blob: 106f3c95766d3f2ce84ff1f73ee29e6501fa8b5d [file] [log] [blame]
ben-aaron188287b30b2022-09-11 16:46:37 +02001% Generated by roxygen2: do not edit by hand
ben-aaron1882b89c2a2022-09-11 16:54:25 +02002% Please edit documentation in R/gpt3_single_embedding.R
ben-aaron188ca1c3982022-09-22 15:15:53 +02003\name{gpt3_single_embedding}
4\alias{gpt3_single_embedding}
ben-aaron188287b30b2022-09-11 16:46:37 +02005\title{Obtains text embeddings for a single character (string) from the GPT-3 API}
6\usage{
ben-aaron18868434e42022-12-24 20:04:21 +01007gpt3_single_embedding(input, model = "text-embedding-ada-002")
ben-aaron188287b30b2022-09-11 16:46:37 +02008}
9\arguments{
10\item{input}{character that contains the text for which you want to obtain text embeddings from the GPT-3 model}
11
ben-aaron18868434e42022-12-24 20:04:21 +010012\item{model}{a character vector that indicates the \href{https://beta.openai.com/docs/guides/embeddings/similarity-embeddings}{similarity embedding model}; one of "text-embedding-ada-002" (default), "text-similarity-ada-001", "text-similarity-curie-001", "text-similarity-babbage-001", "text-similarity-davinci-001". Note: it is strongly recommend to use the faster, cheaper and higher quality second generation embeddings model "text-embedding-ada-002".}
ben-aaron188287b30b2022-09-11 16:46:37 +020013}
14\value{
15A numeric vector (= the embedding vector)
16}
17\description{
ben-aaron188ca1c3982022-09-22 15:15:53 +020018\code{gpt3_single_embedding()} sends a single \href{https://beta.openai.com/docs/guides/embeddings}{embedding request} to the Open AI GPT-3 API.
ben-aaron188287b30b2022-09-11 16:46:37 +020019}
20\details{
21The function supports the text similarity embeddings for the four GPT-3 models as specified in the parameter list. The main difference between the four models is the sophistication of the embedding representation as indicated by the vector embedding size.
22\itemize{
ben-aaron18868434e42022-12-24 20:04:21 +010023\item Second-generation embeddings model \code{text-embedding-ada-002} (1536 dimensions)
ben-aaron188287b30b2022-09-11 16:46:37 +020024\item Ada (1024 dimensions)
25\item Babbage (2048 dimensions)
26\item Curie (4096 dimensions)
27\item Davinci (12288 dimensions)
28}
29
30Note that the dimension size (= vector length), speed and \href{https://openai.com/api/pricing/}{associated costs} differ considerably.
31
32These vectors can be used for downstream tasks such as (vector) similarity calculations.
33}
34\examples{
35# First authenticate with your API key via `gpt3_authenticate('pathtokey')`
36
37# Once authenticated:
38
39## Simple request with defaults:
40sample_string = "London is one of the most liveable cities in the world. The city is always full of energy and people. It's always a great place to explore and have fun."
ben-aaron188ca1c3982022-09-22 15:15:53 +020041gpt3_single_embedding(input = sample_string)
ben-aaron188287b30b2022-09-11 16:46:37 +020042
43## Change the model:
ben-aaron188ca1c3982022-09-22 15:15:53 +020044#' gpt3_single_embedding(input = sample_string
ben-aaron188287b30b2022-09-11 16:46:37 +020045 , model = 'text-similarity-curie-001')
46}