ben-aaron188 | ad8b3f3 | 2023-03-05 20:22:57 +0100 | [diff] [blame^] | 1 | #' Makes a single chat completion request to the ChatGPT API |
| 2 | #' |
| 3 | #' @description |
| 4 | #' `chatgpt_single()` sends a single [chat completion request](https://platform.openai.com/docs/guides/chat) to the Open AI GPT API. Doing so, makes this equivalent to the sending single completion requests with `gpt3_single_completion()`. You can see the notes on chat vs completion requests here: [https://platform.openai.com/docs/guides/chat/chat-vs-completions](https://platform.openai.com/docs/guides/chat/chat-vs-completions). This function allows you to specify the role and content for your API call. |
| 5 | #' @details For a general guide on the completion requests, see [https://platform.openai.com/docs/api-reference/chat](https://platform.openai.com/docs/api-reference/chat). This function provides you with an R wrapper to send requests with the full range of request parameters as detailed on [https://beta.openai.com/docs/api-reference/completions](https://beta.openai.com/docs/api-reference/completions) and reproduced below. |
| 6 | #' |
| 7 | #' Parameters not included/supported: |
| 8 | #' - `logit_bias`: [https://platform.openai.com/docs/api-reference/chat/create#chat/create-logit_bias](https://platform.openai.com/docs/api-reference/chat/create#chat/create-logit_bias) |
| 9 | #' - `stream`: [https://platform.openai.com/docs/api-reference/chat/create#chat/create-stream](https://platform.openai.com/docs/api-reference/chat/create#chat/create-stream) |
| 10 | #' |
| 11 | #' |
| 12 | #' @param prompt_role character (default: 'user') that contains the role for the prompt message in the ChatGPT message format. Must be one of 'system', 'assistant', 'user' (default), see [https://platform.openai.com/docs/guides/chat](https://platform.openai.com/docs/guides/chat) |
| 13 | #' @param prompt_content character that contains the content for the prompt message in the ChatGPT message format, see [https://platform.openai.com/docs/guides/chat](https://platform.openai.com/docs/guides/chat). This is the key instruction that ChatGPT receives. |
| 14 | #' @param model a character vector that indicates the [ChatGPT model](https://platform.openai.com/docs/api-reference/chat/create#chat/create-model) to use; one of "gpt-3.5-turbo" (default), "gpt-3.5-turbo-0301" |
| 15 | #' @param output_type character determining the output provided: "complete" (default), "text" or "meta" |
| 16 | #' @param max_tokens numeric (default: 100) indicating the maximum number of tokens that the completion request should return (from the official API documentation: _The maximum number of tokens allowed for the generated answer. By default, the number of tokens the model can return will be (4096 - prompt tokens)._) |
| 17 | #' @param temperature numeric (default: 1.0) specifying the sampling strategy of the possible completions (from the official API documentation: _What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both._) |
| 18 | #' @param top_p numeric (default: 1) specifying sampling strategy as an alternative to the temperature sampling (from the official API documentation: _An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or `temperature` but not both._) |
| 19 | #' @param n numeric (default: 1) specifying the number of completions per request (from the official API documentation: _How many chat completion choices to generate for each input message. **Note: Because this parameter generates many completions, it can quickly consume your token quota.** Use carefully and ensure that you have reasonable settings for max_tokens and stop._) |
| 20 | #' @param stop character or character vector (default: NULL) that specifies after which character value when the completion should end (from the official API documentation: _Up to 4 sequences where the API will stop generating further tokens._) |
| 21 | #' @param presence_penalty numeric (default: 0) between -2.00 and +2.00 to determine the penalisation of repetitiveness if a token already exists (from the official API documentation: _Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics._). See also: [https://beta.openai.com/docs/api-reference/parameter-details](https://beta.openai.com/docs/api-reference/parameter-details) |
| 22 | #' @param frequency_penalty numeric (default: 0) between -2.00 and +2.00 to determine the penalisation of repetitiveness based on the frequency of a token in the text already (from the official API documentation: _Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim._). See also: [https://beta.openai.com/docs/api-reference/parameter-details](https://beta.openai.com/docs/api-reference/parameter-details) |
| 23 | #' |
