ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 1 | #' Makes bunch completion requests to the GPT-3 API |
| 2 | #' |
| 3 | #' @description |
ben-aaron188 | 718e3a6 | 2022-10-24 14:28:51 +0200 | [diff] [blame] | 4 | #' `gpt3_completions()` is the package's main function for rquests and takes as input a vector of prompts and processes each prompt as per the defined parameters. It extends the `gpt3_single_completion()` function to allow for bunch processing of requests to the Open AI GPT-3 API. |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 5 | #' @details |
| 6 | #' The easiest (and intended) use case for this function is to create a data.frame or data.table with variables that contain the prompts to be requested from GPT-3 and a prompt id (see examples below). |
| 7 | #' For a general guide on the completion requests, see [https://beta.openai.com/docs/guides/completion](https://beta.openai.com/docs/guides/completion). This function provides you with an R wrapper to send requests with the full range of request parameters as detailed on [https://beta.openai.com/docs/api-reference/completions](https://beta.openai.com/docs/api-reference/completions) and reproduced below. |
| 8 | #' |
ben-aaron188 | 718e3a6 | 2022-10-24 14:28:51 +0200 | [diff] [blame] | 9 | #' For the `best_of` parameter: The `gpt3_single_completion()` (which is used here in a vectorised manner) handles the issue that best_of must be greater than n by setting `if(best_of <= n){ best_of = n}`. |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 10 | #' |
| 11 | #' If `id_var` is not provided, the function will use `prompt_1` ... `prompt_n` as id variable. |
| 12 | #' |
| 13 | #' Parameters not included/supported: |
| 14 | #' - `logit_bias`: [https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias](https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias) |
| 15 | #' - `echo`: [https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo](https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo) |
| 16 | #' - `stream`: [https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream](https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream) |
| 17 | #' |
| 18 | #' @param prompt_var character vector that contains the prompts to the GPT-3 request |
| 19 | #' @param id_var (optional) character vector that contains the user-defined ids of the prompts. See details. |
ben-aaron188 | 4000fe9 | 2022-11-29 12:52:14 +0100 | [diff] [blame^] | 20 | #' @param param_model a character vector that indicates the [model](https://beta.openai.com/docs/models/gpt-3) to use; one of "text-davinci-003" (default), "text-davinci-002", "text-davinci-001", "text-curie-001", "text-babbage-001" or "text-ada-001" |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 21 | #' @param param_output_type character determining the output provided: "complete" (default), "text" or "meta" |
| 22 | #' @param param_suffix character (default: NULL) (from the official API documentation: _The suffix that comes after a completion of inserted text_) |
| 23 | #' @param param_max_tokens numeric (default: 100) indicating the maximum number of tokens that the completion request should return (from the official API documentation: _The maximum number of tokens to generate in the completion. The token count of your prompt plus max_tokens cannot exceed the model's context length. Most models have a context length of 2048 tokens (except for the newest models, which support 4096)_) |
| 24 | #' @param param_temperature numeric (default: 0.9) specifying the sampling strategy of the possible completions (from the official API documentation: _What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer. We generally recommend altering this or top_p but not both._) |
| 25 | #' @param param_top_p numeric (default: 1) specifying sampling strategy as an alternative to the temperature sampling (from the official API documentation: _An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both._) |
| 26 | #' @param param_n numeric (default: 1) specifying the number of completions per request (from the official API documentation: _How many completions to generate for each prompt. **Note: Because this parameter generates many completions, it can quickly consume your token quota.** Use carefully and ensure that you have reasonable settings for max_tokens and stop._) |
| 27 | #' @param param_logprobs numeric (default: NULL) (from the official API documentation: _Include the log probabilities on the logprobs most likely tokens, as well the chosen tokens. For example, if logprobs is 5, the API will return a list of the 5 most likely tokens. The API will always return the logprob of the sampled token, so there may be up to logprobs+1 elements in the response. The maximum value for logprobs is 5. If you need more than this, please contact support@openai.com and describe your use case._) |
| 28 | #' @param param_stop character or character vector (default: NULL) that specifies after which character value when the completion should end (from the official API documentation: _Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence._) |
| 29 | #' @param param_presence_penalty numeric (default: 0) between -2.00 and +2.00 to determine the penalisation of repetitiveness if a token already exists (from the official API documentation: _Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics._). See also: [https://beta.openai.com/docs/api-reference/parameter-details](https://beta.openai.com/docs/api-reference/parameter-details) |
| 30 | #' @param param_frequency_penalty numeric (default: 0) between -2.00 and +2.00 to determine the penalisation of repetitiveness based on the frequency of a token in the text already (from the official API documentation: _Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim._). See also: [https://beta.openai.com/docs/api-reference/parameter-details](https://beta.openai.com/docs/api-reference/parameter-details) |
| 31 | #' @param param_best_of numeric (default: 1) that determines the space of possibilities from which to select the completion with the highest probability (from the official API documentation: _Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token)_). See details. |
