blob: 058d4055bfb5b1b917c52b96afd4ea1a13d4b53c [file] [log] [blame]
ben-aaron1888f5f2002022-09-10 21:26:23 +02001#' Makes bunch completion requests to the GPT-3 API
2#'
3#' @description
ben-aaron188718e3a62022-10-24 14:28:51 +02004#' `gpt3_completions()` is the package's main function for rquests and takes as input a vector of prompts and processes each prompt as per the defined parameters. It extends the `gpt3_single_completion()` function to allow for bunch processing of requests to the Open AI GPT-3 API.
ben-aaron1888f5f2002022-09-10 21:26:23 +02005#' @details
6#' The easiest (and intended) use case for this function is to create a data.frame or data.table with variables that contain the prompts to be requested from GPT-3 and a prompt id (see examples below).
7#' For a general guide on the completion requests, see [https://beta.openai.com/docs/guides/completion](https://beta.openai.com/docs/guides/completion). This function provides you with an R wrapper to send requests with the full range of request parameters as detailed on [https://beta.openai.com/docs/api-reference/completions](https://beta.openai.com/docs/api-reference/completions) and reproduced below.
8#'
ben-aaron188718e3a62022-10-24 14:28:51 +02009#' For the `best_of` parameter: The `gpt3_single_completion()` (which is used here in a vectorised manner) handles the issue that best_of must be greater than n by setting `if(best_of <= n){ best_of = n}`.
ben-aaron1888f5f2002022-09-10 21:26:23 +020010#'
11#' If `id_var` is not provided, the function will use `prompt_1` ... `prompt_n` as id variable.
12#'
13#' Parameters not included/supported:
14#' - `logit_bias`: [https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias](https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias)
15#' - `echo`: [https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo](https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo)
16#' - `stream`: [https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream](https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream)
17#'
18#' @param prompt_var character vector that contains the prompts to the GPT-3 request
19#' @param id_var (optional) character vector that contains the user-defined ids of the prompts. See details.
ben-aaron1884000fe92022-11-29 12:52:14 +010020#' @param param_model a character vector that indicates the [model](https://beta.openai.com/docs/models/gpt-3) to use; one of "text-davinci-003" (default), "text-davinci-002", "text-davinci-001", "text-curie-001", "text-babbage-001" or "text-ada-001"
ben-aaron1888f5f2002022-09-10 21:26:23 +020021#' @param param_output_type character determining the output provided: "complete" (default), "text" or "meta"
22#' @param param_suffix character (default: NULL) (from the official API documentation: _The suffix that comes after a completion of inserted text_)
23#' @param param_max_tokens numeric (default: 100) indicating the maximum number of tokens that the completion request should return (from the official API documentation: _The maximum number of tokens to generate in the completion. The token count of your prompt plus max_tokens cannot exceed the model's context length. Most models have a context length of 2048 tokens (except for the newest models, which support 4096)_)
24#' @param param_temperature numeric (default: 0.9) specifying the sampling strategy of the possible completions (from the official API documentation: _What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer. We generally recommend altering this or top_p but not both._)
25#' @param param_top_p numeric (default: 1) specifying sampling strategy as an alternative to the temperature sampling (from the official API documentation: _An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both._)
26#' @param param_n numeric (default: 1) specifying the number of completions per request (from the official API documentation: _How many completions to generate for each prompt. **Note: Because this parameter generates many completions, it can quickly consume your token quota.** Use carefully and ensure that you have reasonable settings for max_tokens and stop._)
27#' @param param_logprobs numeric (default: NULL) (from the official API documentation: _Include the log probabilities on the logprobs most likely tokens, as well the chosen tokens. For example, if logprobs is 5, the API will return a list of the 5 most likely tokens. The API will always return the logprob of the sampled token, so there may be up to logprobs+1 elements in the response. The maximum value for logprobs is 5. If you need more than this, please contact support@openai.com and describe your use case._)
28#' @param param_stop character or character vector (default: NULL) that specifies after which character value when the completion should end (from the official API documentation: _Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence._)
29#' @param param_presence_penalty numeric (default: 0) between -2.00 and +2.00 to determine the penalisation of repetitiveness if a token already exists (from the official API documentation: _Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics._). See also: [https://beta.openai.com/docs/api-reference/parameter-details](https://beta.openai.com/docs/api-reference/parameter-details)
30#' @param param_frequency_penalty numeric (default: 0) between -2.00 and +2.00 to determine the penalisation of repetitiveness based on the frequency of a token in the text already (from the official API documentation: _Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim._). See also: [https://beta.openai.com/docs/api-reference/parameter-details](https://beta.openai.com/docs/api-reference/parameter-details)
31#' @param param_best_of numeric (default: 1) that determines the space of possibilities from which to select the completion with the highest probability (from the official API documentation: _Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token)_). See details.
32#'
33#' @return A list with two data tables (if `param_output_type` is the default "complete"): [[1]] contains the data table with the columns `n` (= the mo. of `n` responses requested), `prompt` (= the prompt that was sent), `gpt3` (= the completion as returned from the GPT-3 model) and `id` (= the provided `id_var` or its default alternative). [[2]] contains the meta information of the request, including the request id, the parameters of the request and the token usage of the prompt (`tok_usage_prompt`), the completion (`tok_usage_completion`), the total usage (`tok_usage_total`), and the `id` (= the provided `id_var` or its default alternative).
34#'
35#' If `output_type` is "text", only the data table in slot [[1]] is returned.
36#'
37#' If `output_type` is "meta", only the data table in slot [[2]] is returned.
