blob: 9a33169b1078e9cf0604c4e4444da2ec63136f46 [file] [log] [blame]
ben-aaron188287b30b2022-09-11 16:46:37 +02001% Generated by roxygen2: do not edit by hand
2% Please edit documentation in R/bunch_embedding.R
3\name{gpt3_bunch_embedding}
4\alias{gpt3_bunch_embedding}
5\title{Retrieves text embeddings for character input from a vector from the GPT-3 API}
6\usage{
7gpt3_bunch_embedding(
8 input_var,
9 id_var,
10 param_model = "text-similarity-ada-001"
11)
12}
13\arguments{
14\item{input_var}{character vector that contains the texts for which you want to obtain text embeddings from the GPT-3 model
15#' @param id_var (optional) character vector that contains the user-defined ids of the prompts. See details.}
16
17\item{param_model}{a character vector that indicates the \href{https://beta.openai.com/docs/guides/embeddings/similarity-embeddings}{similarity embedding model}; one of "text-similarity-ada-001" (default), "text-similarity-curie-001", "text-similarity-babbage-001", "text-similarity-davinci-001"}
18}
19\value{
20A data.table with the embeddings as separate columns; one row represents one input text. See details.
21}
22\description{
23\code{gpt3_bunch_embedding()} extends the single embeddings function \code{gpt3_make_embedding()} to allow for the processing of a whole vector
24}
25\details{
26The returned data.table contains the column \code{id} which indicates the text id (or its generic alternative if not specified) and the columns \code{dim_1} ... \verb{dim_\{max\}}, where \code{max} is the length of the text embeddings vector that the four different models return. For the default "Ada" model, these are 1024 dimensions (i.e., \code{dim_1}... \code{dim_1024}).
27
28The function supports the text similarity embeddings for the four GPT-3 models as specified in the parameter list. The main difference between the four models is the sophistication of the embedding representation as indicated by the vector embedding size.
29\itemize{
30\item Ada (1024 dimensions)
31\item Babbage (2048 dimensions)
32\item Curie (4096 dimensions)
33\item Davinci (12288 dimensions)
34}
35
36Note that the dimension size (= vector length), speed and \href{https://openai.com/api/pricing/}{associated costs} differ considerably.
37
38These vectors can be used for downstream tasks such as (vector) similarity calculations.
39}
40\examples{
41# First authenticate with your API key via `gpt3_authenticate('pathtokey')`
42
43# Use example data:
44## The data below were generated with the `gpt3_make_request()` function as follows:
45##### DO NOT RUN #####
46# travel_blog_data = gpt3_make_request(prompt_input = "Write a travel blog about a dog's journey through the UK:", temperature = 0.8, n = 10, max_tokens = 200)[[1]]
47##### END DO NOT RUN #####
48
49# You can load these data with:
50data("travel_blog_data") # the dataset contains 10 completions for the above request
51
52
53## Obtain text embeddings for the completion texts:
54gpt3_bunch_embedding(input = sample_string
55 , model = 'text-similarity-curie-001')
56}