| #' Obtains text embeddings for a single character (string) from the GPT-3 API |
| #' |
| #' @description |
| #' `gpt3_single_embedding()` sends a single [embedding request](https://beta.openai.com/docs/guides/embeddings) to the Open AI GPT-3 API. |
| #' @details The function supports the text similarity embeddings for the four GPT-3 models as specified in the parameter list. The main difference between the four models is the sophistication of the embedding representation as indicated by the vector embedding size. |
| #' - Second-generation embeddings model `text-embedding-ada-002` (1536 dimensions) |
| #' - Ada (1024 dimensions) |
| #' - Babbage (2048 dimensions) |
| #' - Curie (4096 dimensions) |
| #' - Davinci (12288 dimensions) |
| #' |
| #' Note that the dimension size (= vector length), speed and [associated costs](https://openai.com/api/pricing/) differ considerably. |
| #' |
| #' These vectors can be used for downstream tasks such as (vector) similarity calculations. |
| #' @param input character that contains the text for which you want to obtain text embeddings from the GPT-3 model |
| #' @param model a character vector that indicates the [similarity embedding model](https://beta.openai.com/docs/guides/embeddings/similarity-embeddings); one of "text-embedding-ada-002" (default), "text-similarity-ada-001", "text-similarity-curie-001", "text-similarity-babbage-001", "text-similarity-davinci-001". Note: it is strongly recommend to use the faster, cheaper and higher quality second generation embeddings model "text-embedding-ada-002". |
| #' @return A numeric vector (= the embedding vector) |
| #' @examples |
| #' # First authenticate with your API key via `gpt3_authenticate('pathtokey')` |
| #' |
| #' # Once authenticated: |
| #' |
| #' ## Simple request with defaults: |
| #' sample_string = "London is one of the most liveable cities in the world. The city is always full of energy and people. It's always a great place to explore and have fun." |
| #' gpt3_single_embedding(input = sample_string) |
| #' |
| #' ## Change the model: |
| #' #' gpt3_single_embedding(input = sample_string |
| #' , model = 'text-similarity-curie-001') |
| #' @export |
| gpt3_single_embedding = function(input |
| , model = 'text-embedding-ada-002' |
| ){ |
| |
| parameter_list = list(model = model |
| , input = input) |
| |
| request_base = httr::POST(url = url.embeddings |
| , body = parameter_list |
| , httr::add_headers(Authorization = paste("Bearer", api_key)) |
| , encode = "json") |
| |
| |
| output_base = httr::content(request_base) |
| |
| embedding_raw = to_numeric(unlist(output_base$data[[1]]$embedding)) |
| |
| return(embedding_raw) |
| |
| } |