| 24 | #' @return A list with two data tables (if `output_type` is the default "complete"): [[1]] contains the data table with the columns `n` (= the mo. of `n` responses requested), `prompt_role` (= the role that was set for the prompt), `prompt_content` (= the content that was set for the prompt), `chatgpt_role` (= the role that ChatGPT assumed in the chat completion) and `chatgpt_content` (= the content that ChatGPT provided with its assumed role in the chat completion). [[2]] contains the meta information of the request, including the request id, the parameters of the request and the token usage of the prompt (`tok_usage_prompt`), the completion (`tok_usage_completion`) and the total usage (`tok_usage_total`). |
| 25 | #' |
| 26 | #' If `output_type` is "text", only the data table in slot [[1]] is returned. |
| 27 | #' |
| 28 | #' If `output_type` is "meta", only the data table in slot [[2]] is returned. |
| 29 | #' @examples |
| 30 | #' # First authenticate with your API key via `gpt3_authenticate('pathtokey')` |
| 31 | #' |
| 32 | #' # Once authenticated: |
| 33 | #' |
| 34 | #' ## Simple request with defaults: |
| 35 | #' chatgpt_single(prompt_content = 'You are a teacher: explain to me what science is') |
| 36 | #' |
| 37 | #' ## Instruct ChatGPT to write ten research ideas of max. 150 tokens with some controls: |
| 38 | #' chatgpt_single(prompt_role = 'user', prompt_content = 'Write a research idea about using text data to understand human behaviour:' |
| 39 | #' , temperature = 0.8 |
| 40 | #' , n = 10 |
| 41 | #' , max_tokens = 150) |
| 42 | #' |
| 43 | #' ## For fully reproducible results, we need `temperature = 0`, e.g.: |
| 44 | #' chatgpt_single(prompt_content = 'Finish this sentence:/n There is no easier way to learn R than' |
| 45 | #' , temperature = 0.0 |
| 46 | #' , max_tokens = 50) |
| 47 | #' |
| 48 | #' @export |
| 49 | chatgpt_single = function(prompt_role = 'user' |
| 50 | , prompt_content |
| 51 | , model = 'gpt-3.5-turbo' |
| 52 | , output_type = 'complete' |
| 53 | , max_tokens = 100 |
| 54 | , temperature = 1.0 |
| 55 | , top_p = 1 |
| 56 | , n = 1 |
| 57 | , stop = NULL |
| 58 | , presence_penalty = 0 |
| 59 | , frequency_penalty = 0 |
| 60 | ){ |
| 61 | |
| 62 | #check for request issues with `n` and `best_of` |
| 63 | |
| 64 | if(temperature == 0 & n > 1){ |
| 65 | n = 1 |
| 66 | message('You are running the deterministic model, so `n` was set to 1 to avoid unnecessary token quota usage.') |
| 67 | } |
| 68 | |
| 69 | messages = c = data.frame(role = prompt_role |
| 70 | , content = prompt_content) |
| 71 | |
| 72 | parameter_list = list(messages = messages |
| 73 | , model = model |
| 74 | , max_tokens = max_tokens |
| 75 | , temperature = temperature |
| 76 | , top_p = top_p |
| 77 | , n = n |
| 78 | , stop = stop |
| 79 | , presence_penalty = presence_penalty |
| 80 | , frequency_penalty = frequency_penalty |
| 81 | ) |
| 82 | |
| 83 | request_base = httr::POST(url = url.chat_completions |
| 84 | , body = parameter_list |
| 85 | , httr::add_headers(Authorization = paste("Bearer", api_key)) |
| 86 | , encode = "json") |
| 87 | |
| 88 | request_content = httr::content(request_base) |
| 89 | |
| 90 | if(n == 1){ |
| 91 | core_output = data.table::data.table('n' = 1 |
| 92 | , 'prompt_role' = prompt_role |
| 93 | , 'prompt_content' = prompt_content |
| 94 | , 'chatgpt_role' = request_content$choices[[1]]$message$role |
| 95 | , 'chatgpt_content' = request_content$choices[[1]]$message$content) |
| 96 | } else if(n > 1){ |
| 97 | |
| 98 | core_output = data.table::data.table('n' = 1:n |
| 99 | , 'prompt_role' = rep(prompt_role, n) |
| 100 | , 'prompt_content' = rep(prompt_content, n) |
| 101 | , 'chatgpt_role' = rep("", n) |
| 102 | , 'chatgpt_content' = rep("", n)) |
| 103 | |
| 104 | for(i in 1:n){ |
| 105 | core_output$chatgpt_role[i] = request_content$choices[[i]]$message$role |
| 106 | core_output$chatgpt_content[i] = request_content$choices[[i]]$message$content |
| 107 | } |
| 108 | |
| 109 | } |
| 110 | |
| 111 | |
| 112 | meta_output = data.table::data.table('request_id' = request_content$id |
| 113 | , 'object' = request_content$object |
| 114 | , 'model' = request_content$model |
| 115 | , 'param_prompt_role' = prompt_role |
| 116 | , 'param_prompt_content' = prompt_content |
| 117 | , 'param_model' = model |
| 118 | , 'param_max_tokens' = max_tokens |
| 119 | , 'param_temperature' = temperature |
| 120 | , 'param_top_p' = top_p |
| 121 | , 'param_n' = n |
| 122 | , 'param_stop' = stop |
| 123 | , 'param_presence_penalty' = presence_penalty |
| 124 | , 'param_frequency_penalty' = frequency_penalty |
| 125 | , 'tok_usage_prompt' = request_content$usage$prompt_tokens |
| 126 | , 'tok_usage_completion' = request_content$usage$completion_tokens |
| 127 | , 'tok_usage_total' = request_content$usage$total_tokens) |
| 128 | |
| 129 | |
| 130 | if(output_type == 'complete'){ |
| 131 | output = list(core_output |
| 132 | , meta_output) |
| 133 | } else if(output_type == 'meta'){ |
| 134 | output = meta_output |
| 135 | } else if(output_type == 'text'){ |
| 136 | output = core_output |
| 137 | } |
| 138 | |
| 139 | return(output) |
| 140 | |
| 141 | } |