerably. |
| #' |
| #' These vectors can be used for downstream tasks such as (vector) similarity calculations. |
| #' @param input_var character vector that contains the texts for which you want to obtain text embeddings from the GPT-3 model |
| #' #' @param id_var (optional) character vector that contains the user-defined ids of the prompts. See details. |
| #' @param param_model a character vector that indicates the [similarity embedding model](https://beta.openai.com/docs/guides/embeddings/similarity-embeddings); one of "text-similarity-ada-001" (default), "text-similarity-curie-001", "text-similarity-babbage-001", "text-similarity-davinci-001" |
| #' @return A data.table with the embeddings as separate columns; one row represents one input text. See details. |
| #' @examples |
| #' # First authenticate with your API key via `gpt3_authenticate('pathtokey')` |
| #' |
| #' # Use example data: |
| #' ## The data below were generated with the `gpt3_make_request()` function as follows: |
| #' ##### DO NOT RUN ##### |
| #' # travel_blog_data = gpt3_make_request(prompt_input = "Write a travel blog about a dog's journey through the UK:", temperature = 0.8, n = 10, max_tokens = 200)[[1]] |
| #' ##### END DO NOT RUN ##### |
| #' |
| #' # You can load these data with: |
| #' data("travel_blog_data") # the dataset contains 10 completions for the above request |
| #' |
| #' ## Obtain text embeddings for the completion texts: |
| #' emb_travelblogs = gpt3_bunch_embedding(input_var = travel_blog_data$gpt3) |
| #' dim(emb_travelblogs) |
| #' @export |
| gpt3_bunch_embedding = function(input_var |
| , id_var |
| , param_model = 'text-similarity-ada-001'){ |
| |
| data_length = length(input_var) |
| if(missing(id_var)){ |
| data_id = paste0('prompt_', 1:data_length) |
| } else { |
| data_id = id_var |
| } |
| |
| empty_list = list() |
| |
| for(i in 1:data_length){ |
| |
| print(paste0('Embedding: ', i, '/', data_length)) |
| |
| row_outcome = gpt3_make_embedding(model = param_model |
| , input = input_var[i]) |
| |
| empty_df = data.frame(t(row_outcome)) |
| names(empty_df) = paste0('dim_', 1:length(row_outcome)) |
| empty_df$id = data_id[i] |
| |
| empty_list[[i]] = empty_df |
| |
| |
| } |
| |
| output_data = rbindlist(empty_list) |
| |
| return(output_data) |
| |
| } |