38#' @examples
39#' # First authenticate with your API key via `gpt3_authenticate('pathtokey')`
40#'
41#' # Once authenticated:
42#' # Assuming you have a data.table with 3 different prompts:
43#' dt_prompts = data.table::data.table('prompts' = c('What is the meaning if life?', 'Write a tweet about London:', 'Write a research proposal for using AI to fight fake news:'), 'prompt_id' = c(LETTERS[1:3]))
ben-aaron188718e3a62022-10-24 14:28:51 +020044#'gpt3_completions(prompt_var = dt_prompts$prompts
ben-aaron1888f5f2002022-09-10 21:26:23 +020045#' , id_var = dt_prompts$prompt_id)
46#'
47#' ## With more controls
ben-aaron188718e3a62022-10-24 14:28:51 +020048#'gpt3_completions(prompt_var = dt_prompts$prompts
ben-aaron1888f5f2002022-09-10 21:26:23 +020049#' , id_var = dt_prompts$prompt_id
50#' , param_max_tokens = 50
51#' , param_temperature = 0.5
52#' , param_n = 5)
53#'
54#' ## Reproducible example (deterministic approach)
ben-aaron188718e3a62022-10-24 14:28:51 +020055#'gpt3_completions(prompt_var = dt_prompts$prompts
ben-aaron1888f5f2002022-09-10 21:26:23 +020056#' , id_var = dt_prompts$prompt_id
57#' , param_max_tokens = 50
58#' , param_temperature = 0.0)
59#'
60#' ## Changing the GPT-3 model
ben-aaron188718e3a62022-10-24 14:28:51 +020061#'gpt3_completions(prompt_var = dt_prompts$prompts
ben-aaron1888f5f2002022-09-10 21:26:23 +020062#' , id_var = dt_prompts$prompt_id
63#' , param_model = 'text-babbage-001'
64#' , param_max_tokens = 50
65#' , param_temperature = 0.4)
66#' @export
ben-aaron188718e3a62022-10-24 14:28:51 +020067gpt3_completions = function(prompt_var
ben-aaron1888f5f2002022-09-10 21:26:23 +020068 , id_var
69 , param_output_type = 'complete'
ben-aaron1884000fe92022-11-29 12:52:14 +010070 , param_model = 'text-davinci-003'
ben-aaron1883818e7c2022-09-08 17:49:01 +020071 , param_suffix = NULL
ben-aaron1888f5f2002022-09-10 21:26:23 +020072 , param_max_tokens = 100
ben-aaron1883818e7c2022-09-08 17:49:01 +020073 , param_temperature = 0.9
74 , param_top_p = 1
75 , param_n = 1
ben-aaron1883818e7c2022-09-08 17:49:01 +020076 , param_logprobs = NULL
ben-aaron1883818e7c2022-09-08 17:49:01 +020077 , param_stop = NULL
78 , param_presence_penalty = 0
79 , param_frequency_penalty = 0
ben-aaron1888f5f2002022-09-10 21:26:23 +020080 , param_best_of = 1){
ben-aaron1883818e7c2022-09-08 17:49:01 +020081
ben-aaron1888f5f2002022-09-10 21:26:23 +020082 data_length = length(prompt_var)
83 if(missing(id_var)){
84 data_id = paste0('prompt_', 1:data_length)
85 } else {
86 data_id = id_var
87 }
ben-aaron1883818e7c2022-09-08 17:49:01 +020088
ben-aaron1888f5f2002022-09-10 21:26:23 +020089 empty_list = list()
90 meta_list = list()
ben-aaron1883818e7c2022-09-08 17:49:01 +020091
92 for(i in 1:data_length){
93
94 print(paste0('Request: ', i, '/', data_length))
95
ben-aaron188718e3a62022-10-24 14:28:51 +020096 row_outcome = gpt3_single_completion(prompt_input = prompt_var[i]
ben-aaron1888f5f2002022-09-10 21:26:23 +020097 , model = param_model
98 , output_type = 'complete'
99 , suffix = param_suffix
100 , max_tokens = param_max_tokens
101 , temperature = param_temperature
102 , top_p = param_top_p
103 , n = param_n
104 , logprobs = param_logprobs
105 , stop = param_stop
106 , presence_penalty = param_presence_penalty
107 , frequency_penalty = param_frequency_penalty
108 , best_of = param_best_of)
ben-aaron1883818e7c2022-09-08 17:49:01 +0200109
ben-aaron1888f5f2002022-09-10 21:26:23 +0200110 row_outcome[[1]]$id = data_id[i]
111 row_outcome[[2]]$id = data_id[i]
ben-aaron1883818e7c2022-09-08 17:49:01 +0200112
ben-aaron1888f5f2002022-09-10 21:26:23 +0200113 empty_list[[i]] = row_outcome[[1]]
114 meta_list[[i]] = row_outcome[[2]]
ben-aaron1883818e7c2022-09-08 17:49:01 +0200115
116 }
117
ben-aaron1888f5f2002022-09-10 21:26:23 +0200118 bunch_core_output = data.table::rbindlist(empty_list)
119 bunch_meta_output = data.table::rbindlist(meta_list)
ben-aaron1883818e7c2022-09-08 17:49:01 +0200120
ben-aaron1888f5f2002022-09-10 21:26:23 +0200121 if(param_output_type == 'complete'){
122 output = list(bunch_core_output
123 , bunch_meta_output)
124 } else if(param_output_type == 'meta'){
125 output = bunch_meta_output
126 } else if(param_output_type == 'text'){
127 output = bunch_core_output
128 }
129
130 return(output)
ben-aaron1883818e7c2022-09-08 17:49:01 +0200131}