| 32 | #' |
| 33 | #' @return A list with two data tables (if `param_output_type` is the default "complete"): [[1]] contains the data table with the columns `n` (= the mo. of `n` responses requested), `prompt` (= the prompt that was sent), `gpt3` (= the completion as returned from the GPT-3 model) and `id` (= the provided `id_var` or its default alternative). [[2]] contains the meta information of the request, including the request id, the parameters of the request and the token usage of the prompt (`tok_usage_prompt`), the completion (`tok_usage_completion`), the total usage (`tok_usage_total`), and the `id` (= the provided `id_var` or its default alternative). |
| 34 | #' |
| 35 | #' If `output_type` is "text", only the data table in slot [[1]] is returned. |
| 36 | #' |
| 37 | #' If `output_type` is "meta", only the data table in slot [[2]] is returned. |
| 38 | #' @examples |
| 39 | #' # First authenticate with your API key via `gpt3_authenticate('pathtokey')` |
| 40 | #' |
| 41 | #' # Once authenticated: |
| 42 | #' # Assuming you have a data.table with 3 different prompts: |
| 43 | #' dt_prompts = data.table::data.table('prompts' = c('What is the meaning if life?', 'Write a tweet about London:', 'Write a research proposal for using AI to fight fake news:'), 'prompt_id' = c(LETTERS[1:3])) |
ben-aaron188 | 718e3a6 | 2022-10-24 14:28:51 +0200 | [diff] [blame] | 44 | #'gpt3_completions(prompt_var = dt_prompts$prompts |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 45 | #' , id_var = dt_prompts$prompt_id) |
| 46 | #' |
| 47 | #' ## With more controls |
ben-aaron188 | 718e3a6 | 2022-10-24 14:28:51 +0200 | [diff] [blame] | 48 | #'gpt3_completions(prompt_var = dt_prompts$prompts |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 49 | #' , id_var = dt_prompts$prompt_id |
| 50 | #' , param_max_tokens = 50 |
| 51 | #' , param_temperature = 0.5 |
| 52 | #' , param_n = 5) |
| 53 | #' |
| 54 | #' ## Reproducible example (deterministic approach) |
ben-aaron188 | 718e3a6 | 2022-10-24 14:28:51 +0200 | [diff] [blame] | 55 | #'gpt3_completions(prompt_var = dt_prompts$prompts |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 56 | #' , id_var = dt_prompts$prompt_id |
| 57 | #' , param_max_tokens = 50 |
| 58 | #' , param_temperature = 0.0) |
| 59 | #' |
| 60 | #' ## Changing the GPT-3 model |
ben-aaron188 | 718e3a6 | 2022-10-24 14:28:51 +0200 | [diff] [blame] | 61 | #'gpt3_completions(prompt_var = dt_prompts$prompts |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 62 | #' , id_var = dt_prompts$prompt_id |
| 63 | #' , param_model = 'text-babbage-001' |
| 64 | #' , param_max_tokens = 50 |
| 65 | #' , param_temperature = 0.4) |
| 66 | #' @export |
ben-aaron188 | 718e3a6 | 2022-10-24 14:28:51 +0200 | [diff] [blame] | 67 | gpt3_completions = function(prompt_var |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 68 | , id_var |
| 69 | , param_output_type = 'complete' |
ben-aaron188 | 4000fe9 | 2022-11-29 12:52:14 +0100 | [diff] [blame^] | 70 | , param_model = 'text-davinci-003' |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 71 | , param_suffix = NULL |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 72 | , param_max_tokens = 100 |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 73 | , param_temperature = 0.9 |
| 74 | , param_top_p = 1 |
| 75 | , param_n = 1 |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 76 | , param_logprobs = NULL |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 77 | , param_stop = NULL |
| 78 | , param_presence_penalty = 0 |
| 79 | , param_frequency_penalty = 0 |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 80 | , param_best_of = 1){ |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 81 | |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 82 | data_length = length(prompt_var) |
| 83 | if(missing(id_var)){ |
| 84 | data_id = paste0('prompt_', 1:data_length) |
| 85 | } else { |
| 86 | data_id = id_var |
| 87 | } |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 88 | |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 89 | empty_list = list() |
| 90 | meta_list = list() |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 91 | |
| 92 | for(i in 1:data_length){ |
| 93 | |
| 94 | print(paste0('Request: ', i, '/', data_length)) |
| 95 | |
ben-aaron188 | 718e3a6 | 2022-10-24 14:28:51 +0200 | [diff] [blame] | 96 | row_outcome = gpt3_single_completion(prompt_input = prompt_var[i] |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 97 | , model = param_model |
| 98 | , output_type = 'complete' |
| 99 | , suffix = param_suffix |
| 100 | , max_tokens = param_max_tokens |
| 101 | , temperature = param_temperature |
| 102 | , top_p = param_top_p |
| 103 | , n = param_n |
| 104 | , logprobs = param_logprobs |
| 105 | , stop = param_stop |
| 106 | , presence_penalty = param_presence_penalty |
| 107 | , frequency_penalty = param_frequency_penalty |
| 108 | , best_of = param_best_of) |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 109 | |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 110 | row_outcome[[1]]$id = data_id[i] |
| 111 | row_outcome[[2]]$id = data_id[i] |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 112 | |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 113 | empty_list[[i]] = row_outcome[[1]] |
| 114 | meta_list[[i]] = row_outcome[[2]] |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 115 | |
| 116 | } |
| 117 | |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 118 | bunch_core_output = data.table::rbindlist(empty_list) |
| 119 | bunch_meta_output = data.table::rbindlist(meta_list) |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 120 | |
ben-aaron188 | 8f5f200 | 2022-09-10 21:26:23 +0200 | [diff] [blame] | 121 | if(param_output_type == 'complete'){ |
| 122 | output = list(bunch_core_output |
| 123 | , bunch_meta_output) |
| 124 | } else if(param_output_type == 'meta'){ |
| 125 | output = bunch_meta_output |
| 126 | } else if(param_output_type == 'text'){ |
| 127 | output = bunch_core_output |
| 128 | } |
| 129 | |
| 130 | return(output) |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 131 | } |